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Abstract

We have designed a processor that implements a subset of the x86 ISA. The
processor is 7-stage pipelined, supports in-order execution with precise exceptions,
contains 512-byte, direct-mapped instruction and data caches. It communicates
with peripheral devices and main memory using a central system bus that runs at
the operating frequency of the processor. The main goal of the design was to attain
200 MHz frequency. The final design runs at 143 MHz (7 ns cycle time).
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1 Introduction

This report describes our design and implementation of a computer system implementing
a subset of the x86 instruction set architecture (ISA). Our system includes a 7-stage in-
order pipeline which overlaps the execution of instructions, a memory system consisting
of 512-byte, direct-mapped, write-back instruction and data caches and a 32 KB main
memory, two I/O devices (a keyboard and a monitor) and a system bus that connects the
processing core to the memory, keyboard, and the monitor. The system runs at a 7-ns
cycle time, which is higher than our initial target which was 5 ns. The system is designed
as a general-purpose system to execute integer programs.

Our primary design goals were a short cycle time and a simple, streamlined hardware
implementation that would work correctly for all cases. We have achieved our second
goal: our design works without a glitch. However, we fell a little short of achieving the
short cycle time we aimed for. The details of how we could improve our design to fulfill
our first goal are provided in this report.

Section 2 of this report describes our design (control and the datapath) in detail. Section
3 describes the design considerations, the tradeoffs we considered in building our system
and our design choices along with explanations of why we favored one design choice over
another. Section 4 analyzes the critical path of our pipeline and comments on how it can
be improved.Section 5 describes what we feel are the major limitations and bottlenecks of
our design and discusses how our design can be extended to obtain higher performance.
Section 6 contains our concluding remarks.

2 Design Overview

Figure 1 shows a high-level overview of the designed system. There are three main com-
ponents of our system: the processing core, the memory subsystem, and the bus ar-
biter/memory /peripherals. In this section, we put these three components in perspective
and elaborate on the design of each component.

2.1 High-Level Connections in the System

In an implementation of our system, we plan to have the processing core and the memory
subsystem placed on-chip. The chip will be connected to the main memory and peripherals
using the system bus. Bus arbitration logic will also be placed on chip to reduce the main
memory access latency experienced by the processing core.

The processing core communicates with the memory subsystem using dedicated address
and data buses for instruction and data accesses. Memory subsystem is the on-chip portion



of the memory hierarchy (and controls associated with it). It supplies instructions to be
executed by the processing core. It also supplies the data on which those instructions will
operate.

Memory subsystem is connected to the off-chip main memory (the main supply of instruc-
tions and data) and the peripheral I/O devices via the system bus. Memory subsystem is
also internally connected to the bus arbiter. The transfer of data on the bus is mediated
centrally by the bus arbiter, whose job is to decide which device controls the bus at any
given time.

The last connection between the high-level components of the system is the one between
the processing core and the I/O devices. 1/O devices have dedicated interrupts lines
coming into the processing core which can interrupt the execution of instructions in the
pipeline. In response to an interrupt, however, the processing core needs to go through
the memory subsystem to communicate with the I/O devices.

2.2 Processing Core

The processing core is the part of the system where instructions get executed. We have
pipelined the processing core into 7 stages (Fetch, Decode, Register Read, Address Gener-
ation, D-cache access, Execution, and Writeback) to increase the throughput of instruction
execution. The high level overview of these seven stages is shown in Figure 2. We discuss
the purpose and design of each stage in the next few sections.

2.2.1 Fetch Stage

The main purpose of this stage is to bring instructions into the processing core. To
accomplish this, the fetch stage needs to access I-cache and figure out which address to
fetch from in the next cycle. Due to the variable-length nature of instructions in the
x86 ISA, we do not exactly know how much data we should bring into the processing
core from the I-cache. Worse, we do not know where the next instruction starts until the
current instruction is decoded. To overcome these problems in an efficient and effective
way, the fetch stage buffers the bytes fetched from the I-cache in the instruction register
(which is a 256-bit wide latch between fetch stage and decode stage). Moreover, fetch
stage always fetches one cache line ahead of the current cache line that is being processed
by the decoder. By such a design, we aim to overlap the instruction fetch latency with
instruction processing latency.

A detailed schematic of the fetch stage is given in Figure 3. I-cache provides 128 bits in
each cache line. This size is chosen, because the maximum size of an instruction cannot
be more than 128 bits. The most interesting part of the fetch stage is the logic that
handles the shifting of the instruction register (IR) and the logic that determines when
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to latch new data from I-cache into the instruction register. Our design was based on our
initial finding that the number of bytes consumed by the decoder is known late in the
cycle (assuming a 5 ns cycle time). To prevent this information from stretching the cycle
time, we decided to use this information in the fetch stage as late as possible.

When the IR is more than half full, fetch stage does not latch the instructions from I-cache
into the IR, even though instructions may be available. Whether or not IR is more than
half full is determined based on stale information. In other words, this decision is not
based on how many bytes are consumed by the decoder in the current cycle. If the IR is
less than half full and I-cache access results in a hit, the contents of IR are concatenated
with the newly-fetched 128 bits from the I-cache. The concatenated instruction bits are
eventually shifted again based on the information given by the decoder as to how many
bytes it consumed during the current cycle. This design makes use of the slow-coming
information from decode as late as possible.

To make such a design possible, we maintain a 5-bit unsigned register that denotes how
many bytes in the instruction register are valid. Ideally, we would like the value of this
register to be always greater than or equal to 16. The update of this register is performed
using a 5-bit adder that subtracts the number of bytes consumed by the decoder from the
(old value of this register + number of useful bytes from I-cache). This update is one of
the critical loops in our design which we will touch upon later, but it is not on the critical
path.

We maintain three different latches that contain addresses. EIP contains the correct
starting address of the instruction that is currently being decoded. EIP+CS contains the
sum of the EIP value and the CS value. The purpose of this register is to remove the
EIP+CS addition in I-cache access out of the critical path. EIP+CS value needs to be
calculated on every operation that changes either of these architectural registers. The
third latch, VIP4CS, is the actual latch used to access I-cache. This latch is 28 bits
and addresses only the cache lines. It runs ahead by 1 cache line most of the time to
keep supplying instructions at a rate greater than the consumption rate of the rest of the
pipeline.

2.2.2 Decode Stage

Our design includes a single-cycle decode stage that is designed to decode instructions in
less than 5 ns. The decode stage conatins the most complicated logic in the whole process-
ing core. Due to the variable length and non-uniform-decode property of x86 instructions,
a lot of hardware is needed to make this stage faster. Decode stage performs other func-
tions than only decoding instructions and generating control signals. The following is a
comprehensive list of the functions performed by the decode stage:

1. Decode of one instruction per cycle and generation of control signals for that instruc-
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tion.

2. Generation of the “number of instructions decoded” signal and communication of this
information to the fetch stage.

3. Generation of micro-operations for complex instructions whose execution requirements
do not comply with the pipeline organization.

4. Detection of REP MOVS instruction and control of its execution.

5. Injection of micro-operations that save the state of the machine and jump to the correct
interrupt service routine on detection of an exception or interrupt.

6. Assignment of an 8-bit tag for each decoded instruction.

The main function of the decode stage is the decode and generation of a single instruction
in a single cycle. To achieve this purpose we dedicate a lot of hardware that decodes
different portions of the instruction register in parallel. Eventually the correct control
signals are selected based on the result of the decode of opcode and modR/M bytes.

The prefix decoder decodes first 3 bytes in the instruction register and determines whether
each of them is a prefix or not. The opcode decoder looks at the first 4 bytes of the
IR and tries to find an opcode. The correct opcode is selected based on the result of
the prefix decoder (but the actual decoding of the opcode is done in parallel with the
decoding of the prefix). For simple instructions that do not require more than one micro-
operations, the opcode byte (or the second byte of the opcode if it is a 2-byte opcode)
is used to access the control store ROM which provides some preliminary control signals
and information required for the rest of the decode stage. If the instruction requires a
ModR/M byte, the work done by the ModR/M and possibly SIB decoders would be useful
for later stages. Register numbers are also selected based on whether or not the instruction
requires ModR/M and/or SIB bytes. There is also another rom that is used to generate
the control signals for selecting the inputs of the adders used in address generation stage.
This ROM is accessed using the ModR/M and SIB bytes.

