Enabling Accurate and Practical
Online Flash Channel Modeling
for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu

Abstract—NAND flash memory is a widely-used storage
medium that can be treated as a noisy channel. Each flash
memory cell stores data as the threshold voltage of a floating
gate transistor. The threshold voltage can shift as a result of
various types of circuit-level noise, introducing errors when data
is read from the channel and ultimately reducing flash lifetime.
An accurate model of the threshold voltage distribution across
flash cells can enable mechanisms within the flash controller that
improve channel reliability and device lifetime. Unfortunately,
existing threshold voltage distribution models are either not
accurate enough or have high computational complexity, which
makes them unsuitable for online implementation within the
controller.

We propose a new, low-complexity flash memory model, built
upon a modified version of the Student’s t-distribution and the
power law, that captures the threshold voltage distribution and
predicts future distribution shifts as wear increases. Using our
experimental characterization of state-of-the-art 1X-nm (i.e., 15—
19nm) MLC NAND flash chips, we show that our model is highly
accurate (with an average modeling error of 0.68%), and also
simple to compute within the flash controller (requiring 4.41x
less computation time than the most accurate prior model, with
negligible decrease in accuracy). Our model also predicts future
threshold voltage distribution shifts with a 2.72% modeling error.

We demonstrate several example applications of our model
in the flash controller, which improve flash channel reliability
significantly, including a new mechanism to predict the remaining
lifetime of a flash device. Qur evaluations for two of these
applications show that our model (1) helps improve flash mem-
ory lifetime by 48.9%, and/or (2) enables the flash device to
safely sustain 69.9% more write operations than manufacturer
specifications. We hope and believe that the analyses and models
developed in this paper can inspire other novel approaches to
flash memory reliability and modeling.

1. Introduction

NAND flash memory is widely used today in storage
devices, as it provides long-term data integrity guarantees at
much higher performance than magnetic hard disks. Data in
NAND flash is stored within an array of flash cells. Each flash
cell is made of a floating gate transistor, which stores charge
within a floating gate. The amount of charge in the floating
gate determines the threshold voltage of the transistor (i.e., the
voltage at which the transistor turns on).

The threshold voltage value is used to represent the data
that is stored within a flash cell. The threshold voltage can be
programmed to a voltage level within a fixed range. This range
is divided up into voltage windows. Each window represents
a certain binary data value. Older-generation flash devices use
single-level cells (SLC), where each cell represents a single bit

of data. SLC splits the threshold voltage range into two voltage
windows: one of the windows represents the data value 0, and
the other window represents the data value 1. To enable higher
storage densities, many modern flash devices use multi-level
cells (MLC), where each cell represents two bits of data. To
do this, the threshold voltage range is split into four smaller
windows, one each for the data values 00, 01, 10, and 11.
When data is read from a multi-bit flash memory channel,
a read reference voltage is applied to the control gate of
the transistor of each cell being read, in order to sense the
threshold voltage of the floating gate within the cell. If the
threshold voltage is greater than the read reference voltage,
the cell turns on; otherwise, the cell remains off. The flash
controller identifies which voltage window a cell belongs to
by choosing read reference voltages that fall at the boundaries
between voltage windows. Due to variation across flash cells,
multiple cells within the same flash memory device that are
programmed to the same data value may have different voltage
levels (within the voltage window), resulting in a distribution
of threshold voltages for each data value.

Unfortunately, even when the data stored within a flash cell
is not modified, the threshold voltage of the cell changes (i.e.,
shifts) over time. This shift is a result of many different types
of circuit-level noise, such as program/erase (or P/E) cycling
noise [2,8,26,35], data retention noise [2,3,5,6,26], cell-to-cell
program interference noise [2,4,7], read disturbance noise [9,
26], and read noise [2]. Some cells’ threshold voltages might
shift enough to cross over to neighboring voltage windows.
The value of such a cell would be misread on a flash memory
channel read, causing an error. If the misread value is not
correctable by the error-correcting code (ECC) mechanism of
the flash controller, either the flash device fails or the data is
silently corrupted.

Having online information on the current threshold voltage
distribution across all of the flash cells within a flash memory
chip (i.e., the static distribution), as well as how this distri-
bution changes over time (i.e., the dynamic distribution), is
important to quantify errors and develop techniques to improve
the reliability of the flash device. First, the static distribution
can be used to determine the number of errors that would occur
for any read reference voltage that is applied. This data can be
used by the flash controller to select the read reference voltage
that minimizes the error rate. Lowering the error rate increases
the lifetime of the flash device, as it delays the time at which
the number of errors becomes too large for the built-in ECC
mechanism to successfully correct. Second, knowing how the

dynamic distribution changes over time (i.e., as more writes
are performed) is important, as it can guide flash controller
mechanisms that adjust various flash parameters online (e.g.,
ECC strength [14,23,42], read reference voltages [3], pass-
through voltage [9]) to increase the flash memory lifetime.
Prior proposals to adjust these parameters (e.g., [3,9]) rely on
a trial-and-error approach to select parameters with low error
rates, which can be inaccurate, high-latency, and suboptimal
in terms of lifetime improvement. In both cases (static and dy-
namic), the threshold voltage distribution must be determined
at runtime by the flash controller. Therefore, it is critical to
design a practical and low-complexity mechanism to determine
the distribution and the shifts in the distribution.

There is no practical way to know the exact threshold
voltage distribution of all the cells within a chip, as this
requires testing and recording the voltage of each cell within
the device, which is extremely time-consuming and requires
significant storage. Therefore, accurate models of this thresh-
old voltage distribution are necessary. In addition to being
accurate, the models must be easy to compute, as they need
to be implemented within the flash controller. Prior work
models the voltage distribution as a Gaussian distribution [8],
but this model has been found to be relatively inaccurate for
modern 1X-nm (i.e., 15-19nm) flash memory chips [35]. In
contrast, more recent work proposes to use a normal-Laplace
distribution to model the threshold voltage distribution more
accurately [35], but this model is computationally expensive,
taking 10.7x the computation time of the Gaussian model. Our
goal in this work is to build a new model of threshold voltage
distribution that is both highly accurate and computationally
efficient, so that the model can be practically implemented
within a flash device to drive various reliability mechanisms.
This model must include both static modeling of the current
threshold voltage distribution, to enable accurate reading of
data, and dynamic modeling of the distribution, to adapt flash
mechanisms to predicted distribution changes.

To build our model, we perform an experimental characteri-
zation of the threshold voltage distribution on real state-of-the-
art 1X-nm (i.e., 15-19nm) MLC NAND flash chips. This char-
acterization is essential to verify that the model we develop
accurately captures the behavior of a real, modern device.
We make several key observations from our characterization.
First, we find that the threshold voltage distribution within
MLC NAND flash memory has a fatter tail than a Gaussian
distribution, rendering the Gaussian-based model significantly
inaccurate. Second, we observe that this fat tail is not smooth,
and produces a second, smaller peak in the distribution,
requiring a model that is based on a multi-peak distribution.
Third, we find that as the number of program/erase (P/E)
cycles (i.e., writes) increases, the threshold voltage distribution
shifts in an easy-to-predict manner governed by the power law,
enabling us to extend our model to include a simple dynamic
component to accurately capture this change.

Based on these observations, we propose a new chan-
nel model for the threshold voltage distribution in MLC
NAND flash memory chips, which is both highly accurate
and practical to implement. We first develop a static model,
which captures the current threshold voltage distribution at a

particular P/E cycle count, based on our modified version of
the Student’s t-distribution [38]. Our static model achieves a
0.68% average modeling error, which is nearly identical to the
accuracy of the normal-Laplace model [35], while requiring
4.41x less computation time for the model. We then extend this
into a dynamic model, which uses the power law to track how
the static model changes with respect to the P/E cycle count.
The dynamic model achieves 2.72% modeling error when
predicting the threshold voltage distribution at 20K P/E cycles,
which the dynamic model extrapolates using only distribution
data sampled by invoking the static model between 2.5K and
10K P/E cycles.

