Multimedia Systems
CS384M
Assignment #2

Design of a Buffer Management Scheme for Video Servers

Submitted by

Chandresh Jain
Onur Mutlu

Buffer Management Techniquesfor Video Servers
l.Introduction

Design of video serversis a chall enging task which requires careful attention to various number of
isaues. Some of the most important of these issues are disk bandwidth management, disk

array management (storage space management), and bufer spacemanagement. The choices of the
palicies chosen for eath of these will significantly affed the performance of the video server,

where performance can be measured as the number of clients srviced by the video server withou
violating a significant amount of deadllines. In this projed we focus on "buff er spacemanagement”
for video servers and cdesign an efficient buffer space management algorithm that adjusts to
dynamic changesin the load onthe system.

2. Buffer Space Management Problem

In a video server, typicdly finite anount of memory is used as a buffer for the disk array. The
avail able buffer space ca be used for severa purposes. The threemost important main puposes of
the buffer are the foll owing:

1. Buffering of dataretrieved in roundi andto be sent to clientsin roundi+1 (Demand requests)
2. Buffering of datathat is prefetched (Prefetch requests)
3. Buffering of datathat is caded (Cached data)

In this document, we will refer to these three types of data that are to be stored in the buffer as
Demand requests, Prefetch requests, and Cached deta, respedively.

As suggested by the @ove dasdficaion d data, the buffer spacemanagement scheme in a video
server must be avare of the existence of these different data types and ogimize the use buffer
space based on the inherent difference between these three different types. We now discuss the
charaderistics of these diff erent data types. Later we will discussdifferent methods of all ocating
buffer spaceto eat of these request types.

3. Characteristics of Different Request Types
3.1. Demand Requests

In this projed, we have simulated a video fil e system, which employs roundbased scheduling on a
server-push architedure. Hence, the dient requests are dways srviced dredly from the buffer in a
given round.

In roundi the server fetches the data needed by all clientsin roundi+1. This datais buffered in the
buffer spaceonceit is fetched. In roundi+1, the space #docaed for this datais clamed bad after
the requests are sent to the dients. Hence the video server neals to keep the demand data in the
buffer spacefor at most 2 rounds (Note that this is the worst-case asumption for the duration o
time demand data stays in the buffer. Most demand cata will stay in the buffer for the duration o 1
round onaverage).

In some basic level, the demand requests are the same & prefetch requests. The server-push
architedure prefetches the data needed by the dient one round lefore it is nealed. Hence, the
server-push architedure exploits the sequentiality present in the video strean by prefetching.
However, we would like to make adistinction ketween "demand' requests and "prefetch” requests.

A "demand' request is nat a prefetch in the sense that it must be satisfied ore round tefore it is
neeled by the dient given that the video server would like to service dl client requests from the
memory (buffer). If the video server did na have the requirement of servicing al client requests
from the buffer, then a demand request would be no dff erent from a prefetch request.

The reason we would like to dstinguish a demand request from a prefetch request is to be ale to
make intelligent dedsions in alocaion and dedlocaion d buffer spacefor these two requests.
Demand requests are in some sense higher-priority requests compared to the prefetch requests.

They have to be serviced immediately becaise the deadline of the demand request is the end d the
round.

3.2. Prefetch Requests

These requests are ones that are aeded by the video server by exploiting the sequentiality of the
video streams. The video server knows the exad access pattern of every client once the dient
isuesitsfirst request. Hence in an ided world, the video server can fetch from the disk array

into the buffer al the data required by the dient in the first roundand service the dient from the
buffer for the rest of the video stream the dient isaccesng.

We can seethat the prefetching scheme avideo server employs depends heavily on the size of the
avail able memory buffer. If there is a big enough bufer, it is useful to generate prefetch requests.
Generating prefetch requests for every disk would unformly reduce the load balance acoss the
disks in later rounds. The load balance of the disks will i ncrease in the round when the prefetch
requests are inserted into the scheduler. However, thisincreaseis not very crucia becaise

we would hope that those requests are inserted intelli gently such that they do nd delay any demand
requests. We will describe such a scheme later in thisreport.

3.3. Cached Data

Cading is ancther method that exploits sequentia nature of video accessto save disk bandwidth.
Due to the streaming nature of video accesses, traditional cading schemes that exploit temporal
locdity are not useful to employ in multimedia servers. Diff erent cading medanisms, such as

ones that exploit the fad that avideo fileisaccessed by multiple dients are more desirable.

One of the most effedive methods for cading video frames is interval cading [1]. In interval
cading, the interval between two temporaly spacel clients is dored in the cade. Such a
mechanism requires the following:

1. Detedion d two clients accessng the same fil e bad to badk
2. Deasion onwhich intervalsto cache
3. Dedsion onwhich intervals to replacewhen anew interval is formed

Dedsion d which intervals to cade and which intervals to replace will have very significant
effeds onthe disk bandwidth saved and number of clients srviced.

3.4. Bandwidth Savings of Different Buffer Data Types (Buffering Schemes)

We can immediately seethat interval cading of video data is very powerful becaise it saves disk
bandwidth. On the other hand, demand requests or prefetch requests do nd redly save disk
bandwidth. They just shift the load onthe disks that would be observed in alater roundto previous
rounds. This is a very important difference between cading and prefetching that neels to be
considered during buffer space docation for these diff erent types of requests.

3.5. Disk Utilization of Different Buffering Schemes

Based onthe described charaderistics of the different buffered data types, we can seethat demand
requests and pefetch requests increase the disk utilization in the video server. Espedally
prefetching increases the utili zation d the disks by inserting prefetch requests during the times

disk is freeof demand requests. On the other hand, we note that interval cading adually deaeases
the disk utili zation by preventing many of the demand requests from going to the disk. The main
benefit of interval cading comes from savings of disk bandwidth. Hence, we conclude that

disk utili zation is nat a very good measure of the performance of the video server espeaally when
there ae many temporally spacel clients accessng the same data fil es.