Instruction Size Calculation

The calculation of the instruction size is one of the important loops in the processing core.
The size of the decoded instruction is determined by the decoder and then conveyed to
the fetch stage so that fetch stage correctly shifts the IR. Last piece of information that
makes the instruction size stable comes from the ModR/M decoder. We kept this loop
under 5 ns by optimizing the design and the logic. The shifted value of IR is latched
before 5 ns, which could have been our critical path.

Control Signals

The list of the control signals generated by the decoder is provided in Table 3 in Appendix.
These signals determine how the data flows in the pipeline. Table 4 includes the data
signals that are output by the decoder.



Micro-operations

The execution requirements of some the implemented instructions do not comply with
the organization of our pipeline and allocation of resources. For example, the IRETD
instruction performs three pop operations, where each pop operation reads from the stack
(which is in memory) and increments the stack pointer. The first two of these pop
operations are in effect branches in that they modify the EIP and CS registers. Our
pipeline organization does not allow so many cache accesses and serial updates to the
state at the same time. To avoid stalling at many different parts of the pipeline for
the execution of the IRETD instruction, we decided to break this instruction into three
different and distinct micro-operations: POP EIP, POP CS, POP EFLAGS. All three of
these are exactly the same as a normal POP instruction with destination being the EIP,
CS, or EFLAGS.

Other instructions that were broken into micro-operations are far CALL (opcode 9A), far
RET (opcode CB), far RET imm16 (opcode CA), and REP MOVS (opcodes F3A4 and
F3A5).

For interrupt/exception handling, the decoder also generates micro-ops to push EFLAGS,
CS, and EIP, and load the target CS and EIP from the interrupt descriptor table.

A list of all micro-operations are given in Table 2 in the Appendix.

To inject micro-operations into the pipeline, decoder generates a stall signal that stalls
the fetch stage and inhibits the update of the instruction register. While that stall signal
is high, decoder sequences in the control store ROM every cycle. Once the last micro-
operation is inserted into the pipeline, the decoder removes the stall signal and starts
accessing the control store ROM based on the contents of the IR (opcode). The sequencer
used to switch back and forth from and to the micro-operation insertion mode is shown
as the muxes that are above the control store ROM in Figure 4.

Instruction Tagging

As limited support for out-of-order execution, the decoder tags each instruction with an
8-bit sequence number. At any given time, different instructions in the pipeline will have
unique tags. These tags are used in forwarding and updating of the scoreboard bits. Main
function of tags in our design is to let the pipeline not stall in case of write-after-write
hazards.

Decoder Stall Signals

The decode stage generates two stall signals. One is the stall signal generated due to
micro-operation insertion. The other is the stall signal due to not enough bytes being
available in the instruction register. Both stall signals are propagated to the fetch stage,
but are treated differently. In case of the stall due to micro-operation insertion, the IR
is write-disabled, but in case of not enough bytes being available IR needs to be enabled
so that new bytes from I-cache can be latched into IR. However, if the decoder does not



have enough instructions, the IR should not be shifted.
Other Decoder Functions

We will touch upon the control for interrupt/exception handling and REP MOVS in later
sections.

2.2.3 Register Read Stage

The block diagram of the Register Read Stage is shown in Figure 5. This stage takes as
input the signals generated by the decoder and performs the following functions:

1. Reads the general purpose and segment register files and necessary flags.

2. Generates a stall signal if any of the required registers/flags is not available in the
register files or is not forwarded.

3. Calculates the target EIP and target EIP4+CS for relative and far branches.

4. Determines whether conditional branches are taken.

5. Generates the inputs of address generation adders that will be used in the next stage.
Scoreboarding

Main function of this stage is the fetch of register operands. In a pipelined microarchi-
tecture, this fetch needs to be supported with hardware interlocks so that stale values
are not supplied to incoming instructions. We implement this hardware interlock using a
scoreboard. When an instruction is known to write into a register, it sets the valid bit of
that register to 0. The instruction also writes its tag in the tag store associated with the
register. If an instruction later tries to read that register, it will need to stall since the
valid bit associated with that register is cleared. When the first instruction eventually
reaches the writeback stage, it writes into the destination register. The valid bit is set
back to 1 only if the tag of the instruction in the writeback stage matches the tag of the
register. This way we can have multiple instructions in the pipeline writing into the same
register,

Forwarding

Register values can be forwarded from either the execution stage or the writeback stage.
Forwarding is only done for the register designated as the destination register for the
instruction. A value is fowarded if the required register id and tag matches with the
destination register id and tag of the instruction in the execution or writeback stages.

Register File Organization

The general purpose register file contains 8 32-bit architectural general-purpose registers.
It has 4 read ports and 3 write ports. The maximum number of read ports required by an



instruction is 3. 4th port is added for convenience in our design. It was easier to allocate
ports to instructions using a 4-ported register file. The maximum number of write ports
required by an instruction is 3 (REP MOVS).

Reads and writes to the GPR file are done on a 32-bit granularity. Hence, if an instruction
only requires an 8-bit register, the whole 32-bit value is read, but the control signals are
used to manipulate only the required 8 bits in the register. When an instruction needs to
write only a portion of the 32-bit register, the control signals generated by the decoder
for that instruction align the value such that the correct portion of the register is written.
This means that an instruction needs to carry the whole 32-bit value although it may
not operate on all 32 bits. The validation and invalidation of registers are also done on a
32-bit granularity which likely introduces unnecessary stalls in the pipeline, but simplifies
the design.

Segment register file is also an 8-entry, 4-read-port, 3-write-port structure where each
register is 32 bits. Only 6 of the entries are used, because there are only 6 architectural
segment registers in the x86 architecture. Every instruction is required to read the CS
value because there might be an exception/interrupt which may cause that instruction
to save the context. If the CS value is not valid, then the register read stage generates a
stall. Only stack operations, instructions that require modR/M memory mode, and REP
MOVS need to source the segment register file. The segment scoreboard is organized the
same way as the GPR scoreboard.

Flags are not stored in a register file. Instead each flag is treated as a separate entity
with exclusive read or write signals. Whether or not an instruction needs to source a flag
is determined based on the operation id produced by the decoder.

2.2.4 Address Generation Stage

The block diagram of this stage is shown in Figure 6. The functions of the address
generation stage are as follows:

1. Calculation of the read/write address required for instructions sourcing and writing
into memory.

2. Calculation of the highest and lowest possible addresses to be accessed by the instruc-
tion.

3. Calculation of the offset needed for segment limit checks.

4. Generation of addresses needed by the REP MOVS instruction.

5. Generation of IDTR address for exception handling.

6. Segment limit check for the offset generated by a relative branch (JMP/Jcc) in the

register file stage and redirection of the fetch stage based on the result of this limit check.
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ModR/M/SIB Address Generation

To generate the ModR /M address required by an instruction, we use a 4-input adder that
is built using three 2-input adders. Our adder is optimized for latency (at the expense
of area) and a 2-input adder operates at 2 ns. The 4-input address generation adder
generates results at 3.8 ns. After the generation of the ModR/M address, we use muxes
to select whether it will be used as a destination or a source.

The inputs of the 4-input adder are determined in the register read stage based on the
control signals generated by the decoder. The following lists what those four inputs can
possibly be:

1. Segment register value

2. Base register value

3. Displacement value (or 0)

4. Scaled index register value (or 0)

This 4-input adder thus generates a modR/M or SIB address based on the inputs prop-
agated to it from the register read stage. Other than the ModR/M address that will be
sent to the memory subsystem, this stage generates the highest possible ModR/M off-
set and the highest possible ModR/M address that can be accessed by the instruction.
The ModR/M offset is used to check the segment limit in the D-cache access stage. The
highest possible ModR/M address is generated to check for possible page faults that may
be due to a data access on the page boundary. To facilitate the generation of these two
addresses we make use of two other adders.

Stack Address Generation

We use a three-input stack adder (2.6 ns delay) to generate the address to push into or
to pop from. The three inputs to the stack adder are:

1. Stack segment register value.
2. ESP value.

3. An immediate value based on the operation type and operand size (0 for POP-type
stack operations, -2 for 16-bit PUSH-type operations, -4 for 32-bit PUSH-type operations).