We show several example applications of our model that
improve flash memory reliability. We use the static model to
(1) estimate the current raw bit error rate; and (2) estimate
the optimal read reference voltage (i.e., the voltage at which
the read error rate is minimized), showing that it improves
flash memory lifetime by 48.9% over using the default read
reference voltages. We use the dynamic model to implement
a new mechanism that estimates the remaining lifetime of a
flash device by predicting the growth in noise (i.e., error rate).
This mechanism enables the device to be used safely for much
longer than the overly-conservative manufacturer specification,
increasing the endurance of the flash device by 69.9%. We
also discuss how the dynamic model can be used to estimate
the inputs to a sophisticated LDPC (low density parity check)
decoder for better error correction, and how our model can be
used to improve the performance of flash devices. We conclude
that our threshold voltage distribution model can be used for a
wide range of purposes, and we expect future work to develop
and evaluate several other novel applications of our model
that improve flash reliability and performance. We also hope
and expect to inspire new online flash channel models that
improve upon the model we developed to efficiently provide
even higher accuracy.

In this work, we make the following key contributions:

o« We provide an experimental characterization of the
threshold voltage distribution, and how the distribution
changes with wear, for state-of-the-art 1X-nm MLC
NAND flash memory chips. Like prior work, we find
that program errors can cause the tail of the distribution
to fatten significantly, but, unlike prior work, we observe
that this fat tail can show up much earlier in the lifetime
of the flash device than previously thought.

« Using the findings of our characterization of the threshold
voltage distribution, we propose a new, simple and accu-
rate static model for the threshold voltage distribution of
MLC NAND flash memory at a particular program/erase
(P/E) cycle count, based upon our modified version of
the Student’s t-distribution. The model is capable of
accurately capturing the threshold voltage distribution,
with a 0.68% average modeling error, while requiring
little computation in the flash controller.

« We propose a new model to dynamically estimate how
the threshold voltage distribution shifts as a function of
P/E cycles. This model works in conjunction with our
proposed static model, and it accurately predicts how the

threshold voltage distribution changes in the future, with
an average modeling error of 2.72%.

« We demonstrate several practical uses of our online
threshold voltage distribution model in a flash controller,
which allows the flash controller to dynamically adapt
to threshold voltage shifts and thereby better improve
flash memory reliability. We propose a new mechanism
to estimate the actual remaining flash lifetime, based on
the expected growth in bit error rate. Our mechanisms
improve flash memory lifetime by 48.9% and/or enable
the flash device to safely endure 69.9% more P/E cycles
than the manufacturer specification.

2. Background

In this section, we introduce necessary background infor-
mation on multi-level cell (MLC) NAND flash memory. Flash
memory can be thought of as a noisy multi-bit channel, where
each read performed on the channel fetches data from a portion
of the flash cell array. We first discuss how data is stored within
a flash memory device, then discuss how circuit-level noise
can shift these data values. Afterwards, we go over the basic
organization of a NAND flash memory device, and discuss
read and write operations.

2.1. Threshold Voltage Distribution

NAND flash memory stores data as the threshold voltage of
each flash cell, which is made up of a floating gate transistor.
For a multi-level cell (MLC) NAND flash memory, each flash
cell stores a two-bit value, and can be programmed to one of
four threshold voltage states, which we call the ER, P1, P2, and
P3 states. Each state represents a different two-bit value, and
is assigned a voltage window within the range of all possible
threshold voltages. Due to variation across program operations,
the threshold voltage of flash cells programmed to the same
state is initially distributed across this voltage window.

Figure 1 illustrates the threshold voltage distribution of an
MLC NAND flash memory. The x-axis shows the threshold
voltage (V;;), which spans a certain voltage range. The y-
axis shows the probability density at each voltage level across
flash memory cells. The threshold voltage distribution of each
threshold voltage state can be represented as a probability
density curve that spans over the state’s voltage window. We
label the distribution curve for each state with the name of the
state and the corresponding two-bit value. We break down the
two-bit values into the most significant bit (MSB) and least
significant bit (LSB). The boundaries between neighboring
threshold voltage windows are referred to as read reference
voltages, labeled V,, V;,, and V. in Figure 1. These voltages
are used by the flash controller to identify the voltage window
(i.e., state) of each cell.

2.2. NAND Flash Memory Noise

Over time, the threshold voltage distribution shifts, as shown
in Figure 2, and can overlap with each other. Shifts happen
due to various types of noise in flash memory [2-9, 26, 35].
If the threshold voltage of a flash cell shifts into the voltage

ER P1 P2 P3
(11) (01) (00) (10)

Probability density

Threshold voltage (V,,)

Fig. 1: Illustration of threshold voltage distribution of an MLC
NAND flash memory chip.

P2 ‘.I -
(00): i
Threshold voltage (V)

Probability density

Errors when reading with V,

Fig. 2: The threshold voltage distribution after the voltages
shift due to noise, resulting in overlapping distributions for
each state.

window of a state other than the one the cell was originally
programmed in, the cell can be misread, leading to a flash
error. For example, a cell in the rightmost part of the ER
state distribution in Figure 2 will be misread as being in the
P1 state. Making matters worse, the threshold voltage shifts
not only cause neighboring state distributions to overlap, but
also shift the actual boundary between two windows away
from the original read reference voltages (V,, Vp, V.) to new
ones (V,, Vb' , V! in Figure 2). As such, the raw bit error rate
increases as a result of these threshold voltage shifts.
Today’s flash controllers deploy strong error-correcting
codes (ECC) to detect and correct any raw bit errors [15,22,
441], thus allowing user data to be stored and retrieved correctly
during a channel read. Flash memory wears out as more writes
(i.e., program/erase, or P/E, cycles) are performed. As flash
memory wears out, P/E cycling noise becomes stronger, in-
creasing the magnitude of the threshold voltage shift, as well as
the raw bit error rate resulting from that shift [8]. On the other
hand, even a strong ECC mechanism can correct only a limited
number of raw bit errors within each code word [5]. At some
point in the device’s lifetime, raw bit errors increase beyond
this limit, resulting in an uncorrectable error on the channel.
Thus, for ECC to guarantee an acceptable uncorrectable error
rate (e.g., 10713 in the JEDEC standard [16]), the raw bit error
rate (RBER) must be less than a certain noise threshold (e.g.,
1073 [13]), assuming NAND flash is a symmetric memoryless
channel (i.e., assuming a uniform random bit flipping proba-
bility). Based on the RBER threshold, flash vendors specify
a maximum limit to the number of P/E cycles that each flash
page can endure. This limit is usually between 3000-10000
cycles in modern consumer MLC NAND flash memory [17].

2.3. NAND Flash Memory Organization

In each MLC flash memory chip, two-bit flash cells are
organized as multiple two-dimensional arrays known as flash

blocks. Within each flash block, the MSBs of each row of
flash cells are logically combined to form an MSB page, and
the LSBs of each row are logically combined to form an LSB
page. Each flash block contains 256-512 flash pages, which
are typically 8—16KB in size. NAND flash memory supports
three basic operations: read, program, and erase. Read and
program operations are performed at the page granularity.
Erase operations are performed at the block granularity. We
provide the basics of these operations next.

2.4. Read Operation

Data can be read from NAND flash memory by applying
read reference voltages onto the control gate of each cell, to
sense the cell’s threshold voltage. To read the LSB of the cell,
we only need to distinguish the states with an LSB value of 1
(ER and P1) from those with an LSB value of 0 (P2 and P3).
As Figure 1 shows, we need to use only one read reference
voltage, Vj,, to read the LSB page. To read the MSB page, we
need to distinguish the states with an MSB value of 1 (ER and
P3) from those with an MSB value of 0 (P1 and P2). Therefore,
we need to determine whether or not the threshold voltage of
the cell falls between V,, and V.., requiring us to apply each of
these two read reference voltages, with two consecutive read
operations, to determine the MSB data.