4. Partitioning of the Buffer Space

An important policy dedsion to be made in bufer space management is the dedsion d how to
divide the buffer into dfferent data types. The anourt of space docaed to eat request type can
affed the performance (number of clients suppated withou violating a spedfied percentage of
deallines) of the video server significantly. Hence, this pdicy dedsion shoud be made very
caefully.

This dedsion d how to all ocate buffer space anong different request types beas many simil ariti es
to the dlocaion d disk spaceto dfferent data types when designing an integrated file system [2].
Espedadly the differences between static and dynamic partitioning of the buffer space ae
anaogous to the differences between a logicdly integrated file system and a physicdly integrated
file system in the design of integrated fil e systems[2].

4.1. Static Partitioning

One simple pdicy for alocaionis gaticdly partitioning the buffer space anong the threediff erent
datatypes. The server can be configured during initialization with d% of the buffer space #ocaed
to demand requests, p% all ocated to prefetch requests, and c% of it allocated to caded data. In any
round,if the insertion d a block of type demand causes the percentage of demands in the buffer

excea d% then that request will nat be inserted into the buffer and hence simply dropped (even
though rest of the buffer (p% + c¢%) may have freespace.

Hence the disadvantage of the static buffer partitioning palicy. This pdlicy is not flexible and it
results in higher frequency of deadline violations espedally for variable bit rate video streams. In
variable bit rate video streams, the size of data accesed in oreroundis nat fixed. It varies from
round to round. Hence, the size of demand dhta that needs to be accesd in a given round may
excedal the anourt of buffer spacedtaticdly allocated to demand dhta. If this happens, dealines
will beviolated.

The second dsadvantage of static buffer partitioning is that it results in low utili zation d the buffer
space Consider the cae in which the demand requests do nd fill up the portion d the buffer space
alocaed to demand requests. In that round,the unfilled pation d that portion d buffer space

will not be used at all. Prefetch requests or cadie requests canna claim and wse that portion d the
buffer, becaise the buffer spaceis grictly partitioned. Hencethe low utili zation d buffer space

In some sense, low utili zation d buffer spaceimplies low utili zation d the disk array. If buffer
spaceis avail able for prefetch requests, then the scheduler will schedule more prefetches to the disk
array and will keep the disk array busy. By staticdly partitioning the buffer space the design

will limitthe buffer space aailable for prefetching and hence lower the disk utili zation (This
discusson asaumes that the roundtime is enouwgh to isue more prefetches).

4.2. Dynamic Partitioning

The discusson d static partitioning makes it clea that we would like to dynamicaly partition the
buffer to maximize buffer utili zation and minimize the number of deadlines missed. By using
dynamic partitioning we can employ a greedy prefetching algorithm (bound ly the service time of
disks and round duation) which prefetches into the buffer until the buffer spaceis fully utili zed. Of
course, thisis not the best algorithm to use for prefetching, although it maximizes the utili zation o
buffer space Hence we see that buffer space utili zation also may not be the best performance
metric of avideo server.

The avantage of dynamic partitioning of the buffer spaceis that it maximizes the buffer space
utili zation and resultsin ahigh disk utili zation if aggressve prefetching is employed.

One disadvantage of dynamic partitioning is the complexity involved in managing the buffer space
Dedsions of what to adlocae and what to dedlocae will become more complicaed in a
dynamicdly-partitioned bufer. Policy dedsions neel to be made &ou what type of data and
which data block neeads to be dedl ocaed uponthe fetch of another data block.

In ou projed, we have implemented dynamic partitioning of buffer space We will discuss the
policy dedsions we made in the later parts of this paper.

5. Description of the Simulation Environment

We have implemented ou buffer management mecdhanism in a video server disk array simulator
cdled DiskSim that is built on top d the event-driven simulation infrastructure csim. DiskSim
models an integrated file system, which stores text files and continuows media files. Some dients
send requests for text files and some send requests for continuows media files. The integrated file
system modeled is avariant of Symphory [2].

DiskSim suppats many of file system parameters to be spedfied. These parameters include the
number of disksin the aray, RAID level, top-level scheduling pdlicy, disk scheduling pdlicy, disk
placanent padlicy, base disk block size, continuows media block size, striping width, roundtime,
number of video files on the aray, number of text files on the disk array, number of clients
accessgng the file system, number of text clients accesang the fil e system, parity groupsize, etc.

We will briefly describe the important feaures of the simulation environment, which will help
understand ou implementation d buffer management mechanism ontop d the DiskSim model.

5.1. Scheduling Mechanismsin DiskSim

DiskSim implements the Cello Disk Scheduling algorithm [3] used by Symphory integrated file
system [2]. The scheduler is divided into two layers. classspedfic schedulers and a dass
independent scheduler. The dassindependent scheduler determines when and hav many requests
from eadt applicaion shoud be inserted into the scheduled queue (Scheduled queue is a First
Come First Serve queue which sends the requests to the disk array). Classindependent

scheduler aso ndifies the dassindependent schedulers as to where in the scheduled queue they
shoud insert their requests. The dassindependent scheduler performs these functions by all ocaing
weights to ead classof applicaion. This sheduler iswork-conserving in the sensethat if a dass
used upall of its allocaion and still has requests pending, it will i nsert thase requests one by one
into the scheduled queue if no aher classhas pending requests [3].

The dassspedfic schedulers determine the paosition to insert requests of the gplication classthey
are suppating. This position is determined for ead request. There ae three dassspedfic
schedulers. one that schedules red-time requests, ore that schedules interadive best eff ort requests,
and ore that schedules throughpu-intensive best effort requests. These schedulers take advantage
of the properties of their applicaion class For example, red-time requests can be delayed urtil
their deallines. Hence they have some sladk in scheduling. However, interadive requests require
good resporse time from the server. Therefore, interadive requests are inserted into the scheduled
gueue before any other request classas long as red-time requests’ deadli nes are met. After insertion
into the scheduled queue, ead classof requestsis srviced in SCAN order from the disk.