In addition to the normal stack address that will be sent to the memory, this stage
generates two more stack addresses: high stack address and low stack address. These are
respectively highest and lowest possible locations in the stack that the instruction can
access. They are used to check for page faults in the dcache read stage.

IDTR and REP MOVS Address Generation

The address generation stage contains two special modules to generate addresses needed by
interrupt/exception handling mechanism and REP MOVS instruction. The IDTR address
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is used by LIDT1 and LIDT2 micro-operations, which access the IDTR to redirect the
fetch into the correct insterrupt service routine. REP MOVS instruction requirtes two
addresses (source and destination) and each address can cause a page fault or segment
limit violation. Hence, there are special adders that to calculate the highest possible
source and destination addresses.

Early Branch Resolution

All Jee and JMP instructions that do not require register or memory access are resolved
in this stage. A redirect signal is sent to the fetch stage to latch the new EIP, EIP+CS,
and VIP+CS values into their correponding registers.

2.2.5 D-cache Access Stage

The block diagram of this stage is given in Figure 7. Main functions of this stage are:
1. Read data from the memory subsystem.

2. Stall in case an older instruction in the pipeline writes to memory.

3. Perform TLB accesses and segment limit checks and generate exception signals.

We elaborate on the D-cache organization when we discuss the memory subsystem. Here,
we note that D-cache is a shared resource between the D-cache Access Stage and the
Writeback Stage. The D-cache access stage needs to read data from the cache and write-
back stage needs to write data into the cache. These two accesses need to be mediated.
Due to the out-of-date technology of the RAM parts given in the library, our circuit
technology cannot support reads and writes at the same time, even to different RAM
locations. To simplify the design, we give priority to cache writes over cache reads. The
main reason for this design choice is the guess that many of the writes will hit in the cache
(because they were read two stages back). If this guess is correct, the pipeline needs to
stall only for one cycle. In the worst case, the write and read accesses may conflict in the
cache which will cause a stall that can last hundreds of cycles (due to bus access). We
discuss other possible solutions in the section where we discuss our design tradeoffs.

Memory Ordering

This stage ensures correct memory ordering by stalling the previous stages in case the in-
struction in this stage needs to read memory while an instruction in one of the later stages
needs to write memory. The stall signal is generated by comparing the read_memory signal
of the instruction in the D-cache stage with the write_memory signals of the instructions
in Execution and Writeback stages.

Ezception Signal Generation

Two different hardware modules are used in this stage for exception checking. One is
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the segment limit checker which compares the ModR/M offset to the segment limit. The
other is the TLB which generates either a page-fault or general protection exception. The
TLB is a heavily-ported structure which takes as input 8 addresses and the operation
type and checks if any of those addresses cause an exception.

2.2.6 Execution Stage

The high-level block diagram of the Execution Stage is shown in Figure 8. This is the stage
where bulk of the work gets done. Almost all instructions (other than some branches)
calculate their results to be committed to architectural state in this stage.

The execution stage consists of two main parts:

1. Modules to generate results to be written into GPR register file, memory, and segment
registers.

2. Modules to generate target EIP and EIP+CS.

All branch-type operations that are not resolved in the Address Generation Stage (CALL,
indirect JMP, IRET micro-operations, RET) determine the target EIP and EIP+CS in
this stage using the branch address generation logic. The target EIP is compared with
the CS limit to detect the possible general protection exceptions.

Other operations each all have their specialized and tailored modules to perform the
execution of each operation as fast as possible. Each of these modules generate results for
memory, destination registers, and flags. Eventually, the correct value is selected using
the operation type signal that is provided by the decoder.

2.2.7 Writeback Stage

This is the stage where all updates to the architectural state is performed. Architectural
state consists of the general purpose registers, segment registers, flags, memory subsys-
tem, and main memory. An instruction in this stage updates the architectural state only
if there are no exceptions generated by this instruction and there are no pending inter-
rupts. If there is an exception or an interrupt, the instruction is inhibited from updating
the architectural state and the writeback stage sends an exception_handle signal to the
decoder, which will start inserting micro-operations that will facilitate branching to the
correct interrupt service routine.

One function that is performed by the writeback stage is the alignment of values to be
written into the general purpose register file. This alignment is done based on control
signals from the decoder (whether this instruction writes 8, 16, 32 bits and the register
id to be written into). As discussed in Section 2.2.3, this alignment is required because
the granularity of writes into the register file is 32-bit.
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Writeback stage is the other stage that can redirect the fetch stage. It supplies the target
EIP, EIP+CS values to the fetch stage along with a signal that redirects the fetch engine.
If a branch-type instruction needs to wait until writeback stage to be resolved, a 7-cycle
bubble will be introduced into the pipeline which degrades performance in the presence of
such branches. We note that this penalty is only 4 cycles for Jcc and non-indirect JMPs
which are relatively more common.

A high-level block diagram of the Writeback Stage is provided in Figure 9.

2.2.8 Interrupt/Exception Handling

Our approach to handling of interrupts and exceptions is broken into several tasks:
1. Detection of interrupts and exceptions.

2. Determination of which interrupt/exception to handle.

3. Branching to the correct interrupt service routine.

4. Return from interrupt service routine using the IRETD instruction.

We have discussed the detection mechanism for exceptions in the previous sections. Each
pipeline stage has some logic to generate and/or propagate the exception signals for Page
Fault exception and General Protection exception. These signals eventually reach the
writeback stage and are checked in that stage. Interrupts are events that are external
to the processing core. They can come at any time from a peripheral device. To ensure
correct handling when the processing core detects that the interrupt signal is high in one
of its interrupt pins, it latches the signal. The latched interrupt signals are checked in the
writeback stage.

Multiple exceptions or interrupts may be present when the writeback stage checks the
existence of an exception or an interrupt. We prioritize exceptions over interrupts for
handling. Page Fault is prioritized over General Protetcion exception. One of the inter-
rupt signals (INT1) has priority over the other (INT2). Interrupt handling logic at the
writeback stage conveys the information as to which interrupt/exception to be handled
to the decoder based on this priority mechanism.

Once the writeback stage detects that an exception or interrupt is present it sends a flush
signal to all pipeline latches which invalidates all the older instructions. Each pipeline
latch has a valid bit associated with it to support this flush operation (and also to support
other stalls). The current instruction in the writeback stage (excepting instruction) is
not allowed to update the architectural state. The EIP and CS carried along with the
excepting instruction is saved in the latches in the interrupt/exception handling logic.
The flush signal changes the control in the decoder. The decoder starts inserting micro-
operations into the pipeline which will save EFLAGS, EIP, and CS on the stack and load
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the new EIP and CS values from the IDTR entry associated with the exception/interrupt
type. These micro-operations, in the order of their insertion, are:

1. PUSH EFLAGS (Pushes the EFLAGS register on the stack)
2. PUSH CS (Pushes the CS register on the stack)
3. PUSH EIP (Pushes the EIP register on the stack)

4. LIDT1 (Performs a doubleword access to get the first doubleword of the IDTR associ-
ated with the exception/interrupt)

5. LIDT2 (Performs a doubleword access to get the second doubleword of the IDTR
associated with the exception/interrupt - writes into EIP, CS, EIP+CS registers, and
redirects fetch stage)

Once LIDT?2 is inserted, the decoder stops stalling the front end and returns to normal
mode where it inserts a single operation into the pipeline based on the instruction in the
instruction register. All exceptions and interrupts are disabled until IRETD is executed.

Returning from the interrupt service routine is initiated using the IRETD instruction. As
discussed in Section 2.2.2; this instruction is broken into three micro-operations, last of
which is POP EFLAGS. The execution of POP EFLAGS enables interrupts and excep-
tions again.

2.2.9 Branch Handling

If a branch instruction is decoded and as it flows through the pipeline, fetch stage is
stalled until the branch instruction is resolved. This is accomplished using stall signals
from all stages except for writeback indicating that an unresolved branch is currently in
that stage. Fetch stage is stalled for all operations that change either the EIP or the CS
value.