As we discussed in Section 2.2, the threshold voltage
distribution of each state can shift over time, causing some
cells to move into neighboring voltage windows. To mitigate
the number of errors that occur when a large number of cells
experience threshold voltage shifts, modern NAND flash chips
support the read-retry mechanism [8], which adapts the read
reference voltages to correspond to the distribution shifts [3,8].
The read-retry operation allows the flash controller to increase
or decrease the read reference voltages by multiples of a
minimal voltage step (Vy¢p), iterating over several potential
values for each read reference voltage to empirically find the
voltage value that yields the lowest raw bit error rate. By
retrying to read the same flash page with different read refer-
ence voltages after a read failure, the flash controller increases
the chances of reading the data correctly. For example, in
Figure 2, the original read reference voltage V,, between the
ER and P1 states, misreads many of the flash cells (e.g., many
cells actually belonging to the ER state would be incorrectly
identified as belonging to the P1 state), but the flash controller
can move the read reference voltage to V, using the read-retry
mechanism, thereby minimizing the number of errors.

2.5. Erase and Program Operations

In NAND flash, data can be programmed into only an erased
flash cell. Due to circuit-level limitations, a flash block must be
erased in its entirety. The erase operation resets the threshold
voltage state of all cells in the flash block to the ER state.

When data is programmed, charge is transferred into the
floating gate of a flash cell by repeatedly pulsing the pro-
gramming voltage, in a procedure known as incremental-
step-pulse programming (ISPP) [20]. In order to reduce the
impact of interference caused by the programming process
on the neighboring cells (called program interference [4]),

two-step programming is employed for MLC NAND flash:
the LSB is first programmed into a cell, and then the MSB
is programmed only after partial data is programmed into
neighboring cells [34]. In the first step, a flash cell is partially
programmed based on its LSB value, either staying in the ER
state if the LSB value is 1, or moving to a temporary state (TP)
if the LSB value is 0. The TP state has a mean voltage that falls
between states P1 and P2. In the second step, the LSB data is
first read back into an internal buffer to determine the cell’s
current threshold voltage state, and then further programming
pulses are applied based on the MSB data to increase the
cell’s threshold voltage to fall within the voltage window of
its final state. In between the two steps, threshold voltage shifts
can occur on the partially-programmed cell, as several other
read and program operations to cells in neighboring pages may
take place, causing interference. When this shifted data is read
during the second programming step to retrieve the LSB value,
the LSB value read may be incorrect, leading to a program
error when the final cell threshold voltage is programmed [4].

Program errors predominantly shift data that should be in
the ER state (11) into the P3 state (10), or data that should be
in the P1 state (01) into the P2 state (00). This occurs because
the programming that takes place in the second step can only
increase (and not reduce) the threshold voltage of the cell from
its partially-programmed voltage (and thus cannot move a cell
that should be in the P3 state into the ER state, or one that
should be in the P2 state into the P1 state).

3. Overview

In this paper, our overall goal is to build an accurate, and
easy-to-compute model of the threshold voltage distribution
of modern MLC NAND flash memory. This model must be
practical to implement, as we intend to use it online to design
flash controllers that can adapt to the changing NAND flash
memory behavior. Our model can (1) statically determine the
threshold voltage distribution at a given level of wear-out (i.e.,
a given P/E cycle count), and (2) dynamically predict how
this threshold voltage distribution shifts over time as a result
of the P/E cycling effect. In this section, we first discuss the
steps required to construct our model (Section 3.1), and then
we describe how we collect the experimental characterization
data from real MLC NAND flash chips to drive our model
construction (Section 3.2).

3.1. Constructing the Model

To build our threshold voltage distribution model, we first
characterize the threshold voltage distribution under different
P/E cycles using real 1X-nm MLC NAND flash chips. Second,
we construct a static threshold voltage distribution model that
can fit the characterized distribution under any given P/E cycle
count. Third, we construct a dynamic P/E cycling model that
predicts how each parameter of the static distribution model
changes after some number of further P/E cycles. Finally, we
demonstrate several example use cases in the flash controller
that utilize the complete model to enhance the performance
and reliability of the NAND flash memory device.

In order for the model to be useful to help flash controller
algorithms, it should have certain properties. First, the model
needs to be accurate for all threshold voltages and at all
P/E cycles. This is because inaccurate information can lead a
flash controller to make suboptimal decisions, hurting lifetime
improvements. Second, the model needs to be easy fo compute,
because the flash controller has only limited computational
resources. While we base our model off of a distribution that
is easy to compute, we can further reduce online computation
with the dynamic component of our model, by performing only
a few online static characterizations of the threshold voltage
distribution, and then using the simpler dynamic model to
predict shifts in these initial characterizations at very low cost
over P/E cycles.

3.2. Characterization Methodology

We collect experimental characterization data on the thresh-
old voltage distribution using an FPGA-based NAND flash
testing platform [1] with state-of-the-art 1X-nm MLC NAND
flash chips. We use the read-retry technique [3, 8] (described
in Section 2.4) to sweep all possible read reference voltages
and determine the threshold voltage value for each cell. We
program and erase these blocks to 11 different wear levels,
up to 20K P/E cycles, using known pseudo-random data. The
manufacturer-specified P/E cycle endurance for the tested flash
chips is 3000 P/E cycles. All tests are performed at room
temperature with a 5-second dwell time.!

Figure 3 shows the threshold voltage distribution for each of
the cell states. The read-retry capability on the MLC NAND
flash memory chip allows us to fine-tune each read reference
voltage (V,, Vp, and V) to one of 101 different steps (a total
of 303 read reference voltage steps, labeled as V; to V303 from
left to right). Note that V| does not extend all the way to the
lowest possible threshold voltage for the ER state, and V33
does not extend to the highest possible threshold voltage for
the P3 state. In this paper, we normalize the threshold voltage
values such that the distance between most of the adjacent
read reference voltage steps is one, as the exact values are
proprietary information. The distances between steps Vjg; and
Vioe and between steps Vapo and Va3 are much larger than the
typical distance between voltage steps,? as shown in Figure 3.
As a result, the voltage step V393 has a normalized voltage
value that is greater than 303. Overall, the threshold voltage
range is divided by these read reference voltages into 304 bins,
labeled as bing to binszyz. Each flash cell can be classified
into one of these bins based on the threshold voltage value
read from the cell. If the read reference voltage is higher than
the threshold voltage of the cell, the value read out from the
flash device is 1, otherwise the value read out is 0. For a cell
whose threshold voltage falls between two neighboring read
reference voltages (Vi and V1), the cell is placed into bing,
as illustrated in Figure 3.

'Dwell time is the time duration between an erase operation and the next
program operation to the same flash cell.

2Some flash vendors choose to provide fewer read reference voltages near
the peak of the distribution of each state. This is because flash cells near the
have threshold voltages far away from the default read reference voltage, and
hence are less likely to have errors.

Cellon/off 0 O

Voltage
steps ViV,

Probability density

Threshold voltage (V,,)

Fig. 3: Methodology for finding the threshold voltage of an
MLC NAND flash memory cell.

After classifying every cell using the methodology described
above, we count the number of flash cells with state X € {ER,
P1, P2, P3} in bin k as Hy(X). Equation 1 shows how we then
normalize the bin counts as the probability density of each bin,
P (X). Note that in our characterization, we assign each flash
cell to the threshold voltage distribution of the correct state
that it was originally programmed to, as we know the data
value that we programmed. The characterized bin density can
be viewed as a discretized version of the measured distribution,
which our model is constructed to fit.