5.2. Layout of Filesin DiskSim

The number of files on the disk array is a parameter to the DiskSim simulator. Disksim takes in a
trace of a file and randamly seleds a disk in the disk array to start plaang the file. In ou

simulations, placement is dore in fixed size blocks. To simulate multiple files, DiskSim places the
same fil e starting from diff erent disks. Starting pasitions of eat placement is sleded randamly.
When a dient accesss afile, it starts the accesfrom arandam position in the file and continuows
to accessuntil the whale file is complete. Once the whale file is complete, it starts reading the file
from the beginning again.

We modified this feaure of DiskSim to suppat reading of multiple tracefil es into the disks. Most
of our simulations were cnduwcted with 10tracefil es fed into the smulator.

6. Design of Our Buffer Management Algorithm

Current version d DiskSim does nat include abuffer management scheme. Infinite anourt of
buffering is assumed in the disk array. Besides, no pefetching or cadiing algorithm is implemented
in DiskSim. We have implemented a buffer management algorithm that models finite anourt of
buffering that is dynamicdly allocaed between prefetch and demand requests. We have dso
implemented an intelli gent prefetching scheme that reduces the load aaoss al disks in the disk
array. The key feaures of our algorithm are:

1. Dynamic partitioning of the buffer spacebetween demand and prefetch requests.

2. A priority mechanism used for dedding what to alocae in and what to dedlocae from the
buffer.

3. A prefetching mecdhanism that tries to distribute the load evenly among all disks.

4. A smpleoptiona cading mechanism.

Here we describe the spedfics of our buffer management algorithm.
6.1. Buffer Space

The buffer spacein ou agorithm is global to al disks. There is finite amourt of buffer, which
contains gacethat is a multiple of the basic disk block size. This buffer is used bah for demand
requests and prefetch requests. The buffer is not staticdly partitioned among the diff erent types of
requests. At any given time there might be any combination d demand and prefetch requests in the
buffer. Due to the variable bitrate nature of the video streans smulated, the buffer spacedevoted to
client demand (server-push) requests will vary from roundto round. The remaining space will be
al ocaed for any prefetch request that isissued in the same round.

6.2. Prefetching Scheme and Scheduling of Prefetch Requests

The prefetching scheme we have implemented can prefetch ahead for n rounds for all clients, where
n is a parameter that is apdied to the simulator. Prefetch requests are inserted into a queue
separate from the queue that contains client demand requests. During the scheduling of requests on
the disk array, client requests are given priority over prefetch requests. Hence the scheduler never
schedules a prefetch request if the dready inserted client requests use up the whole roundtime. If
the dient requests do nd use up the whole roundtime, the scheduler inserts prefetch requests into
the scheduled queue such that the total time to service dl requests does nat exceal the round

duration. The demand requests and prefetch requests are then ead serviced by the disk in SCAN
order.

The generation d prefetches is done on a dient basis. The video server knows which disk blocks
ead client will accessin the next cougde of rounds. Hence, it isaues prefetch requests for those
blocks for ead client in the airrent round.In ou current implementation, the video server tries to
predict the most heavily loaded disk in the next round and starts to isaue prefetches for that disk
first. Hence, the prefetches issued would all eviate the load in the most heavily loaded disk in the
next round.We can also order the disks based onthe probability of a disk being the most heavily
loaded orein the next round.Then we can isaue the prefetches in this order, the ones that are going

to a disk that has a higher probability of being the most heavily loaded first, and the ones that are
going to adisk that has alow probability of being the most heavily loaded last.

The prediction d the load ona disk is currently done on a history based medianism. The server
keeps tradk of the most heavily loaded disks in every round.It cdculates which dsk will be most
heavily loaded based onthe accss patterns of the dients and dacement of data on the disks (the
server knows exadly which frames will be accesed by the dients in roundx and the locaion d
those frames in the disk array). Hence, the server tries to schedule prefetch requests to the predicted
most heavily loaded disk first.

6.3. Dynamic Allocation/Deallocation of Buffer Space

We use a priority-based medianism to dedde what to alocae/dedlocae in the buffer space
Demand requests have higher priority than prefetch requests. The buffer all ocates and cedl ocaes
on the granularity of disk block size. It kegys a list of unallocaed (freg) blocks. This list contains
al buffer blocks in the beginning. When a dient demand request is fetched from the disk, the
buffer manager chedks the free list to find free blocks to allocae for the dient request. If free
blocks are foundthey will be removed from the freelist and client’s demand cata will be dlocaed
in the wrrespondng addresses in the buffer. If no freeblocks are found o if the dient’s data does
nat fit the foundfreeblocks, the buffer manager cheds the prefetch list, which contains the buffer
blocks that contain deta that is prefetched. This list is maintained in the order of prefetch request
generation. The buffer manager frees enough o the blocks from the tail prefetch list (most recently
inserted prefetches will be replacead with the anticipation that they will be the ones used latest in the
future) and all ocates these blocks for the incoming client demand request. Hence, prefetches are
replacal in favor of demand requests 0 that deadlines will be lesslikely to be violated. If both the
prefetch list and freeli st are anpty on a demand fetch, the fetched block for the dient is discarded.

Upon the fetch of a prefetched bock from the disk, the buffer manager first cheds if there ae
blocksin the freelist. If blocks exist in the freelist the prefetched datais placed in those blocks and
those blocks are moved from the freelist into the prefetch list. If there ae no Hocks avail able in the
free list then the prefetched bock is smply discarded. A prefetch request canna dedlocae a
demand request from the buffer under any conditions.

As can be seen from this description, ou medhanism is very flexible in dynamic allocaion o
requests and tries to maximize buffer spaceutili zation and minimize deadline violations.

BUFFER

il v 7T
| Demand List Prefetch List Free List [~ i
i |
! BUFFER MANAGER 5 S
i o i
i oo
: R

i ! I I = ;
! 5] !
DISK ARRAY .