2.2.10 Specialized Hardware to Execute REP MOVS

Figure 10 shows the special hardware located in Address Generation stage and used to
execute REP MOVS without stalling between iterations (due to each iteration writing
and sourcing the same registers - ESI, EDI, ECX). The intermediate values of EDI, ESI,
and ECX are calculated using extra adders in the Address Generation stage and they
are latched in temporary registers. Incoming iterations of REP MOVS grab the values of
these registers from the temporary registers and can execute without stalling.

This figure also shows the state diagram for REP MOVS execution. We use the decode of
the REP MOVS instruction as an entry point into this state diagram. Decoder remains
in these special states until ECX becomes zero.
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The decoder generates two different micro-operations for REP MOVS. One is the
REP_FIRST micro-operation, which denotes the beginning of REP MOVS. The second is
the REP_ITER micro-operation used for all other iterations of REP MOVS. And the last
one is the REP_DONE micro-operation that signals that REP MOVS is done and clears
the pipeline.

2.3 Memory Subsystem

Memory Subsystem is the part of our system which resides on-chip and caches data. It
consists of two single-ported (read or write), 512-byte, direct-mapped caches: Instruction
cache (I-cache) and the Data cache (D-cache). It also consists of an 8-entry TLB. We
discuss the implementation and control of each of these units in the following sections.

2.3.1 I-cache

The Instruction cache supplies instructions to the fetch unit. It contains 16 bytes in each
line, which is the maximum size of an instruction. We chose 16 bytes as the block size
for the I-cache because we thought a larger block size would require a wider bus, a wider
memory or a longer time to retrieve data from memory.

The instruction cache has a simple organization with 32 blocks. The cache is virtually-
indexed and physically-tagged. Both the data store and the tag store are indexed using
bits 8 through 4 of the virtual address. Top 6 bits of the physical address are used as the
tag and are compared after the physical frame number corresponing to the virtual address
is available. Tag store also contains 1 bit indicating whether or not the block is valid.

The state diagram for the instruction cache is shown in Figure 11. On a cache miss, the
I-cache controller requests the bus and waits for a BG (bus grant) signal. When bus is
granted to the I-cache controller, it asserts BBSY (Bus Busy) and sends the address to
the memory and starts waiting for the data and acknowledgement from memory. Once
the memory controller responds with the “Done” signal, the I-cache controller, grabs the
128 bits from the bus and writes them into the cache and sets the valid bit of the entry.

Attached to the I-cache controller is an alignment logic which alignes the supplied in-
structions if the access address is not aligned within cache boundaries.

2.3.2 D-cache

D-cache has a similar physical structure to I-cache in that its block size is 128 bits,
it is direct-mapped, and indexing and tag match occur the same way as in the I-cache.
However, the control of D-cache is more complicated than the I-cache due to three reasons:
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1. D-cache needs to support unaligned accesses.
2. D-cache is writable by the processing core.
3. D-cache controller needs to support accesses to non-cacheable data.

Figure 12 shows the state diagram of the D-cache controller. Unaligned accesses to the D-
cache can occur on word (16-bit) or doubleword (32-bit) accesses. In case of an unaligned
access, the D-cache controller makes two accesses to the D-cache.

Writes to the D-cache cause the cache line to become dirty. A dirty bit is added to the
tag store of the D-cache for this purpose. When a cache line is allocated on a write, the
dirty bit of the block is set automatically on allocation.

Non-cacheable writes or reads do not write the data into the D-cache. Instead, the
D-cache controller provides some states to bypass the write to D-cache on any kind of
non-cacheable access.

D-cache interfaces to the Bus Arbiter the same way I-cache does. However, accesses of the
D-cache to the bus arbiter are prioritized over an I-cache bus request. This design choice
was made to decrease the number of stalls in the pipeline due to instructions needing data
to operate on.

The D-cache controller aligns the data accesses based on the access size. For read accesses
it provides the data at the least significant bytes of the 128 bits. For write accesses, the
alignment is done by accessing a ROM indicating where the byte(s) written should go in
the cache line(s).

2.3.3 TLB

The TLB is the on-chip cache of the most recently used 8 page table entries. 6 of these en-
tries are cacheable entries. 2 of them are non-cacheable and are used to perform memory-
mapped I/O. One of the non-cacheable entries is allocated for the keyboard and the other
is allocated for the monitor.

Each entry in the TLB contains a valid bit, a present bit, a read-only bit, a non-cacheable
bit, and two bits indicating which device the address is mapped to if the entry is non-
cacheable.

The TLB in our design is an 8-ported structure which is accessed by many addresses many
of which are used to check exceptions.
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2.4 Bus Arbiter, Bus, Memory, and Peripherals

The third and the most distributed component of our system consists of the bus arbiter,
the bus, the main memory, and attached peripheral I/O devices. The bus arbiter resides
on-chip and accepts requests from the I-cache or the D-cache. All the other components
reside off chip and communicate with the processing core using the bus or interrupt lines.
At any given time, only the processor core (through the I-cache or the D-cache) can be
the master of the bus. We have implemented two devices that can act only as slaves.
When these devices require to communicate with the processing core, they raise their
dedicated interrupt line and the processor communicates with the devices through the
system bus. Memory controller is also similar to an I/O device except that it cannot
interrupt the processing core. The communication paths between these components are
clearly sketched in Figure 1.

We examine each of these components in more detail.

2.4.1 Bus Arbiter

We use a centralize, synchronous arbitration scheme to determine which device controls
the bus.The logic used to perform bus arbitration is shown in Figure 13. This logic takes
two bus request signals, one from the I-cache, the other from the D-cache. It also takes
as input the BBSY signal inditcating whether or not the bus is busy in the current cycle.
Based on these signals it determines whether or not to grant the bust to the I-cache or
the D-cache. If both I-cache and D-cache request the bus at the same time, the arbiter
gives priority to the D-cache request to prevent the instruction from starving and pipeline
from stalling.

Once the I-cache or the D-cache receive the BG (Bus grant) signal, they assert the BBSY
signal until the bus transaction is complete.

2.4.2 System Bus
The bus itself runs at the same speed at the processor. It is divided into three logical
parts: Data bus, Control bus, and Address bus.

The Data bus is 128 bits wide and is used to transfer data bidirectionally between memory
and the processing core or unidirectionally between the processing core and I/O devices.

The Address bus is only 15 bits. The largest storage structure connected to the bus is
the main memory, which is 32 KB and can be fully addressed using 15 bits.

The Control bus is 7-bit wide contains the following signals:

1. BBSY (indicates whether a transaction is in progress)
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2. Device ID (2-bit signal indicating which device needs to access the data)
3. Interrupt lines (2 bits for each I/O device)
4. ACK (Acknowledgement signal which tells that the data is loaded onto the bus)

5. BRW (indicates whether this is a read access or a write access)

2.4.3 Main Memory

The main memory of our system is 32 KB. It is organized into 8 banks each of which has
the capability of supplying 128 bits. The granularity of data supplied by memory is 128
bits. Top 3 bits of the address is used to select the bank to access.

The memory controller state diagram is shown in Figure 14. Memory controller initiates
an access to the memory when the device id on the bus is equal to the id of the memory
controller. When the access to the memory is complete, the memory controller sends an
ACK signal to the processing core and loads the 128 bits onto the bus. The memory
controller decides that the access is complete based on the firing of a timer. The timer is
set to its maximum value when the access to the memory is initiated. When the timer
counts down to 0, the access must have been complete and the memory controller deduces
that the main memory is ready and asserts the ACK signal on the Control bus.

2.4.4 Keyboard Controller

The keyboard controller state machine is shown in Figure 15. Keyboard controller contains
a 256 entry buffer where each entry is 8 bits. This buffer holds input data read from the
keyboard. When new data is read into the buffer, the keyboard controller raises its
interrupt signal. The processor, using an interrupt service routine (number 0), performs
a non-cacheable MOV from the buffer of the keyboard controller into the processor. The
keyboard controller lowers the interrupt signal when the buffer is read by the processor.

2.4.5 Monitor Controller

The state machine for the monitor controller is shown in Figure 16. The monitor controller
also holds a buffer containing the data sent by the processing core. The controller buffers
the data when the device id on the control bus matches the device id of the monitor
controller (id = 3). If the processor overruns the mnitor controller buffer, older data in
the buffer is discarded.
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3 Design Tradeoffs

In this section, we describe the important tradeoffs we made during our design and why
we made those tradeoffs. Some of these tradeoffs turned out to be unnecessary due to the
unanticipated critical path, but they were applicable to a 5-ns cycle time target.