Hiy (X
Pe(X) = W(()X) (1)

4. Static Distribution Model

We construct a static threshold voltage distribution model
that can fit the characterized threshold voltage distribution well
under any P/E cycle count, based on data collected using
the methodology described in Section 3.2. Recall that this
model needs to be (1) accurate for all threshold voltages and
at any given P/E cycle, and (2) easy to evaluate within the
flash controller. While a more complex model can satisfy
the accuracy requirements, it can be difficult to compute the
model on the fly given the limited computational resources in
a flash controller. In this section, we first describe two state-
of-the-art models, each of which meets only one of our two
requirements. The first previously-proposed model [8], based
on a Gaussian distribution, is simple and easy to compute,
but is not accurate enough for raw bit error rate estimation
(Section 4.1). The second previously-proposed model [35],
based on a normal-Laplace distribution, is accurate, but re-
quires significant computational resources, taking 10.7x the
computation time of the Gaussian-based model (Section 4.2).
We propose a new model, based on our modified version
of the Student’s t-distribution [38], which satisfies both of
our requirements, maintaining the accuracy of the normal-
Laplace-based model while requiring 4.41x less computation
time (Section 4.3). Finally, we validate and compare the three
models (Section 4.4).

4.1. Gaussian-based Model

The Gaussian-based model assumes that the threshold volt-
age distribution of each state follows a Gaussian (i.e., normal)
distribution [8]. Equation 2 shows how the Gaussian-based

model estimates the probability density for state X (i.e., ER,
P1, P2, and P3) in each bin k, denoted as G (X):

Gi(X) = GCDF (Vi, ux,0x) = GCDF (Vi—1, ux,0x) (2)

The density G (X) is calculated as the difference between
the Gaussian cumulative distribution function (GCDF) of the
bin’s two boundaries, Vi and V. _;. The Gaussian-based model
has two variables for each state: ux is the mean of the dis-
tribution, and o x is the standard deviation of the distribution.
In total, the Gaussian threshold voltage distribution model has
eight parameters.

The intuition behind using a Gaussian distribution is
twofold. First, the threshold voltage distribution is a result
of physical noise and manufacturing process variation, which
naturally follow a Gaussian distribution. During a program
operation, the flash controller uses ISPP (see Section 2.5),
iteratively increasing the threshold voltage until the desired
threshold voltage level is achieved. Each programming step
increases the threshold voltage of a cell by a small random
amount. As programming subjects the cell to random physical
noise, the threshold voltage distribution of each state naturally
approximates a Gaussian distribution [8].

Second, the Gaussian-based model can be computed
quickly, and is easily implementable in the flash controller
hardware if we use a z-table, a lookup table that stores the
precomputed cumulative distribution function of the standard
Gaussian distribution. Equation 3 shows how the z-table
simplifies the computation of GCDF. First, we calculate the z-
scores Z = % for Vi and Vi _y. Then, we calculate ®(Z), the
precomputed cumulative distribution function of Z, by looking
up the z-score in the z-table. The two z-scores (one each for Vj
and Vi_1) are then combined to get G (X), using Equation 2.

GCDF(V,u,0) = ®(Z) = z-table(Z) 3)

The goal of static modeling is to fit the estimated distri-
bution Gy (X) to the measured distribution P, (X). We use
Kullback-Leibler divergence [19] to estimate the accuracy of
the model (i.e., the error between the estimated and measured
distributions). The Kullback-Leibler divergence between the
measured and the estimated probability density for each bin
(Px and Gy, respectively) can be mathematically defined as:

B Npin Pk
Dx-r=) Pelog(z) @)
=1 k

We use the Nelder-Mead simplex method [30] to minimize
the error, in order to learn the model under different P/E cycles.
We use a reasonable initial guess of the parameters for the
Nelder-Mead simplex method, allowing us to quickly approach
the best fit.

Figure 4 shows the distribution measured by our experi-
mental characterization using markers, and shows how the
Gaussian-based model (the curves depicted with solid or
dashed lines) fits to this data at different P/E cycle counts.
The x-axis is the normalized threshold voltage, and the y-
axis is the probability density function at each normalized
threshold voltage in log scale. In this figure, from left to right,
we show the threshold voltage distribution of the ER state, the

10° 10°
P1
> P >
2107 2 2107
f=4 =4 o}
[} [}
© ©
- z
= —4 = -
310 310
Qo Qo
] ;)
o o o
_6 6|
10° & 10
R/ oy | Y A wFP
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300
Normalized %m Normalized Qh
(a) 2.5K P/E cycles (b) 5K P/E cycles

10°
> - >
2107 £
f=4 =4
() ()
° °
2z z
= -4 =
g0 3
Q Qo
]]
o ' o

10

0 50 100

00 250
Normalized Qh

(c) 10K P/E cycles

(d) 20K P/E cycles

Fig. 4: Gaussian-based model (solid/dashed lines) vs. data
measured from real NAND flash chips (markers) under dif-
ferent P/E cycle counts.

P1 state, the P2 state, and the P3 state. We show the modeled
distributions of the ER and P2 states using solid lines, and the
modeled distributions of the P1 and P3 states using dashed
lines.

We observe that the Gaussian-based model has two limita-
tions, which are demonstrated in Figure 4. First, the threshold
voltage distribution of each state as measured from real flash
chips has a fatter tail than that of a Gaussian distribution, and
the left and right tails of each state have different sizes. We
observe the fat tail by comparing the measured distribution
of each state to the modeled distribution when the probability
density is low (i.e., less than 10‘4), and find that the measured
distribution has a much greater density than the modeled dis-
tribution at the tail. This is because the Gaussian distribution
has only two parameters for each state, which capture only the
center (u) and the width (o) of the distribution. We observe the
asymmetric tail by comparing the densities of the left and right
tails of the P2 state distribution. Unfortunately, the Gaussian
distribution has no way to fine tune the ratio between the left
and right tails, or the ratio between the tails and the body of
the distribution.

Second, the measured distribution demonstrates large sec-
ond peaks in the distributions of the ER and P1 states, which
are not captured by the Gaussian-based model. These second
peaks are evidence of a significant number of program errors
(see Section 2.5). Figure 4 shows that the ER state distribution
(the leftmost distribution) has a second peak that shows up
under the P3 state distribution, and that the P1 state distribution
(the second distribution from the left) has a second peak under
the P2 state distribution. These second peaks occur as a result
of the two-step programming mechanism used in MLC NAND
flash memory. As we discuss in Section 2.5, program errors
can be introduced for the ER and Pl states as a result of

intermediate operations that take place while a cell is partially
programmed, which causes the LSB to be misread.

As we observe in Figure 4, both types of inaccuracies
occur throughout all P/E cycle counts (from 2.5K to 20K),
and are not, as prior work had shown [35], exclusive to high
wear-out scenarios (e.g., when the P/E cycle count is higher
than the vendor-specified lifetime). The magnitudes of the
fatter tails and program error peaks increase as wear-out (i.e.,
P/E cycle count) increases. As we can see, even though
the Gaussian-based model captures the general trend for the
threshold voltage distribution and is easy to compute, it is
limited in its accuracy, especially at higher P/E cycles.

Section 4.4 quantifies the modeling error and computational
requirements of the Gaussian-based model.

4.2. Normal-Laplace-based Model

To overcome the limitations of the Gaussian-based model,
prior work [35] proposes to modify the model to increase its
accuracy. This modified threshold voltage distribution model
assumes that the distribution of each state follows a normal-
Laplace distribution, and accounts for the peaks that result
from misprogramming some cells that should be in the ER
and P1 states into the P3 and P2 states, respectively [35].

The normal-Laplace distribution combines the normal
(Gaussian) distribution with the Laplace distribution, which
adds an exponential component to both tails of the distribution.
As we observe in Figure 4, this is similar to the measured be-
havior of the threshold voltage distribution. Note that the figure
is in log scale, and as a result, the exponential component at
the tails of the model appears as a straight line in the figure. By
combining the two probability distributions, we can maintain
the Gaussian distribution at the center of the distribution, and
also model the fat tail more accurately.