Figure 1. High Level Organization d the Video Server and Lists Used by Buffer Manager

6.4. Simple Interval Caching

Our buffer management scheme dso employs a smple interval cading agorithm by alowing
some demand requests not to be dedlocaed orce their dealline has passed. Normally, once we
service ademand request from the buffer, we free the blocks correspondng to that request.
Alternatively, if we want to form links between two temporally spacel clients we can extend the
dedlocation time of the blocks fetched by the first client until the round they are read by the
following client. Hence the interval cading algorithm will save disk bandwidth. Cadhed data has
lower priority than demand requests in this scheme. However it has equal priority with prefetch
requests. Hence, if a demand Hock is fetched and there is no free buffer space @ailable ather a
caded bock or a prefetched bock is dedlocaed in the buffer to make space for the demand
request. The doice of which block will be dedlocaed depends on which ore of the block typesis
fetched latest in the future.

6.5. Putting It All Together
Figure 1 shows the high-level organization d the video server with afocus on bufer management.
The scheduler ontheright is a general logicd scheduler that determines whether to send requests to

disks or to the buffer. Therefore it has connedions to bah the disk array controller and the buffer
manager. If arequest hitsin the buffer, the scheduler will not schedule that request to the disk.

As mentioned before, the buffer manager is in charge of managing the threelists: freelist, prefetch
list, and the demand list. It is aso in charge of communicating with the scheduler abou what is
contained in the buffer.

There ae simple main rules used by the scheduler as to whether or nat to generate/schedule a
prefetch request:

1. If there ae ill client requests to be serviced, the scheduler will not schedule any prefetch
request.

2. If thereisno bufer spaceleft, the scheduler will nat schedule aprefetch request.

3. If the completion time of a prefetch request will excee the round duwation the scheduler will not
schedule aprefetch request.

4. If nore of the @ove @mndtions are true, the prefetch request can be scheduled.

The buffer spacemanager also uses smplerulesto dedade what to all ocate/dedl ocate:

1. If the incoming data block is prefetched, rever dedlocate ablock that is fetched by a dient
request (demand). Insert the prefetch into the buffer only if there ae freeblocks. The dealline of
the prefetch is determined by the scheduler. Prefetch can stay in the buffer up to nrounds.

2. If the incoming data block is a demand request allocae afreeblock. If afreeblock does not exist
in the buffer find the youngest prefetched block and cedlocaeit.

The server also uses asimple metric to determine what to prefetch:

1. It keeps a history of most heavily loaded disks over rounck.

2. Based onthat history, it sorts the disksin order of predicted heavy load for the next round(This
predictionis nat aways acarate).

3. It starts isauing prefetch requests for those disks that are predicted to be heavily-loaded in the
next round.

7. Implementation of Our Buffer Space Manager in DiskSim

The implementation d our buffer space management algorithm foll ows closely what we
have described in the previous dion. We dlocae abuffer structure, which contains n number of
basic disc blocks where nis the size of buffer as suppied by the user of the simulator. This druture
has three lists associated with it: freelist, prefetch list, and demand list. Freelist points to the
unused blocks in the buffer. Prefetch list points to the blocks that are dlocaed for prefetched
blocks. Demand list paintsto blocks that are dl ocated for server-push demand requests.

We implement the priority-based all ocaior/dedl ocation medhanism by tagging ead bock
in the buffer as prefetch or demand request. The blocks that are tagged as demand requests are
dedlocated at the end d eat roundwhen their deadlines have passed. The blocks that are tagged
as prefetch requests are dedl ocated when a demand request needs a freeblock and nofreeblock is
avalable. A prefetched block that is later used by a dient is promoted to demand status and
dedlocated at the end d the round.Our server employs asimple kind d interval cading algorithm
by suppating the demand requests to stay in the buffer spacefor n rounds where n is inpu by
simulator user.

1C

Prefetching is suppated by the adtion d a new prefetch queue. When the server-push
requests for a dient is generated for the periodic queue, prefetch requests are dso generated for the
prefetch queue. These requests are then inserted to the scheduled queue, which services the requests
in SCAN order for eat class (demand \s. prefetch). As mentioned before demand (server-push)
requests have higher priority than prefetch requests. Hence prefetches are not inserted into the
scheduled queue if a demand request is outstanding. Once d demand requests are inserted into the
scheduled queue, scheduler inserts prefetch requests in SCAN order and makes aure that the
dealline of no demand request will be violated by inserting the new prefetch into the scheduled
queue.

The following diagram shows the scheduler queues used to control demand and prefetch
requests. The periodic demand qleue and prefetch request queue ae eat kept in SCAN order.
Demand requests are first inserted into the scheduled queue and prefetches are inserted when no
requests are ready in the periodic queue.

e Push | Periodic Demand Queue K

Prefetchear

Scheduled Queue O—‘ DISK

Prefetch Request Queue

Figure 2. Scheduling of Prefetch and Demand Requests

8. Simulation Parameters Used in Experiments

Although DiskSim models an integrated fil e system, we did na experiment with text clientsin this
assgnment. Our goal was to maximize the number of video clients sippated by a video server.
Hence we did na place ay text files in the disk array. Nor did we simulate the acces of text
clients. Therefore, the best effort queue was never used in ou experiments. Besides, we did na
experiment with aperiodic red-time requests. All red-time requests sen by our server were
periodic.

Here is a listing of parameters we used to condwct our experiments. Some of the parameters are
varied in experiments. We will talk about how those ae varied in the evaluation sedion.

Number of disksin the disk array: Variable in experiments
RAID level: O

Top level scheduling padlicy: PLOOKEDF

Disk Scheduling pdlicy: FCFS

Disk Placement Policy: Roundrobin

Base block size: 4 KB

Use fixed block size: Yes

11

Continuows media block size: Variable in experiments
Stripe acossall disks: Yes

Use default disk (Seagate Elite 3): Yes

Round duation: Variable in experiments (default is 1000ms)
Datarate: 30 frames per seoond

Number of continuows mediafileson dsk: 10
Number of text fileson dsk: O

Size of text fileson dsk: 0

Asaume dl clientsarrive & time =0: Yes

Number of video clients: Variable in experiments
Number of text clients: O

Use server push for al continuows media dients: Yes
Simulation length: Variable number of rounds
Starting roundfor colleding statistics: 1

Partition dsk bandwidth: No

Prefetch for the next nroundsn = 1.