3.1 Design Goals

Of course, our main design goal was to design the system such that it works correctly for all
instructions and conditions. One secondary goal was to achieve a 5-ns cycle time. Another
important goal was to make the hardware as simple, streamlined, and understandable as
possible.

3.2 Tradeoffs in the Processing Core

We spent most of our time to optimize the architecture and logic of the processing core.
We will outline the main tradeoffs we made in each stage.

3.2.1 Fetch Stage Tradeoffs

The main tradeoff we faced in the design of the fetch stage was when to shift the instruction
register. As we discussed earlier, we decided to shift this register based on old information
first and use the late coming signals from the decoder latest so that we do not unnecessarily
stretch the cycle time. This design choice was favoring cycle time over a one-cycle stall
in a design oriented for 5-ns cycle time. When the IR is more than half full, the incoming
bytes from the I-cache are not concatenated with the bytes in IR to be shifted. The
determination of how many bytes are inside the IR is made based on stale information,
which can possibly cause stalls due to not latching valid data from the I-cache into the IR.
However, now that we know this loop is not on the critical path, we believe we could have
used the “number of instructions consumed” signal from the decoder to decide whether or
not to incorporate the incoming bytes from the I-cache without stretching the 7-ns cycle
time.

Another design decision we made was to keep the size of the instruction register at 32
bytes (256 bits). We could have increased the size of the IR so that it could buffer more
bytes. This would be more useful if we increased the block size of the I-cache. Such a
decision would definitely increase the delay because we would be shifting more data. We
chose not to have an IR larger than 32 bytes so as not to increase the cycle time. However,
with the 7-ns cycle time we have, we could increase the size of the IR concurrently with
the size of the I-cache block.
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3.2.2 Decode Stage Tradeoffs

Our main goal in the decode stage was to optimize the logic that generates the number of
bytes consumed signal such that the loop between fetch and decode that uses this signal
would be kept under 5 ns. We achieved our main purpose by doing a lot of decoding in
parallel and selecting the result of the parallel decoders. The hardware complexity of the
decode stage is therefore quite high.

Another signal we optimized for in the decode stage was the stall signal, which was
discussed in Section 2.2.2. This signal turned out to be the latest signal generated by the
decoder (with a delay of 4.73 ns as shown in Figure 4).

Our choice of breaking hard-to-handle instructions into micro-operations turned out to be
a very good design decision in that it simplified the control of the pipeline and made the
pipeline more regular. Some of the complicated instruction share the micro-operations,
which relieved us from generating new control signals. FEspecially handling of excep-
tions/interrupts using micro-operations made the control of the pipeline much simpler
than how it would be otherwise.

3.2.3 Register Read Stage Tradeoffs

We decided to dedicate one full stage for register access to be able to do forwarding without
stretching the cycle time. Excluding the signals coming into this stage from other pipeline
stages, the register file read stage takes shortest amount of time on its critical path.

In hindsight, we could perhaps have eliminated this stage by optimizing the logic for a
7-ns cycle time and by merging the logic in this stage with the logic in address generation
stage. This would have resulted in a smaller branch misprediction penalty.

Another tradeoff we made in this stage was the granularity of reads and writes for the
register file. We chose this granularity to be 32 bits, which would cause some unnecessary
stalls if the instructions are sourcing exclusive parts of the 32-bit register. We believe that
this case does not happen frequently. Our design choice favors simplicity over performance
for rare cases.

As to the forwarding paths, we decided not to forward the flag and segment register values
from other stages. We also decided to forward destination register values only from the
execution and writeback stages. These design choices definitely effect the CPI (cycles per
instruction) of the processing core, but by how much they affect the CPI depends on the
program characteristics.

We chose to perform limited register renaming in this stage by using the instruction tags
generated by the decoder. This let us have multiple instructions in the pipeline writing
into the same register. Hence, our pipeline does not stall n a WAW (Write-after-write)
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dependency.

3.2.4 Address Generation Stage Tradeoffs

The main reason that made us keep address generation in one stage was the fact that we
had an optimized 2-input adder whose critical path was 2 ns. If we had a slower adder,
we would have thought of breaking address generation into two stages.

3.2.5 D-cache Access Stage Tradeoffs

We followed a conservative approach in memory ordering. If there is an older store
in the pipeline that is not yet committed, the younger load stalls the pipeline. A less
conservative solution would be to check if the address the store is writing to matches
with the address the load is reading from. Such a check poses some difficulties due to the
different granularity of writes. Also, in our pipeline, a more aggressive memory ordering
mechanism would probably not decrease the CPI by much, because most stores would
already hit in the cache and hence the stalls due to memory ordering will be limited to 1
cycle. The reason why most stores will hit in the cache is that most instructions read the
memory location before they write into it. This is only not true for MOVs into memory.

3.2.6 Execution Stage Tradeoffs

Our design of the execution stage as separate units which generate results and operation
type signal eventually selecting correct results lead to very simple control at the expense
of more hardware. It also decreased the debugging effeort we would have spent by having
a large monolithic unit and selecting its inputs and outputs using muxes.

3.2.7 Writeback Stage Tradeoffs

We decided to dedicate a full pipeline stage for the update of the architectural state. This
has advantages in terms of supporting precise exceptions. Our system never experiences
out-of-order writes. Therefore, we do not need to recover any state on an exception.
Another way we could handle the update of architectural state was using a reorder buffer
or a history register. We did not follow these approaches so as not to complicate the
design.

One design choice we should have made was to incorporate a store buffer for handling
stores to memory in order to reduce D-cache contention and give priority to reads. This
would complicate the design, but decrease the CPI perhaps dramatically.
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3.2.8 Optimizations

We tried to optimize the logic in every module that we thought would be on the critical
path. We especially devoted careful attention to the signals generated by the decoder
and optimized the logic. For example, to keep the critical path of the decode-fetch loop
under 5 ns, decoder generates two different encodings of the instruction size in parallel and
independently of each other. One encoding is a one-hot encoding of the instruction size,
which is used to control the shifting of the concatenated IR in the fetch stage. The other
encoding is a two’s complement encoding used to update the new value of the number of
valid bytes in the IR.

To keep the cycle time under 5 ns, we needed to have a very fast adder. The 32-bit
2-input adder we built runs at 2 ns. It is a hybrid Carry-Select adder made up of four
8-bit Carry Lookahead Adders. We also built a 3-input 32-bit adder with 2.6 ns delay
using redundant binary arithmetic. Our 4-input adder was not as optimized, but it ran
at 3.8 ns, which is quite fast compared to the targeted cycle time.

One stage where we could have optimized more was the D-cache controller and its gener-
ation of the hit/miss signal, which was on the critical path of our design.

3.3 Tradeoffs in the Memory Subsystem

Memory subsystem is the most important part of our system that would result in a huge
performance benefit, if we had more time to optimize the logic and to implement more
aggressive design choices. The bulk of this performance benefit will come from optimizing
the D-cache. Therefore, we will only focus on D-cache design tradeoffs here.

We decided to implement a direct-mapped D-cache due to its speed and simplicity. We
now feel that we should have at least supported it with an auxiliary structure (like a victim
cache or store buffer) or made the D-cache 2-way associative. On the sample programs
we wrote, our direct-mapped cache seems to suffer from conflict misses, which leads to
very high CPI’s. The disadvantage of an auxiliary structure is the more complex control.
The disadvantage of 2-way set associativity is the increased delay. However, we believe
that both increased control or increased delay are worth the price for reducing the conflict
misses.

Another design choice we could have made was increasing the block size of caches. This
would likely lead to lower miss rates on both the I-cache and the D-cache. However, such
an organization would have increased the contention on the bus and the access delay of
the memory.

One other way of organizing our cache was by banking it. This way, the cache would be
able to handle concurrent read and write if the read and write were to different banks.
This also would have increased the performance of our implementation. However, we
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would still need to stall when the read and write conflicted in the same bank. So, the
extra complexity due to the RAM cell having only one port would still remain.

3.4 Tradeoffs in the Bus Arbiter, Bus, Memory, and Peripherals

We decided to specialize our bus arbitration logic for the requirements of our system. Only
the processor can be the bus master. As a consequence of this design choice, addition of
new peripherals (such as DMA) onto the bus may require some effort and changes to the
arbitration logic.