However, computing the normal-Laplace distribution be-
comes much more complex than the Gaussian distribution, as
the normal-Laplace distribution is not a simple superposition
of the Gaussian and Laplace distributions. Equation 5 shows
how we compute the cumulative distribution function for the
normal-Laplace distribution [37]:

NCDF(V,u,0,a,8,2)

—0(Z) - $(2) BR(ao —Z) —aR(Bo + Z) 5)
a+f

This distribution adds two new parameters, o and S, which can
be adjusted to model the right and left tail sizes, respectively.
In Equation 5, Z = Vo1 s the z-score; @ and ¢ are
the cumulative distribution function and probability density
function of the standard Gaussian distribution, respectively;
and R(x) = l_?f;) is Mills’ ratio for the Gaussian dis-
tribution. ®(Z) can be obtained by looking up the z-table,

as was done for Equation 3. ¢(Z) can be approximated as
#(Z) = d)(z+5)2—6<1>(z—5)

The normal-Laplace-based model adds two further param-
eters, Agr and Ap;, to model the probability of program
errors occurring for cells programmed to the ER and P1 states,
respectively. This model assumes that the threshold voltage
distribution of the cells with program errors has the same

shape (i.e., the same parameters) as the distribution of the
state the cells were incorrectly programmed into (e.g., the cells
that should be in the ER state but were programmed into the
P3 state will have a distribution with the same shape as the
correct cells in the P3 state). This is because once the cells are
incorrectly programmed to another state, they are treated as if
they belong to that other state, and thus it is natural for them to
follow the same distribution as the correct cells in that state.
Equation 6 shows how the normal-Laplace model estimates
the probability density for state X being misprogrammed to
state Y in bin k, which is denoted as Ny (X):

Nie(X) = (1 = Ax)NCDF (Vi,ux,ox,ax,Bx)
+ AxNCDF (Vi,uy,oy,ay, By)
— (1= Ax)NCDF (Vk-1, ux,0x,ax,Bx)
— AxNCDF (Vi-1, uy,0y,ay, By) (6)

This density is calculated as the difference of the NCDF at
the bin’s two boundaries, Vi and Vj_;. The normal-Laplace-
based model allows each state to have at most five parameters
(20 parameters over all four states). u and o are the mean and
standard deviation, respectively; @ and S are the tail sizes; and
Ax is the probability that a cell that should actually be in state
X is incorrectly programmed.

Following prior work [35], we eliminate four unnecessary
parameters of the model, which include Apy, Ap3, BER, and
ap3. App and Ap3 are estimated as zero, as program errors
for cells that should be in the P2 or P3 states seldom occur.
We also assume that the left and right tails are the same size
for the ER and P3 states (i.e., Bgr = @gr and ap3 = Bp3),
because the read-retry mechanism prevents us from measuring
the left tail of the ER state and the right tail of the P3 state.
As we did in Section 4.1, and following prior work [35], we
use Kullback-Leibler divergence error [19] as the objective
function, and we use the Nelder-Mead simplex method [30]
with a reasonable initial guess to learn the best parameters
under different P/E cycles.

Figure 5 shows the modeled distribution of each state as
curves with solid or dashed lines, and shows the distribution
measured from real chips using markers. As we can see, the
normal-Laplace-based model fits the measured distribution
much better than the Gaussian-based model. The modeled tails
for the ER, P2, and P3 states follow the measured distribution
very closely, thanks to the tail size parameters. Also, the
distributions of the ER and P1 states take the program error
rate into account, and allow the model to correctly include two
peaks for the distributions of the ER and P1 states.

Unfortunately, although the normal-Laplace model is based
on the Gaussian model, the computational requirements of
the model are much more complex. This is not only because
the model adds three more parameters for each state, but
also because we now cannot eliminate y and o using the
z-score. Thus, directly computing the model requires many
more floating point operations than the Gaussian model (as we
demonstrate in Section 4.4). As such, even though the normal-
Laplace model fits the measured threshold voltage distribution
accurately, it is less practical to implement.

> >
G107 2107
c o c o}
[} [}
© ©
R z
= | 4 = | 4
510 £10
Qo Qo
o 3)
o . o
_6| . 6|
1077 & & 10
e 3
0 50 100 150 200 250 300 350 0 50 100 150 200,250 300 350
Normalized Qh Normalized 6M
(a) 2.5K P/E cycles (b) 5K P/E cycles
10° 10°
> >
F107 F10%
=4 - =4
() (7]
° 2 °
2z 2z
= 444 = 4
E 10] 10
Qo Qo
° o
o o
10°° 107 y
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Normalized Qh Normalized 6”‘

(c) 10K P/E cycles (d) 20K P/E cycles

Fig. 5: Normal-Laplace-based model (solid/dashed lines) vs.
data measured from real NAND flash chips (markers) under
different P/E cycle counts.

Section 4.4 quantifies the modeling error and computational
requirements of the normal-Laplace-based model.

4.3. Student’s t-based Model

Recall that we need a threshold voltage model that is
both accurate and easy to compute. As we can see, the
Gaussian-based model is simple and fast, but does not meet the
accuracy requirement. In contrast, the normal-Laplace-based
model fixes the accuracy problem, but uses significantly more
complex calculations. We thus aim to develop a model that
meets both of our requirements at the same time.

We propose to modify the Student’s t-distribution [38] so
that it can be used to model the threshold voltage distribution.
The Student’s t-distribution is a well-known distribution used
in statistics that describes samples drawn from a normally-
distributed population. The Student’s t-distribution is typically
used to estimate the true mean of a large, normally-distributed
population whose standard deviation is unknown, using only a
small sample from the population. Compared to the standard
normal distribution, the Student’s t-distribution uses an extra
parameter, v, to represent the degrees of freedom (i.e., the
ratio of the sample size relative to the population size). As v
increases (i.e., the sample size becomes larger), the Student’s
t-distribution moves closer to a standard normal distribution.
However, instead of using the distribution for its original
purpose, we use this distribution for a completely different
role. We find that v can be used to tune the size of the
distribution tail. When v — +o0, the Student’s t-distribution
becomes a standard Gaussian distribution, which has a smaller
tail. When v — 0, the distribution instead has a fatter tail.
We generalize the standard Student’s t-distribution using the
z-score Z = % such that the center and the width of

the distribution can be scaled (as was done for the Gaussian
distribution). We also allow the left and right tails of the
distribution to have different values of v, which we denote
as B and « for the left and right tails, respectively. Thus,
our modified Student’s t-distribution can fit our measured
threshold voltage distribution better than the original Student’s
t-distribution.

We use precomputation to simplify the calculation of the
cumulative distribution function for our modified Student’s
t-distribution (TCDF). Similar to the precomputed z-tables
available for the Gaussian-based model, we look up values in
the precomputed #-tables commonly available for the Student’s
t-distribution to determine the TCDF values. Each t-table
contains TCDF values over a range of Z values for a single
v.3 Equation 7 shows how we calculate TCDF using the
precomputed t-table:

t-tableg(Z)
t-table, (Z)

V<u

Vs)

TCDF(V,u,o,a,fB) = {
We first compare V with u to observe whether V is on the
left side or the right side of the distribution. Then, depending
on the result of the comparison, we use the corresponding tail
parameter @ or 8 as v to select the correct t-table. Finally,
we compute the z-score Z to look up TCDF in the selected
t-table.

Equation 8 shows how our Student’s t-based model esti-
mates the density for cells that should be in state X but are
incorrectly programmed to state Y in bin k, which is denoted
as Tr (X):

T (X) = = Ax)TCDF (Vi, ux,0x,ax, Bx)
+ AxTCDF (Vi,uy,oy,ay, By)
= (1 = Ax)TCDF (Vk-1,ux,0x,ax,Bx)
= AxTCDF (Vk-1, uy, 0y, ay, By) 3

Similar to the normal-Laplace-based model (Section 4.2), our
Student’s t-based model uses A to estimate such program
errors caused by the two-step programming mechanism (see
Section 2.5). Again, like the normal-Laplace-based model,
our Student’s t-based model assumes that the distribution of
these cells has the same parameters as the cells correctly
programmed into state Y.