Dedl ocae prefetches after n roundsn = 4.

We do nd use falure remvery medianisms in ou simulations. We asaume a fault-free
environment.

We have performed extensive experiments to evaluate the dfedivenessof our buffer management
scheme. We will now talk abou these experiments and comment on the dfediveness of our
mechanism.

9. Evaluation of Our Mechanism and Answersto the Questions

9.1. Evaluation M echanism

In this dion we describe the evaluation d our implementation d buffer management scheme in
DiskSim. The evauation d our scheme is tied closely with the projed questions given in the
projed handou. While answering ead question we will show that our buffer management scheme

provides more flexibility and increases the performance of the video server under certain
condtions.

9.2. Answersto Project Questions

9.2.1. Question 1

“For a given a server configuration (i.e., number of disks, amourt of buffer space and
charaderistics of client requested files), hov will you seled around duation? *

Seledion of Round Duration

The seledion d round duation depends on many parameters of the server. Most important of these

are:
1. Number of disksin the server (This affeds how the load is distributed on dsks).

12

2. Amourt of buffer space &ailable in the server
3. If the server employs prefetching or cadiing

Given a server configuration, to determine the optimal round dwation, we neel to find the round
duration that suppats maximum number of clients withou violating more than 0.1% of the
deallines. Hence, we need to plot the graph d “Round duation vs. Maximum number of clients
suppated” for a given server configuration. The maximum point in this graph will correspondto
the optimal round duation we would like to seled.

Graph 1shows one such graph for a given server configuration. The anfiguration correspondng to
Graph lisdepicted in Table 1.

Number of disks 20

Amourt of buffer space &ailable 2700 bocks (10.8MB)

Buffer al ocaion pdicy Dynamic partitioning

Number of fil es on server 10

Datarate of files 30 frames per seand

Type of files 8 variable bit rate, 2 constant bit rate
Disk block size 4KB

Continuows media block size (stripe unit size) 16 KB

Number of smulationrouncs 500

Table 1: Server and simulation configuration used for data shown in Graph 1.
I nterpretation of Graph 1

Graph 1 shows svera important charaderistics of our scheme. It also shows how the optimal
round time canges based on server configuration. The line marked “2700 bocks, no pefetch”
shows a server which dces not employ our prefetching algorithm. It has a buffer spaceof 2700
blocks (10.8 MB). All of the space is available for client requests (i.e. bufer space is not
partitioned). For this configuration, we seethat the optimal round duation is around 750ms. The
shape of the airve is quite interesting in the sense that it portrays the limitations of the server in
extreme caes. If theround duationisvery low (100 ms), the server isroundduration-limited. This
means that buffer spaceis not a bottlened. However, the short round duation is a bottlenedk
becaise it does nat permit the aldition d more dients. If we ald more dients to the system, the
service time will start to go up and frames will start to get dropped, becaise the server does not
have enough time in a roundto service d client requests. On the other hand, when the round
duration is too high, bufer spacebemmes a battlenedk and frames will get dropped becaise they
will nat fit in the buffer. We can clealy start seang this effed for round duations greder than
1000ms.

The sewond configuration, which is marked “1000 bocks, no prefetch” shows a server
configuration that also daes nat employ prefetching but has a buffer size of 1000 bocks (4 MB).
All other parameters of the server are the same & the previous one. There ae two olservations we
can make based onthis configuration:

13

110 T T T T

100 -

a0 r 2700 blocks, no prefetch ¢ b
1000 blocks, no prefetch

2700 blocks. prefetch 1 ahead 8

+

o

a0 -

Maximum number of clients supported

30 r

20 r

10 1 1 1
0 T Ay 1500 2000 2500

Found duration Cin msecl

Graph 1 Round duation vs. Number of suppated clients for a given server configuration

1. We can seethat small buffer size seriously limits the number of clients that can be serviced. The
maximum number of clients that can be suppated using a 2700 block buffer is around 80 whereas
the maximum number of clients that can be suppated using a 1000 bock buffer isaround 50.

2. We can dso seethat buffer size can have asignificant impad on the optima round duwation.
Optimal round duation for a server with 2708block buffer is 750 ms, whereas optima round
durationfor a server with 1008block buffer is200ms.

The third configuration employs our prefetching algorithm as described in Sedion 6. In rounds
where dient requests do nd consume the whaole round duation, prefetch requests are sent to the
disk array to utili ze the round duation bketter and passbly reduce the load on the disks in the next
few rounds (if enowgh bufer spaceto hdd the prefetched data exists). Note that dues to the
variable bit-rate nature of the media stored in dsks, client requests require variable anourt of data
in any given round.We eploit this charaderistic of the video data and roundbased scheduling in
our prefetching algorithm.

14

Third configuration shows that our prefetching agorithm is espedally effedive in small round
durations. This makes snse because in short round duations, the buffer spacedevoted to client
requests will be quite small. Hence, whenever prefetch requests have time to be inserted, they will

always be dlocated in the buffer. Besides, our prefetching scheme dso ads like a cahbing scheme
in the sense that we do nd dedlocae prefetches from the buffer unlessa dient request requires
gpacein the buffer. Due to these dfeds, prefetching increases the maximum number of suppated
clients for small round duations. In larger round duations, this effed is not visible, becaise the
server beaomes buffer-limited and prefetch requests are nat issued, becaise dmost al of the buffer
spaceis devoted to client requests.

Hence the conclusions we draw from this graph are:

1. Our prefetching scheme works eff edively.

2. Our modeling of the buffer management works reasonably (As the buffer size danges, the
maximum number of clientswe can suppat also changes).

3. Optimal round duation for a server depends on whether or nat prefetching is employed onthe
server. It also depends on the buffer space @ailable.