Our bus was 128 bits, which is the same as the block sizes for the I-cache and the D-
cache. This simplified the complexity of the bus. All the data communicated on the bus is
communicated based on a cache-block granularity (except for I/O devices). Therefore, we
do not need any other control signals on the bus that denote the granularity of transferred
data.

4 Critical Path Analysis

The Critical Path in this pipeline is primarily caused due to the delay in getting a stable
stall signal from the DCache. There is an initial 1 ns worst case delay in giving a stable
address to the Cache. The cache takes 3.5 ns to do a tag compare and check if the address
hits in the cache. The stall signal from the DCache is dependent on this signal which
decides the next state for the dcache. As the stall signal logic is dependent on the next
state, there is an additional 1.55 delay to give a stable stall signal.

The pipeline latches are dependent on this stall signal and they are generated within 1
gate delay. This gives us a worst case delay of about 6.4 ns. The rest of the clock is for
the latch delay (around 0.45 ns). We clocked our system at 7 ns for safety reasons (for
example, in the presence of some process disturbance, the delay on the critical path may
be a little higher than what it is calculated to be).

The critical path timing diagram (at the end of the Appendix) shows us an example of the
critical path delay. The DC.cache.hit is the hit signal in the cache. dcache_stall is the stall
generated by the DCache. DE values latch_we, AG_valid_we, FE_WE_IR, FE_WE _eip are
the latch write enable signals.

This path can be opimized by optimizing the logic that generates the dcache_stall signal
based on DC.microseq.miss and DC.cache.hit signals.

Table 5 in Appendix shows the delay of each pipeline stage. The first column shows the
actual delay from the inputs to the stage to the latching of the final results. This, of course
includes the signals coming into the stage from other stages than the previous one. We
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can see that the critical path delays of all stages are very close to each other. The reason
for this is that D-cache stall signal is sent to all stages to write-disable the latches in case
of a D-cache miss. However, the decode stage latch has the worst delay, as discussed in
the previous paragraphs.

The second column in Table 5 shows the delay of each stage (including the latch overhead
of 0.45 ns) without including any stall signal coming from other stages. We can see that
these delays are well below 7 ns and little above 5 ns, which was our targeted cycle time.

5 Limitations

This section discusses the limitations of our design and suggests what can be improved and
how. We believe that limitations in the memory subsystem contribute to the performance
degradation far more than the limitations in the processing core. Therefore, we will discuss
the limitations of memory subsystem first, although some of those limitations relate closely
to the processing core.

5.1 Memory Subsystem Limitations

The main limitations of our design were due to our design choices of the memory subsys-
tem. There are three important problems our memory subsystem suffers from:

1. Conflict misses in the D-cache degrade the hit rate of the cache.

2. Stores that miss in the D-cache consume available bus bandwidth (and stall the pro-
cessor).

3. Small I-cache line size results in too many I-cache misses.
4. Long critical path of the D-cache controller.

To solve the first problem, i.e. conflict misses, we could have extended our D-cache design
to make it set-associative. Another way we could solve the problem was by including
a victim cache which would be accessed in parallel with the D-cache. Both of these
approaches adversely impact the cache access time, which is on our critical path. However,
the adverse effect on cycle time is limited to a 2-input mux delay. If this delay is not
tolerable, we could use a victim cache which is accessed on a miss on the D-cache before
going to the memory.

The second problem, i.e. stores consuming available bus bandwidth and stalling the
processor, can be alleviated by using a store buffer for pending stores. The D-cache
would again be accessed in parallel with the store buffer, which extends the cycle time
of the processor. However, our pipeline would not stall if a store missed in the D-cache.
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The missing store would be inserted into the store-buffer and would be scheduled onto
the bus when there is available bus bandwidth.

The third problem, i.e. high number of I-cache misses, can be solved by increasing the
size of each I-cache block. We could do this by increasing the width of the data bus and
memory along with the line size of the I-cache. In that case, no additional complexity
would be added into the system. However, if we keep the data bus and memory width
at 128 bits while increasing the I-cache line size, then fetching of one cache line from
memory would require two memory accesses, which would take quite long considering
that the SRAM part provided does not have support burst mode. An increased I-cache
line size also requires enough latency tolerance in the fetch unit to be able to deal with
more instructions coming in.

The fourth problem is the critical path of the D-cache controller, which is the limiter of
our cycle time. To achieve a higher clock frequency we should optimize the way miss
signal is generated in the D-cache. We have identified the ways to optimize this signal,
which would reudce the cycle time by around 0.8 ns, but we have not implemented this
optimization due to time considerations.

We believe all of these problems need to be tackled first to reduce the CPI of our system,
because they form major bottlenecks.

Another problem that may be addressed later is to support simultaneous reads and writes
to the cache lines. This is harder to implement without the existence of dual-ported RAM
cells. However, one way to alleviate the problem is to bank the cache, which requires
significantly more complex design.

5.2 Processing Core Limitations

We discuss three very important limitations regarding the processing core.

One important limitation of the processing core is related to the rate of instruction supply
to the core. In the previous section, we suggested that by increasing the I-cache line size,
we can increase the instruction supply rate significantly. To make the impact of increasing
the instruction cache line size, we can also make the instruction register wider. This way,
we could overlap some of the I-cache miss latency with useful work done in the processor.

The way we handle branch-type operations in the processing core adversely impacts the
CPIL. Although some of the branch operations are resolved early, they still result in a
4-cycle bubble, which is significant. Including branch prediction in our design would have
made our processing core faster.

Another important limitation in the processing core is the limited number of forwarding
paths. Only execution and writeback stages can forward data to the register read stage,
and they can only forward the destination register. Especially dependent ALU operations
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suffer from 3-5 cycle stalls even with partial forwarding. We could extend our design
to have the capability of executing dependent back-to-back ALU operations by adding
another ALU to the Address Generation stage which is capable of executing register-
register operations. We would also need to extend our design to include forwarding paths
from Address Generation and D-cache access stages.

5.3 Limitations in Bus Arbiter, Bus, Memory, Peripherals

The main limitation in this part of the system is the bus contention due to multiple
simultaneous bus accesses. This bus contention occurs when the I-cache and the D-cache
require the bus at the same time and results in long stalls in the processor core. A
solution to this problem is by providing multiple channels to memory and supporting
multiple transactions on the bus. Multiple channels to the memory can be provided by
dual-porting the memory (which is hard given that the SRAM parts have only one port)
or banking the memory. Supporting multiple transactions on the bus is possible using a
more complex bus and memory controller design. However, we feel that these complexities
are worth tackling due to the extremely long stalls caused by bus contention.

6 Conclusions

We have explained our design of a system that implements a subset of the x86 ISA. This
project has shown us several directions we should follow in our later designs, many of
which we discussed in Section 5. Although these limitations are important to address,
one reason we could not address them was the complexity of the ISA, which required
tedious design and debugging to get to work correctly. The time spent on designing and
optimizing the variable-length instruction decoder (which needs to decode instructions
whose opcodes do not seem to have any relationship with their function) could be better
spent by implementing out-of-order execution on a fixed-length, uniform-decode ISA.