We set Apy and Ap3 to zero, Sgr = @ER, and ap3z = Bp3
for the same reasons as the normal-Laplace-based model (see
Section 4.2). Putting everything together, we use Kullback-
Leibler divergence error [19] as our objective function, and
use the Nelder-Mead simplex method [30] with a reasonable
initial guess to learn the best parameters for the model under
different P/E cycles, as described in Section 4.1.

Figure 6 shows our modeled Student’s t-based distribution
as curves with solid or dashed lines, once again showing
the distribution measured from real chips with markers. The
figure shows that our Student’s t-based model fits perfectly
when the probability density is greater than 107*. The differ-
ences between our Student’s t-based model and the measured

3The t-table can also be thought of as a two-dimensional array, where each
entry corresponds to a unique pair of (Z, v) values.

> >
%107 %107
c o c o}
[} [}
© ©
Z | E
= 404 = 4
210 210
Qo Qo
o)
o o
10 £ ’ 107"
& o, o
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Normalized Qh Normalized 6m
(a) 2.5K P/E cycles (b) 5K P/E cycles
10° 10°
> >
F107% F10%p
=4 - =4
() (7]
° - °
= 2z
= 444 = 4
E 10] 10
Qo Qo
o)
o o
10°° 107 4
c S b e wd @)
0 50 100 150 200 250 300 350 0 50 100,150 200 250 300 350
Normalized Qh Normalized 6”‘

(c) 10K P/E cycles (d) 20K P/E cycles

Fig. 6: Our new Student’s t-based model (solid/dashed lines)
vs. data measured from real NAND flash chips (markers) under
different P/E cycle counts.

distribution are within 107°. The difference becomes non-
trivial only for the left tail of the P1 state and the right tail
of P2 state. The accuracy improvements over the Gaussian
model are similar to those of the normal-Laplace-based model.
This shows that our Student’s t-based model, like the normal-
Laplace-based model, makes good use of its extra parameters
(both models have 16 parameters) to cater to the program
errors and fat tails that the measured distribution has.

4.4. Model Validation and Comparison

Accuracy. To quantitatively compare the accuracy of each
model and validate them, we compute the Kullback-Leibler
(K-L) divergence [19] between the modeled and the measured
distributions, as K-L divergence measures the difference be-
tween two distributions (see Section 4.1). Table 1 and Figure 7
show the modeling error of the three models across a range
of P/E cycle counts. We observe two types of behavior shared
by all three models. First, as the P/E cycle count increases,
the modeling error increases. Second, the increase in modeling
error is more rapid at smaller P/E cycle counts, and slower at
higher P/E cycle counts. As we see in Section 5, this is because
the threshold voltage distribution is affected by the P/E cycling
effect more significantly at smaller P/E cycle counts.

Comparing the three models in Figure 7, we make two ob-
servations. First, the average Kullback-Leibler divergence error
for the Gaussian-based model is 2.64%, which is 4.32x and
3.88x greater than the error of the normal-Laplace-based and
our Student’s t-based models, respectively. We also see that
this error can be as large as 8.7%, leading to high inaccuracy.
This is mainly due to two limitations of the Gaussian-based
model. As mentioned in Section 4.1, the Gaussian-based model
(1) cannot adjust its tail size to fit with the fat and asymmetric

P/E Cycles 0 25K 10K 12K 14K 16K 18K 20K AVG

Gaussian 99% 1.8% 1.6% 1.8% 1.9% 2.4% 3.1% 8.7% 2.1% 2.3% 2.6%
Normal-Laplace .34% .46% .55% .61% .63% .67% .68% .10% .67% .67% .61%
Student’s t 37% 51% .61% .68% .10% .16% .16% .18% .16% .18% .68%

5K 7.5K

TABLE 1: Modeling error of the evaluated threshold voltage
distribution models, at various P/E cycle counts.

.
=B Gaussian

Normal-Laplace
Student’s t

Modeling error percentage
g
B3

P/E cycles x10

Fig. 7: Modeling error of the evaluated threshold voltage
distribution models, at various P/E cycle counts.

tails of the observed distributions of the voltage states, and
(2) does not account for misprogrammed cells that form a
second peak in the distributions of the ER and P1 states.

Second, the modeling errors of the normal-Laplace-based
and our Student’s t-based models are very close (averaged
across all tested P/E cycles, 0.61% for the normal-Laplace-
based model, and 0.68% for our Student’s t-based model).
The maximum difference in error between these two models
is 0.11%, at 20K P/E cycles (already well beyond the rated
lifetime of the flash chip, which is 3K P/E cycles).

Complexity. All three of the models require online iterative
computation whenever the flash controller needs to generate a
characterization of the threshold voltage distribution at a new
P/E cycle count. For each iterative computation, hundreds to
thousands of iterations of the model computation algorithm
must be executed before the model reaches high accuracy (i.e.,
the model converges, or in other words, reaches convergence).
As we alluded to in Section 4.2, while the normal-Laplace-
based model is accurate, it requires significant computation
during each iteration, and cannot be precomputed and stored
in a lookup table, making it less practical for use within a flash
controller. To compare the complexity of the three models, we
summarize their computation overhead in terms of the number
of floating-point operations and table lookups performed for
each iteration, as well as their storage overhead in terms of
lookup table size. Table 2 compares the three models. As
we can see, the normal-Laplace-based model requires 91,200
operations per iteration (which involves computing Ni(X)
for four states in each of the 304 threshold voltage bins).
Assuming that each floating-point operation takes the same
number of cycles, the normal-Laplace-based model is 10.71x
slower than the Gaussian-based model. In contrast, our Stu-
dent’s t-based model takes 4.41x less computation time than
the normal-Laplace-based model, with near-identical accuracy.
Our Student’s t-based model is only 2.43x slower than the
Gaussian-based model, but has a 74% smaller modeling error.

Model Gaussian ~ Normal-Laplace Student’s t
Operations 8512 91200 20672
Storage 640B 3.84KB 25.6KB

TABLE 2: Computation and storage complexity comparison
for the three evaluated threshold distribution models.

The third row of the table shows the storage overhead for the
z-table or t-tables used by each model (which are populated in
the flash controller’s DRAM when the flash device is powered
up). The Gaussian-based model needs only 640B to store the
useful range of the z-table. The normal-Laplace-based model
requires a larger lookup range for the z-table, increasing the
storage overhead to 3.84KB. Our Student’s t-based model
requires storing multiple t-tables (one table per value of v), and
uses 25.6KB of storage in total. We find that all three storage
overhead values are negligible, as these tables are easily stored
within the flash controller’s DRAM, which is usually sized to
be a fixed fraction of the flash storage capacity (e.g., 1GB
memory for a 512GB drive).

Latency. The flash controller builds a threshold voltage
distribution model in two steps: characterization and model
computation. First, we identify the threshold voltages of each
cell in a sampled flash wordline by performing 303 read
operations, one read for each read reference voltage level
(using the approach described in Section 3.2). This character-
ization takes 30.3 ms for the wordline, assuming a typical read
latency of 100us. Second, once characterization is complete,
the controller computes the model, using a combination of the
precomputed tables stored in DRAM and the characterized
voltages. To calculate the overhead, we assume that each of the
models takes 1000 iterations to converge, and that computation
is performed on a 1GHz embedded processor that completes
one instruction per cycle.

Figure 8 shows the overall latency for the three models we
evaluate, broken down into characterization latency (which is
the same for all three models) and model computation latency.
The computation overhead of the normal-Laplace-based model
dominates its overall latency, while the computation overhead
of our Student’s t-based model is much smaller than the
characterization latency. As a result, our Student’s t-based
model has a 58.0% lower overall latency than the normal-
Laplace-based model. Since the fixed characterization latency
dominates overall latency in both our Student’s t-based model
and the Gaussian-based model, our model is only 31.3%
slower in overall latency than the Gaussian-based model, while
it reduces modeling error by 74%.

A Characterization Latency © Online Computation Latency

Gaussian 777/

Normal-Laplace 7 |

Student'st /777 j ‘ ‘ ‘ ‘

0 20 40 60 80 100 120 140
Latency (ms)

Fig. 8: Overall latency breakdown of the three evaluated
threshold voltage distribution models for static modeling.