9.2.2. Question 2

“How does the total buffer size required increases with the round dwation? How does the number
of clients suppated by the server increase with the round duation? What is the average utili zation
of the buffer space(i.e., what is the arerage of the percentage of buffers utili zed duing ead round
with your buffer management scheme? What is the average buffer space utili zation if you hed
partitioned your avail able buffer spacestaticdly between the buffering and prefetching functions?’

Round Duration vs. Buffer Size

Graph2 shows the relationship between bufer size and round duation for several server
configurations. Parameters of ead configuration are determined so that ead can suppat 50 clients.
Hence, the buffer size (y axis) is the minimum buffer size that is required to be present in the server
so that the server can suppat 50 clients (with frame drop probability less than 0.1%). The
configuration d the server is the same & the one given in Table 1, except for the buffer size, which
isvariablein this case. The server employs prefetching. Graph 2 depicts two configurations:

1. Dynamic partitioning: The server partitions the buffer space between prefetches and client
requests dynamicdly. There is no fixed o predetermined all ocaion for ead type of request. If
spaceis avail able, the server will prefetch aggressvely.

2. Static partitioning: Buffer spaceis daticdly partitioned between prefetches and client requests.
In this experiment 20% of the buffer spaceis allocaed for prefetches. Remaining 80% of the buffer
spaceis used for client requests.

Graph 2 shows a linea relationship between round duation and bufer size. As we increase the

round duation, the buffer size required to suppat 50 clients increases linealy. This is expeded,
becaise the buffer spacerequired shoud at leest be ale to hdd data that will be fetched by 50

15

clients in ore round duwation. As round duwation increases, the amount of data that needs to be
fetched by the dient also increases. In fad an idedized equation for the anournt of buffer space
requiredis:

minimum blocksin bufer = (frames/ second) * (disk blocks/ frame) * (rounds/ seconad)
Hence, it is reasonable to exped a linea relationship between round duation and required bufer

size. The @ove guation is ided because due to the variable bitrate encoding nature of the stored
video data (disk blocks/ frame) is variable.

Fo0n T T T T
R
+
i
+
+++
W a0 ek .
e +
g "
— +
= ok
P ek ®¢¢¢
ii £t T
Bo00 - +1 e -
] + _3_‘&
2 + %
= ++ ‘3“3-
e + ¥
] o e
[} l-+ ‘3‘-3-
o +t g
I qoon - +F ap 5
= B +®
[+ &
[w] ++ .3\.@
5 * ’*
= + <p
(] &
ﬁ_@-
2 3000 | Jue® -
= ¥
pi)
=
=
fa
g
o 2000 - -
N
W
L
i
b
2 1000 dunamic partitioning ¢ H
static partitioning +
0 1 1 1 1
0 B 1000 1500 2000 ZR00

Found duration Cin msecl

Graph 2.Required bufer sizeto suppat 50 clients vs. round duation d the server based on bufer
management palicy.

Note that our prefetching algorithm will be lesslikely to be dfedive in this experiment becaise we
are simulating a buffer spacelimited server. Hence, we ae lesslikely to prefetch data (or store the
prefetched data) due to uravail ability of freespacein the buffer.

16

Graph 2clealy shows the advantage of dynamic partitioning over static partitioning of the buffer.
Dynamic partitioning increases the utili zation d buffer. However, with static partitioning the buffer
neels to be bigger to be &le to service same number of clients withou violating more than 0.1% of
the deadlines. We seethat the difference between static and dynamic partitioning in the required
buffer size beames magnified as round duation increases. This is due to the fad that bigger
buffers are required for larger rounds (Becaise bigger buffers are required static partition that
contributes to inefficiency becomes larger in size)).

Round Duration vs. Number of Clients Supparted

We discussed abou the relationship between number of clients suppated vs. round dwation when
answering Question 1.As $iown in Graph 1this relationship is a mwncave down function. As the
round duation increases, the number of clients sippated increases up to some point. After that
point, buffer spacebecmes the battlenedk and the number of clients suppated starts to deaease.
Hence for a given server configuration we can find a round duwation that suppats the maximum
number of clients. Further explanation d the relationship between round duation and number of
clients suppated is given in the answer to the previous question.

Average Buffer Utilization and the Effect of Static vs. Dynamic Partitioning

Graph 3 shows the relationship between the round duation and the buffer utili zation. The size of
the buffer in this experiment is the size required to suppat 50 clients. The @nfiguration d the
server is exadly the same & the one used for Graph 2 (prefetching server). We make severd
important observationsin this graph:

1. Buffer utili zation daes not redly depend onround duation.

2. Buffer utili zation d the static partitioning scheme is much lower than the buffer utili zation o the
dynamic partitioning scheme. This explains the diff erence between static and dynamic partitioning
observed in Graph 2.

3. Even for dynamic partitioning, the buffer utili zation is around 884 although the buffer size is
seleded such that it is the minimum size that can suppat 50 clients. This is due to the variable
bitrate nature of the video files gored in the disk array. The required amourt of buffer spacevaries
every round.Hence in many of the rounds we do nd require the maximum buffer space Therefore
the utili zation is on the lower side. However, if the stored media files were @nstant bitrate, the
utili zation d the buffer spacewould be much higher (perhaps 100%).

We oonclude that our dynamic partitioning and prefetching scheme works very well because:
1. It increases the buffer utili zation compared to static partitioning.

2. Compared to a nonprefetching configuration, it increases the number of clients sippated by the
video server for agiven bufer size.

17

3. Compared to static partitioning it neals a smaller buffer to be &le to suppat a given nunber of
clients.

80 T T T T

P
¢¢¢¢¢¢®¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢®¢¢¢¢¢¢¢®
%

|
o
T

=l
L=
T

Oynamic partitioning # 1
Static partitioning +

Average buFfer space utilization (percentage)

Ju + i
tal %
+
T
*
t*‘g
N
g, R T T T
Al M++H+++++++++++++ Fhopins +++++++++++_
55 1 1 1 1
Q Sy L 1500 200005 2800

Round duration (in msec)
Graph 3.Average buffer utili zation when the buffer is dynamicdly or staticdly partiti oned.