In any case, we have achieved one of our design goals in this project, while falling short
on the other one.
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7 Appendix

Table 1: Instruction Set

Opcode | Instruction Description

04 ADD AL, imm8 Add AL to imm8

05 ADD AX, imm16 Add AX to imm16

05 ADD EAX, imm32 | Add EAX to imm32

80 ADD r/m8, imm8 | Add r/m8 to imm8

81 ADD r/m16, imm16 | Add r/m16 to imm16

81 ADD r/m32, imm32 | Add r/m32 to r/m32

83 ADD r/m16, imm8 | Add sign-extended imm8 to r/m16

83 ADD r/m32, imm8 | Add sign-extended imm8 to r/m32

00 ADD r/m8, r8 Add 18 to r/m8

01 ADD r/m16, r16 Add r16 to r/m16

01 ADD r/m32, r32 Add r32 to r/m32

02 ADD r8, r/m8 Add r/m8 to r8

03 ADD r16, r/m16 Add r/m16 to rl6

03 ADD r32, r/m32 Add r/m32 to r32

OF C8 | BSWAP r32 Reverses the byte order of a 32-bit register

OF AB | BTS r/ml6, r16 Store selected bit in CF flag and set

OF AB | BTS r/m32, r32 Store selected bit in CF flag and set

OF BA | BTS r/m16, imm8 | Store selected bit in CF flag and set

OF BA | BTS r/m32, imm8 | Store selected bit in CF flag and set

ES8 CALL rell6 Call near, relative, displacement relative to next instruction
ES8 CALL rel32 Call near, relative, displacement relative to next instruction
FF CALL r/m16 Call near, absolute indirect, address given in r/m16
FF CALL r/m32 Call near, absolute indirect, address given in r/m32
9A CALL ptrl6:16 Call far, absolute, address given in operand

9A CALL ptrl6:32 Call far, absolute, address given in operand

FC CLD Clear DF flag

F4 HLT Halt

FE INC r/m8 Increment r/m byte by 1

FF INC r/m16 Increment r/m word by 1

FF INC r/m32 Increment r/m doubleword by 1

40 INC r16 Increment, word register by 1

40 INC r32 Increment doubleword register by 1

CF IRETD Interrupt return

73 JNB rel8 Jump short if not below
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75
OF 83
OF 85
EB
E9
E9
FF
FF
EA
EA
88

89

89
8A
8B
8B
8C
S8E
BO
B8
B8
C6
C7
Cr
90
8F
8F
28

28
1F
07

17
OF A1
OF A9
FF
FF
20

20

JNE rel8

JNB rel16/32
JNE rell6/32
JMP rel8

JMP rell6

JMP rel32

JMP r/m16

JMP r/m32

JMP ptrl6:16
JMP ptr16:32
MOV r/m8, r8
MOV r/m16, r16
MOV r/m32, r32
MOV 18, r/m8
MOV r16, r/m16
MOV r32, r/m32
MOV r/m16, Sreg
MOV Sreg, r/m16
MOV 18, imm8
MOV r16, imm16
MOV r32, imm32
MOV r/m8, imm8
MOV r/m16, imm16
MOV r/m32, imm32
NOP

POP r/m16

POP r/m32

POP r16

POP r32

POP DS

POP ES

POP SS

POP FS

POP GS

PUSH r/m16
PUSH r/m32
PUSH r16

PUSH r32

Jump short if not equal

Jump near if not below

Jump near if not equal

Jump short, relative, displacement relative to next instruction
Jump near, relative, displacement relative to next instruction
Jump near, relative, displacement relative to next instruction
Jump near, absolute indirect, address given in r/m16
Jump near, absolute indirect, address given in r/m32
Jump far, absolute address given in operand

Jump far, absolute address given in operand

Move r8 to r/m8

Move r16 to r/m16

Move r32 to r/m32

Move r/m8 to r8

Move r/m16 to r16

Move r/m32 to r32

Move segment register to r/m16

Move r/m16 to segment register

Move imm8 to r8

Move imm16 to r16

Move imm32 to r32

Move imm8 to r/m8

Move imm16 to r/m16

Move imm32 to r/m32

No operation

Pop top of stack into r/m16; increment stack pointer
Pop top of stack into r/m32; increment stack pointer
Pop top of stack into r16; increment stack pointer
Pop top of stack into r32; increment stack pointer
Pop top of stack into DS; increment stack pointer
Pop top of stack into ES; increment stack pointer
Pop top of stack into SS; increment stack pointer
Pop top of stack into FS; increment stack pointer
Pop top of stack into GS; increment stack pointer
Push r/m16

Push r/m32

Push r16

Push r32
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6A

68

68

OE

16

1E

06

OF AO
OF A8
F3 A4
F3 A5
F3 A5
C3
CB
C2
CA
DO
D2
Co
D1
D3
C1

D1
D3
C1
DO
D2
Co
D1
D3
C1
DO
D2
Co
D1
D3
C1

D1

PUSH imm8
PUSH imm16
PUSH imm32
PUSH CS

PUSH SS

PUSH DS

PUSH ES

PUSH FS

PUSH GS

REP MOVS m8, m8
REP MOVS m16, m16
REP MOVS m32, m32
RET

RET

RET imm16

RET imm16

ROR r/m8, 1
ROR r/m8, CL
ROR r/m8, imm8
ROR r/m16, 1
ROR r/m16, CL
ROR r/m16, imm8
ROR r/m32, 1
ROR r/m32, CL
ROR r/m32, imm8
SAL r/m8, 1

SAL r/m8, CL
SAL r/m8, imm8
SAL r/m16, 1

SAL r/m16, CL
SAL r/m16, imm8
SAL r/m32, 1

SAL r/m32, CL
SAL r/m32, imm8
SAR r/m8, 1

SAR r/m8, CL
SAR r/m8, imm8
SAR r/m16, 1

Push imm8

Push imm16

Push imm32

Push CS

Push SS

Push DS

Push ES

Push FS

Push GS

Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI]
Move (E)CX words from DS:[(E)SI] to ES:[(E)DI]
Move (E)CX doublewords from DS:[(E)SI| to ES:[(E)DI]
Near return to calling procedure

Far return to calling procedure

Near return to calling procedure and pop imm16 bytes from stack
Far return to calling procedure and pop imm16 bytes from stack
Rotate eight bits r/m8 right once

Rotate eight bits r/m8 right CL times

Rotate eight bits r/m16 right imm8 times

Rotate 16 bits r/m16 right once

Rotate 16 bits r/m16 right CL times

Rotate 16 bits r/m16 right imm8 times

Rotate 32 bits r/m16 right once

Rotate 32 bits r/m32 right CL times

Rotate 32 bits r/m32 right imm8 times

Multiply r/m8 by 2, once

Multiply r/m8 by 2, CL times

Multiply r/m8 by 2, imm8 times

Multiply r/m16 by 2, once

Multiply r/m16 by 2, CL times

Multiply r/m16 by 2, imm8 times

Multiply r/m32 by 2, once

Multiply r/m32 by 2, CL times

Multiply r/m32 by 2, imm8 times

Signed divide r/m8 by 2, once

Signed divide r/m8 by 2, CL times

Signed divide r/m8 by 2, imm8 times

Signed divide r/m16 by 2, once
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D3
C1
D1
D3
C1
FD
90
90
90
90
86
86
87
87
87
87
34
35
35
80
81
81
83
83
30
31
31
32
33
33

SAR r/m16, CL
SAR r/m16, imm8
SAR r/m32, 1
SAR r/m32, CL
SAR r/m32, imm8
STD

XCHG AX, r16
XCHG rl16, AX
XCHG EAX, r32
XCHG 132, EAX
XCHG r/m8, r8
XCHG 18, r/m8
XCHG r/m16, r16
XCHG r16, r/m16
XCHG r/m32, r32
XCHG 132, r/m32
XOR AL, imm8
XOR AX, imm16
XOR EAX, imm32
XOR r/m8, imm8
XOR r/m16, imm16
XOR r/m32, imm32
XOR r/m16, imm8
XOR r/m32, imm8
XOR r/ms8, r8
XOR r/m16, r16
XOR r/m32, r32
XOR 18, r/m8
XOR r16, r/m16
XOR r32, r/m32

Signed divide r/m16 by 2, CL times
Signed divide r/m16 by 2, imm8 times
Signed divide r/m32 by 2, once

Signed divide r/m32 by 2, CL times
Signed divide r/m32 by 2, imm8 times

Set DF flag

Exchange r16 with AX

Exchange AX with r16

Exchange r32 with EAX

Exchange EAX with r32

Exchange r8 (byte register) with byte from r/m8
Exchange byte from r/m8 with r8 (byte register)
Exchange r16 with word from r/m16
Exchange word from r/m16 with r16
Exchange r32 with doubleword from r/m32
Exchange doubleword from r/m32 with r32
AL XOR imm8