The frequency with which the characterization and modeling
procedure is triggered depends purely on the application
making use of the threshold voltage distribution model. Note
that the choice of model should not change the frequency
at which the procedure is executed (as each model provides
an equivalent end result). As an example, we can determine
the amortized overhead per 4KB read/write operation for one
application of our model, which predicts the optimal read
reference voltage (see Section 6.2). The prediction mechanism
requires us to repeat the characterization and modeling proce-
dure only once every 1000 P/E cycles. For a flash device with
512 pages per block, if we conservatively assume a read-to-
write ratio of 1:1, the average overhead amortized over each
read/write operation is 49.8ns using our static Student’s t-based
model [25].

Summary. In summary, the majority of the accuracy im-
provement over the Gaussian-based model comes from (1) ac-
counting for the program errors for the erased and P1 states,
and (2) accounting for the fat tails of each state. Our Student’s
t-based model, as well as the previously-proposed normal-
Laplace-based model, both contain these improvements, and
hence achieve similar accuracy.

Our Student’s t-distribution based model has much lower
complexity than the normal-Laplace-based model due to its
ability to exploit precomputation. We show in Section 4.3 that
the CDF of the Student’s t-distribution can be simplified into
a simple table lookup using the z-score, Z, and the degrees of
freedom, v. We are unaware of a similar precomputation-based
approach that can be applied to the normal-Laplace model.

We conclude that our new Student’s t-based model achieves
the high accuracy of the normal-Laplace-based model while
requiring significantly less complexity and latency to compute.
As such, we believe that our Student’s t-based model meets
the requirements of accuracy and simplicity, and is a practical
model for implementation within the flash controller.

S. Dynamic Modeling

We now construct a dynamic threshold voltage distribution
model, building off of our Student’s t-based static model in
Section 4.3, to capture how the threshold voltage distribution
changes as the program/erase (P/E) cycle count increases.
Again, we must ensure that this dynamic model is accurate,
and that it is easy to compute, as we aim to implement the
model within the flash controller. To construct the model, we
first analyze how each of the individual parameters making up
our Student’s t-based model change over the P/E cycle count
(Section 5.1). By analyzing the meaning of each parameter
and observing how it changes, we gain new insights on how
the threshold voltage shifts with increasing P/E cycle count.
We then use these new insights to construct a model using the
power law, which can successfully predict the future changes
to each of these parameters based on the current threshold
voltage distribution (Section 5.2). Finally, we validate this
model (Section 5.3).

5.1. Static Model Trends Over P/E Cycles

In order to analyze and observe how the parameters for our
Student’s t-based model change as P/E cycle count increases,

we first need to understand what each parameter means. As
we discuss in Section 4.3, our Student’s t-based model has
16 parameters. Four of them are the mean values for each
state X’s threshold voltage distribution (uyx). Another four
parameters are the standard deviation values of the threshold
voltage distribution of each state X (o x). Three of them are
the left tail sizes of the P1, P2, and P3 state distributions
(Bx), and another three are the right tail sizes of the ER, P1,
and P2 state distributions (ax). (Recall from Section 4.2 that
the left tail of the ER state and the right tail of the P3 state
cannot be observed experimentally, so we assume that they
equal the right tail of the ER state and the left tail of the
P3 state, respectively.) The remaining two parameters are the
probability of program errors, occurring for cells programmed
into the ER and P1 states (1x).

Mean. The mean value of each state represents the center of
the distribution. In our Student’s t-based model, the majority
of the mass of the threshold voltage distribution for each state
is near the center. Thus, a change in the mean reflects how
the P/E cycle count generally affects the threshold voltages of
all cells in each state.

Figure 9 plots the mean values obtained from sample
Student’s t-based models constructed over a range of 20K P/E
cycles, shown as circles. The x-axis shows the P/E cycle count,
while the y-axis shows the normalized threshold voltage of
the mean. Each graph plots the mean value for a different
state, which is labeled at the top of the graph. We make three
observations from this figure. First, the mean value of each
state’s distribution increases monotonically with P/E cycle
count. Second, the mean value increases faster at lower P/E
cycle counts, then slows down to a constant rate of increase
after 5K P/E cycles. Third, the mean value shifts more quickly
for lower threshold voltage states (ER, P1).

ER P1
-100) 140 =z
-120 2
S S 130
& -140 o © 8
= O =
-160 120
-18
0 0.5 1 1.5 2 0 0.5 1 1.5 2
P/E cycles x 10* P/E cycles x 10*
P2 P3
280
[y
® 260
=
g
240 S
0.5 1 1.5 2 0 0.5 1 15 2
P/E cycles ¢ 10* P/E cycles x 10*

Fig. 9: Change in mean value of each state’s threshold volt-
age distribution as P/E cycle count increases, for the static
Student’s t-based model (blue circles) and the dynamic model
(red line).

Standard Deviation. The standard deviation of each state
represents the width of the distribution. Similar to the Gaus-
sian distribution, the Student’s t-distribution contains the vast
majority (~95%) of its mass within two standard deviations.
Thus, the change in standard deviation reflects how P/E cycle
count affects the threshold voltage variation among flash cells.

Figure 10 plots the standard deviation values obtained from
our Student’s t-based model as circles. For this figure, the
y-axis shows the standard deviation in terms of normalized
threshold voltage. We make three observations from this
figure. First, the standard deviation of each state’s distribution
increases monotonically with P/E cycle count. Second, the
standard deviations of the P1 and P2 states increase linearly
with P/E cycle count. Third, like the mean, the standard
deviation increases faster at lower P/E cycle counts, then slows
down to a constant rate of increase after 5K P/E cycles.

P1
22
20
> >
e o 18
n »n
16
14
0 0.5 1 1.5 2 0 0.5 1 1.5 2
P/E cycles x 10* P/E cycles ¥ 10*

Stdev
Stdev

= P
0 0.5 1 1.5 2 0 0.5 1 1.5 2
P/E cycles x 10* P/E cycles ¢ 10*

Fig. 10: Change in standard deviation of each state’s threshold
voltage distribution as P/E cycle count increases, for the static
Student’s t-based model (blue circles) and the dynamic model
(red line).

Tail Values. The tail values of each state represent the size
and shape of the distribution tail. Recall from Section 4.3 that
we use v, which actually represents the degrees of freedom,
to control how fat the tail of the model is. Thus, the tail value
reflects how the P/E cycle count affects the number of outlier
cells (i.e., the number of cells that lie at the tail).

Figure 11 plots the tail values obtained from our Student’s
t-based model as circles. In this figure, the y-axis shows the
value of v, where a lower value of v corresponds to a fatter
tail. We make three observations. First, the range of values
for the tail sizes of the ER and P3 states is much smaller in
comparison to the tail sizes of the distributions of the other
states. Second, the sizes of both tails for the P1 state increase
with P/E cycle count. Third, the tail sizes of the P2 state
decrease as P/E cycle count increases.

Probability of Program Errors. The program error prob-
ability Ax represents the percentage of cells that should be
programmed into state X, but are instead misprogrammed to

o

7 ER
1
5 x 10
_ edgs | .
0 nB8®
0 0.5 1 1.5 2
P/E cycles x 10* P/E cycles ¥ 10*
Be %po
100 g-o-0-c0 15
> df g ﬂﬁ\M
-100 5
0 0.5 1 1.5 2 0 0.5 1 15
P/E cycles x 10* P/E cycles ¥ 10*
Be
100p
> 50 5 >
0 N
0 0.5 1 1.5 2 0 0.5 1 15 2

P/E cycles x 10* P/E cycles ¢ 10*

Fig. 11: Change in tail values (v) of each state’s threshold
voltage distribution as P/E cycle count increases, for the static
Student’s t-based model (blue circles) and the dynamic model
(red line).

a different state, as a result of two-step programming (see
Section 2.5). In our model, we assume that only certain types
of program errors exist (ER—P3 and P1—P2), as program
errors flip the value of only the LSB within a cell and can
only increase the threshold voltage.