9.2.3. Question 3

“How does increasing the number of disksin the system affed your answer to Question 27

In this question we analyze the same isaues in Question 2.We now look at how these issues change

when we deaease/increase the number of disksin the system.

Round Duration vs. Buffer Size

As the number of disks in the system increases, the linea relationship between the minimum buffer

size required and the round duwation daes nat change. In fad, as we can see from Graph 4, the
number of disks in the system does nat affed the required bufer size for a given round duation.

18

This is expeded because our buffer management scheme acommodates a “global” buffer which
sitsontop d the disk array. The requests coming from all disks are placed in this global buffer. It is
nat the cae that ead dsk hasits own “locd” buffer. If that were the case, then we would exped an
increase in the buffer size requirement as we increased the number of disksin the disk array. In ou
buffer management scheme, the fador that determines the required bufer sizeisthe anourt of data
that isrequired to be fetched in ore roundand the dfedivenessof prefetching.

a0 T T T T

10 dizks #
20 dizks *
30 disks o ¥
o
£ 5000 ﬂ
5 o*
= ®
= ¥
= 587
i ﬁg&
i} ¢§ﬁ
= dqoon e 4
& o0
o i
o e
s &
4 ﬁﬁﬁ
5 b
= 5000 ﬁgﬁ .
@ a4
3 44
= wy#
i1
=
2 zoon .
[T}
i
i1
(]
o
[
[T
= 1000 .
=1
[wn]
|:| 1 1 1 1
0 B 1000 1500 2000 2500

Found duration Cin msec)

Graph 4.Relationship between bufer size required vs. round duiation based on number of disks
present in the system.

Round Duration vs. Number of Clients Supparted
Intuitively, the number of disks present in the system shoud affed the number of clients suppated

by the system. Having alarger number of disks increases the possbility that request load in agiven
roundwill be distributed among more disks and hence the load ona given dsk will deaease. This

19

means the service time of ead dsk will i ncrease. Hence the server will be &le to service more
clientsin afixed round duation.

Graphs 5 and 6 confirm this intuition. As number of disks in the system increases, the number of
clients suppated by the system increases. The wnfiguration d the server is the same & given in
Table 1. Graph 5 shows the simulation results for a nonprefetching server. Graph 6 shows the
results for a server that employs our prefetching algorithm.

We can seethat greaer number of disks results in greaer number of suppated clients for a given
round duation. Thisis due to the distribution d load aaossmore disks. We can also seethat this
effed diminishes for larger round duations. This is mainly due to the fad that the server becomes
buffer-spacelimited (In this case we aume afixed bufer size of 2700 bocks). As buffer space
beammes a battlened, it redly does nat matter how many disks are on the server becaise regardless
of the number of requests that can be serviced in a round (round duation and service time ae not
battlenedks) many requests will be dropped due to the small buffer size.

Ancther observation from Graphs 5 and 6is that our prefetching scheme cnsistently outperforms
the nonprefetching server configuration. Thisis true for smaller round duations where buffer size
is not a battlenedk. We can seethat our prefetching scheme is effedive espeaaly when thereis a
small number of disks in the system. For example, for a 100 ms round duation, the number of
clients suppated by the server that employs our prefetching scheme is 36 whereas this number is
21for aserver that does not employ any form of prefetching.

Average Buffer Utilization and the Effect of Satic vs. Dynamic Partitioning

This interadion d this relationship with the number of disks in the system is very similar to the
interadion d “round duation \s. bufer size” with the number of disks in the system: A change
number of disks does nat affed the arerage buffer utili zation d the system. This is due to the fad
that we ae working in a buffer-space limited environment that can suppat 50 clients. The
utili zation d the buffer depends on the number of requests coming from the 50 clients. It does not
depend onthe number of disks present in the system. Even if the environment is nat buffer space
limited we would nd exped the average buffer utili zation to change with a change in the number
of disks.

20

120 T T T T
11a |- =
100 |- =
=]
Ll
=T 4
=
o
o
=
wr
[=L 1
-
=
A 10 disks =
= 20 disks +
W er 30 disks B8 1
o
i
i
£ eo .
=
=
=
= 50 = 7
= “a,
*y Bh
ao - Bony Tw Thou .
“}@@% i EIEIEI
g e =
®¢_¢$++++
30 - 55 T, ;;++EEE u
& +5 53 8m
& ‘&f?@%m
=0 & 1 1 1 1 B e oy
Q Lalele] L eTals] 1500 200 2500
Round duration (in msech
120 T T T T
110 - n
100 - n
T oo i
FE)
.
(=)
=
& G0 10 disks = N
% 20 disks +:
s 30 disks =}
L For -
o
(4
[m)
. BO [-
w
=
=
2 o
T 50 1 N
= (o]
o +, =
i 40 +++ B il
= ‘3’¢¢& +++ =
L +++ o
¢‘9¢€,++++ EIE'E
- & (o] 4
” e,
¢¢.¢¢++f
F EE%%EI@
20 Aemy
10 1 1 1 1
Qo a1yl R eluls] pRaule) 200 2500

Found duration Cin mzec)

Graphs 5 and 6. Variation d the relationship between clients suppated vs. round duation with a
change in number of disks. Abowve figure shows a non-prefetching server. Below figure shows a
prefetching server

21

9.2.4. Question 4

“What is the minimal server configuration that you would need to design a video server that can
serviceupto nclients? Provide your answer for n=32, 64, 128, 256nd 512"

To answer this question we needed to reduce the simulation design space of the video server.
Hence we ordered the resource requirements based ona priority scheme. We assume that the round
durationis fixed to 1000ms. Other configuration parameters of the server is the same & described
in Table 1 except for the ones we modify below.