AX XOR imm16

EAX XOR imm32

r/m8 XOR imm8

r/m16 XOR imm16

r/m32 XOR r/m32

sign-extended imm8 XOR r/m16
sign-extended imm8 XOR r/m32

r8 XOR r/m8

r16 XOR r/m16

r32 XOR r/m32

r/m8 XOR 18

r/m16 XOR r16

r/m32 XOR r32
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Micro-op

Description

FAR CALL1
FAR CALL2
POP EIP

POP CS

POP EFLAGS
FAR RETIMM
PUSH EFLAGS
PUSH CS
PUSH EIP
LIDT1

LIDT?2

REP FIRST
REP ITER
REP DONE

Push NextEIP

Push CS, far jump

Pop EIP

Pop CS

Pop EFLAGS

Far Return Immediate

Push EFLAGS

Push CS

Push EIP

Load first doubleword from IDT
Load second doubleword from IDT
First REP MOVS iteration
Intermediate REP MOVS iterations
ECX == 0, clear pipeline

Table 2: Micro-operations
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Control signal

Size (bits)

Description

operation
src_id
src_needed
WTI_SIC

dest_id
dest_needed
wr_dest
base_id
base_needed
wr_base
index_d
index_needed
srcseg-id
srcseg_needed
addrseg_id
addrseg_needed
destseg_id
destseg needed
wr_destseg
uses_imm8
uses_imm16
uses_imma32
uses_imm
rd_mem
wr_mem
wr_af

wr_cf

wr_df

wr_of

wr_pf

wr_sf

wr_zf
operand_mode
shift_left
cl.needed
chk_exc
nuIm_ops_con

modRMmem _true

dis_mux_ctrl
base_mux_ctrl
index_mux_ctrl

40
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one-hot encoding of the operation

register file src port id

instruction needs to read regfile src port
instruction needs to write regfile src port
register file dest port id

instruction needs to read regfile dest port
instruction needs to write regfile dest port
register file base port id

instruction needs to read regfile base port
instruction needs to write regfile base port
register file index port id

instruction needs to read regfile index port
segment register file src port id
instruction needs to read segfile src port
segment register file addr port id
instruction needs to read segfile addr port
segment register file dest port id
instruction needs to read segfile dest port
instruction needs to write segfile dest port
instruction uses 8-bit immediate
instruction uses 16-bit immediate
instruction uses 32-bit immediate
instruction uses immediate

instruction needs to read memory
instruction needs to write memory
instruction needs to write AF flag
instruction needs to write CF flag
instruction needs to write DF flag
instruction needs to write OF flag
instruction needs to write PF flag
instruction needs to write SF flag
instruction needs to write ZF flag

access size/operand size (8, 16, or 32)
shift is a left shift

shift /ror uses CL

instruction needs to check exceptions
number of micro-operations after this one
instruction uses modR/M address

one-hot control for address generation adder
one-hot control for address generation adder
one-hot control for address generation adder

Table 3: Control signals as output by the decoder
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Data signal | Size (bits) | Description

nextEIP 32 EIP after this instruction

nextEIP_CS 32 EIP+CS after this instruction

imm8 8 value of the 8-bit immediate

imm16 16 value of the 16-bit immediate

imm32 32 value of the 32-bit immediate

farptr 48 value of 48-bit far pointer

disp32 32 value of the displacement

tag 8 tag of the instruction

opcode 8 opcode (or second byte of the opcode)
Table 4: Data signals as output by the decoder

Delay (ns) | Delay w/o signals coming in from other stages
Fetch Stage 6.75 5.15
Decode Stage 6.85 5.10
Register Read Stage 6.70 4.10
Address Generation Stage 6.75 4.80
D-cache Access Stage 6.60 5.10
Execution Stage 6.70 4.55
Writeback Stage 6.70 5.05

Table 5: Delay of each pipeline stage
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Processing Core

7-stage pipeline

Fetch agdress

32" 198

A

Fetched instructions

Cantrol

A

Data ad/dress

\

A

32 3

Read/Written data

Y

Memory Subsystem

512-byte I-cache
512—-byte D—cache
8—entry TLB

Interryipt
Controls Bus Arbiter -
A
ContLoI Bus v 7 R
- A Iy )\ -
Addrgss Bus 15 R
Data‘Bus 128 _
h A i >
Yvy Yy Yvy
Monitor Keyboard Memory Controller

Figure 1: System Overview
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| INT1
« INT?

32 wh_write_address (to Dcache Stage)
Writejaddress ) -
) no exception ,.|
Writem _ » Memory wb_wr_mem (to Dcache Stage)
valid write signal >
generation
Memary ddta 32 wh_write_data (to Dcache Stage)
valid
e 32 whb_destreg_vaue (to RF stage)
na exception .| =~
Dest reg veue 20 | Dest reg alignment 3 Wwhb_destreg_id (to RF stage)
write [dest - i o
Do r;;; J 2 : write signal gen. wb_write_destreg (tg RF stage)
Dest reg size 2
valid
— 32 wb_srcreg value (to RF stage)
na exception | iy
Srcreg valye 2 ~|  Srcregalignment 3 Wh_srcreg_id (to RF stage)
write - i ) F
o ré;i:; 3 : write signal gen. wb_write_srcreg (to}RF stage)
Srcregsiz 2
valid
—_— 32 wb_basereg_value (to RF stage)
) naexception .| >
Basereg value 2 "|  Dest regdignment wh_basereg_id (to RF stage)
write {baseteg - i
Base_;g = g 5 ™| write signal gen. wh_write_basereg (E RF stage)
Basereg size 2
7 wh_flag_values (to RF stage)
Flag vialues ; i
X Mi;lLd—> Flags write signal 7 Wh_write flags (to RF stage)
Flag write signal's = generation
A
PF_exc
GP exc nojexception
Valid r v
Exception Handler
-ed flags
cs 16 -
|savedEIP | |SavedCs |

cache miss signa

—

flush/exception_handle

wb_exception_stall

Saved EIP (to Execution stage)
32

16 Saved CS(to Execution Stage)
L SavedEFl AGS (to Execution stage)

A

Figure 9: Writeback Stage Block Diagram
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Figure 10: Special Hardware and State Diagram for REP MOVS
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miss/ stall, BR
Y

Wait for BG _BG/ stall

BG/ stal, BBSY

Y

Send request
addressto
memory

CLK / stall, BBSY

Y

_memACK / stall, BBSY
w1

memACK / stall
/

Write received
datato cache

Figure 11: I-cache Controller State Diagram
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hit Initial
State noncacheable/ stall, BR

miss, dirty / stalf, BR

Wait for BG

Send reguest
address to
memory

i CLK / stall, BBSY

memACK / stall

_unaligned / stall

miss)_dirty /
D sall, BR _
access (unaligned

' BG/ sl
BG /stall, BBSY

i CLK / sall, BBSY

memACK
/stall, BBSY

_BG/sdll

Wait for BG
BG/ stall, BBSY

hit

Send address
(data)to I/O
device

initial state
miss, dirty / stall, BR
CLK / stal, BB

Wait for BG

_ miss) _dirty / _ACK / stdl, BBSY
Wait for BG

sall, BR
' BG/ gl )

BG /¢tall, BBSY

BG/ stall, BBSY

_BG/ gl ACK / stall

D

BG/ stall, BBSY

Send evicted
address, datato
memory

gtall, BBSY Wait for BG .
Internal signals
miss, dirty, noncacheable,

unaligned

i CLK / stall, BBSY

Output signals
stall: Stallsthe pipeline

_memACK / BR: Bus Request

stall, BBSY BBSY: Bus busy
memACK Input signals
/stall, BBSY BG: Bus Grant

memACK, ACK: BusACK line
_memACK /

sall, BBSY  /naligned / stall

CLK / stall, BBSY
CLK / stall

memACK /
< Stal, BBSY

D

to the cache to Initial State

memACK / stall

Figure 12: D-cache Controller State Diagram
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BBSY :

O—X
BG_dcache
dff$ -
BR_dcache
o —
BR_icache J
BG_icache

CLK

Figure 13: Bus Arbitration Logic

device id!=01

Idle
set access counter

device id==01

get address,

(data), read/write
access memory

CLK access_counter ==0

send ACK on bus

access counter '=0

Figure 14: Memory Controller State Diagram
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(device_id !=10) && no keyboard input

ice id==10

buffer access not done

access buffer
with address
on the bus

buffer access done

send ACK

Figure 15: Keyboard Controller State Diagram

device id!=11

device id==11

buffer write not complete

get address, data
from the bus

write into monitor buffe

buffer write complete

send ACK on bus

Figure 16: Monitor Controller State Diagram
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