Our first aim was to get the minimum number of disks that can suppat n clients given infinite
buffer size. After finding this minimum number we foundthe minimum buffer size that can suppat
n clients. For n=256 and n=512 we encourntered many problems with DiskSim. The maximum
number of disks we were ale to simulate using DiskSim was 39. Hence, for n=256 and 512,we
followed a different algorithm to determine the minimum server configuration. We tried to choose
a minimum round duation that can suppat 256 o 512 clients on a system that has 39 dsks. The
simulations for these configurations were quite slow hence the reported value may not be the
minimum configuration.

The following are the minimal configurations that suppat n clients:

n=32

disks=5

buffer size =1380 bbocks (5.5MB)
round duation=1000ms

n=64

disks=10

buffer size =2800 blocks (11.2MB)
round duation=1000ms

n=128

disks=22

buffer size =6000 bocks (24 MB)
round duation=1000ms

n=256

disks= 39

buffer size =40000 locks (160MB)
round duation =4000ms

n=512

disks=39

buffer size =80000 ocks (320 MB)
round duation= 5000 rs

22

10. Addition of Caching Support to the Proposed Buffer Management Scheme

As we drealy described ou scheme suppats cading to some level (and unntelligently) by
allowing prefetches to stay in the buffer even after they are used by a dient. Clealy thisis nat the
best was of cading objeds and instead o this we would like to use an interval-based cading
scheme that probably would work well due to the charaderistics of client accesses.

Here we describe a smple medianism in which interval cading can be alded to ou buffer
management scheme. First of all, a medhanism that deteds temporally spaced accesss to the same
file by different clients needs to be implemented. This is easy to implement. The server can ke
tradk of accesses to ead individual file and figure out which files are accesd by temporally-
spacal clients. One implementation dedsion is to dedde what is the largest passble temporal-
spaang that can be handed. The server can either set a predetermined limit to this gpadng (for
example, it can say that if the spadng is greaer than nframes the interval will nat be cated.). Or
this can be determined dynamicdly based onthe buffer space # ocaed for the cabe.

A more important dedsionis how to all ocae spacefor the catie. We propase several schemes:

1. One simple but static scheme isto allocae a cabe spaceseparate from the buff ering medhanism
we discussd in this report. When the server is darted some memory space ca be dlocated to the
cade and solely used for cadiing purposes. This medhanism guarantees that at least some data will
be cated a any given time and surely saves bandwidth. However, if we ae memory-limited,
staticdly allocaing this cade spacemay lead to violation d deadlines of client requests because
they may nat fit in the rest of the buffer. This is a problem with all static dlocaion schemes and
neeals to be aldressed using a more flexible dynamic goproad.

2. A second scheme is to extend ou buffering mecdhanism to include cate requests. To be aleto
do this we neal to determine the priority of cade requests. It might make sense to make cate
requests higher priority than prefetch requests but lower priority than demand (client) requests.
However, in this case we neal to make sure that prefetch requests are dso being issued. Hence we
might want to limit the buffer spaceoccupied by caded data. But this will be going bad to static
cade partitioning in some sense, therefore we propase abetter mechanism.

The medhanism dynamicdly all ocaes gacein the buffer between prefetch and cade requests. We
value cade requests more becaise, as discussd in the beginning of this report, they save disk
bandwidth. However, prefetch requests are dso useful because they are dfedive in reducing the
load onthe disks.

Our scheme works as foll ows:

- Client requests have higher priority over al requests 0 they can evict a prefetch request or a
caded block. Eviction is dore based onthe ast of eviction. When trying to alocae ademand
block the server cdculates the predicted cost of evicting eah prefetch block or cade block.
Prefetched blocks that are used to reduce the load onthe predicted most heavily loaded disk are the
lesslikely ones to be evicted. Cacdhe blocks that have the least time to reaccesare dso least likely
to be evicted.

23

- Prefetches are inserted if roundtime permits for them to be inserted. Hence, they will naot always
be inserted. Taking advantage of this fad, the server will pick an n value for temporal spadang limit
for what data to cade (as discussed abowe). If not many of the prefetches are getting inserted the
server will limit t he number of buffer blocks consumed by cade requests by reducing n (meaning
that only frames of clients that are following eat aher very closaly in time will be caded). The
detail s of this algorithm are dependent on the implementation.

We have nat implemented any of these schemes due to ladk of time. Both schemes have alvantages
and dsadvantages. The first scheme is advantageous in the sense that caded data will never be
flushed from the buffer because it has its own space However, due to static partitioning, bufer
utili zation will be low and passbly some deadlines will be violated. The seacond scheme employs a
more dynamic goproad, increasing buffer utili zation, bu it does not guarantee anything for the
caded data. Some of the cadied data may be uselessdue to the fad that it might be flushed before
it is used (This reduces the “effedive” buffer utili zation). Both schemes need to be implemented
and evaluated to seeif any of them is more advantageous.

11. Conclusion

We believe that the most important leaning experience we had in this projed is the redization d
the fad that a dynamic buffer management scheme performs much better than a static buffer
management scheme which staticdly all ocaes buffer spacebetween prefetches and client requests.
Due to the limitations of DiskSim and ladk of documentation we were not able to perform al the
experiments we would have liked to perform to gain a better understanding of our mecdhanism and
the video serversin general, na were we ale to implement cading. We think that the number of
clients suppated by our buffer management scheme will incresse dramaticaly when cading
suppat isincorporated into the scheme.

24

References:

[1] Asit Dan and Dinkar Sitaram. Buffer Management Policy for an On-Demand Video Server.
IBM Reseach Report RC 19347,T.J. Watson Reseach Center, Y orktown Heights, New York,
January 1994.

[2] P.J. Shenoy, P.Goyal, S.S. Rao, and H.M. Vin. Symphory: An Integrated Multimedia File
System. Procealings of the SHE/ACM Conference on Multimedia Computing and Networking,
San Jose, CA, pp. 124138, January 1998.

[3] P. Shenoy and H.M. Vin. Cello: A Disk Scheduling Framework for Next-generation Operating

Systems, In Procealings of ACM SIGMETRICS98, The International Conference on
Measurement and Modeling of Computer Systems, June 1998.

25