Figure 12 plots the program error probability obtained from
our Student’s t-based model as circles. For this graph, the y-
axis shows the logjo value of the program error probability. We
make two observations. First, the program error rate increases
with P/E cycle count. Second, the number of program errors
increases more rapidly at lower P/E cycle counts, and then
slows down to a constant rate of increase at higher P/E cycle
counts.

P1
OWG&
2 2 &
30
o o -5
S a %
S S
o) o
g §-100
(o)) (o))
j< o
o o
-150
0 05 1 15 2 0 05 1 15 2

P/E cycles x 10* P/E cycles x 10*

Fig. 12: Change in log value of the program error probability
as P/E cycle count increases, for the static Student’s t-based
model (blue circles) and the dynamic model (red line).

5.2. Power Law-based Model

Now that we have characterized how each of the parameters
for our Student’s t-based model changes with respect to the
P/E cycle count, we use this characterization to develop
a dynamic model of the threshold voltage distribution. A
dynamic model can reduce the total computation effort for
the threshold voltage distribution significantly, by requiring as
little as a single static model characterization for the entire
lifetime of the flash device. The dynamic model takes the
static characterization-based model(s) generated in the past,
and simply adjusts the model parameters at higher P/E cycle
counts based on its prediction of how each parameter would
change with P/E cycle count (without requiring any further
characterization). Without the dynamic model, a static model
of the characterization must be generated every time a new
threshold voltage distribution is requested by the controller
(e.g., after a fixed number of P/E cycles have occurred),
with each characterization requiring a large number of read-
retry operations (see Section 4.4). These read-retry operations
increase the accuracy of the model, but interfere with and slow
down host commands. Our goal is to build a dynamic model
that is accurate and easy to compute (such that it requires only
a small number of characterizations), so that it can be used
within the flash controller.

In Section 5.1, we observe that all of the parameters can
increase, decrease, or remain relatively constant. We also
observe that the rate at which increases and decreases occur
differs between lower P/E cycle counts and higher P/E cycle
counts. Our dynamic model must be able to represent all
of these behaviors. We find that the power law satisfies all
of these characteristics. Equation 9 shows the power law
function, which models each parameter from our Student’s
t-based model, Y, as a function of the P/E cycle count (x):

Y=axx+¢)

The power, b, can be set to a positive value to represent an
increasing trend, or can be set to a negative value to represent
a decreasing trend. b can also control the difference in slope
at different P/E cycle counts. For example, when b < 1, the
modeled parameter Y changes faster at lower P/E cycle counts,
and when b > 1, Y changes faster at higher P/E cycle counts.

To observe how well the power law models changes to the
parameters of our Student’s t-based model, we fit the power
law to the values of each of the parameters as measured
over several P/E cycle counts (see Section 5.1).* We use
mean squared error (MSE) to estimate the error, where the
divergence between the measured and estimated parameters
(Y; and Y;, respectively) can be mathematically defined as:
MSE = %Z:’ZI(Y,- - f,-)z. We use the Nelder-Mead simplex
method [30], with a reasonable initial guess, to fit the trend.

Figures 9, 10, 11, and 12 show the power law-based models
fit to the trends of each of our parameters as solid lines.
We fit the power law to the static model parameter values
generated over a range of 20K P/E cycles. We observe that the
predictions from the power law fit very well with the actual

4We exclude 0 P/E cycle results when modeling, as they show a completely
different behavior than results at any other P/E cycle count.

parameters measured from our Student’s t-based model, which
are shown as blue circles. We next quantify the accuracy of
our power law-based dynamic model.

5.3. Model Validation

We validate our dynamic model by using it to predict the
threshold voltage distribution at 20K P/E cycles. We perform
threshold voltage distribution characterizations at 2.5K, 5K,
7.5K, and 10K P/E cycles, and use these parameters to
predict the distribution at 20K P/E cycles. Figure 13 shows
the comparison between the actual characterized distribution
(markers) and the distribution predicted by our dynamic model
(solid or dashed curves) at 20K P/E cycles. The modeling error
for the dynamic model is only 2.72%, which is close to the
modeling error of directly using a static Gaussian-based model
at 20K P/E cycles. The dynamic model avoids the need to
perform the extensive read-retry characterization that all static
models, including the Gaussian-based model, would require.

10°

|
N

—_
o

Probability density

100 150 200 250 300 350
Normalized Vth

Fig. 13: Threshold voltage distribution as predicted by our
dynamic model for 20K P/E cycles, using characterization
data from 2.5K, 5K, 7.5K, and 10K P/E cycles, shown as
solid/dashed lines. Markers represent data measured from real
NAND flash chips at 20K P/E cycles.

Figure 14 shows how the modeling error of our dynamic
model decreases for a prediction at 20K P/E cycles as the
number of characterized data points increases. The number
of characterized data points represents the N earliest static
models out of a range that consists of static models for 2.5K,
5K, 7.5K, 10K, 12K, 14K, 16K, 18K, and 19K P/E cycles.
Note that we start with three characterization data points,
which allows the dynamic model to observe a trend in the
change of each parameter. This figure shows that the error
rate decreases rapidly as we increase the number of data points
used to train the dynamic model.

We conclude that our dynamic model successfully predicts
an accurate threshold voltage distribution for a P/E cycle count
it has not observed, based on only prior characterization data,
and is thus practical for use in the flash controller.

6. Example Applications

Now that we have developed our threshold voltage dis-
tribution model, we demonstrate three example applications

2.0%

O

= 0.8% y . ! - €
3 4 5 6 7 8 9

Number of characterized data points

Fig. 14: Modeling error of predicted threshold voltage dis-
tribution for our dynamic model at 20K P/E cycles, using
characterization data from N different P/E cycles.

within the flash controller that take advantage of the model to
enhance the reliability of the flash device. The first application,
described in Section 6.1, uses our model to accurately estimate
the raw bit error rate. The second application, described in
Section 6.2, uses our model to accurately predict the optimal
read reference voltage. The third application, described in
Section 6.3, uses our model to estimate the expected lifetime
of the flash memory device, to safely achieve higher P/E cycle
endurance than manufacturer specification.

6.1. Raw Bit Error Rate Estimation

The raw bit error rate (i.e., the probability of reading an
incorrect state for a flash cell), or RBER, is important not
only because it is a measure of the reliability of a flash device,
but because it also can be used to determine the lifetime and
performance of the flash drive [3]. The raw bit error rate can
be used to enable several optimizations in the flash controller.
For example, accurately estimating the current raw bit error
rate allows us to safely utilize the currently unused ECC
correction capability to accelerate program operations [18],
relax the retention time [3,23], and reduce the effects of read
disturbance [9]. Accurate estimation of the raw bit error rate
enables other optimizations, such as predicting the optimal
read reference voltage [4] or performing error rate based wear-
leveling.

To estimate the raw bit error rate based on the static
threshold voltage distribution model, we use the static model to
calculate the cumulative distribution function (CDF) for each
state at each of our read reference voltages (V,, V, and V),
and use this data to determine how many cells are misread.
For example, if there are cells in the distribution of the ER
state whose threshold voltages are greater than V,, they will
be misread (see Figure 2). By calculating the ER state CDF
up to V,, we know what percentage of cells will be correctly
read. We subtract this value from 1 to obtain the percentage
of cells that will be misread (and will thus contribute to the
raw bit error rate).

Figure 15 shows the actual measured raw bit error rate and
the modeled raw bit error rates using the three static models
from Section 4, for different P/E cycle counts. The x-axis
shows P/E cycle count, and the y-axis shows the measured
or model-predicted raw bit error rate. The three graphs show
the average error rate for only the LSB pages, only the MSB

o 10" LSB pages 5 X 410" MSB pages 5 107 ALL pages

—%— Actual
—+&— Gaussian

ref

Predicted RBER at default V .

‘ 0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2

P/E cycles x 10 P/E cycles x 10 P/E cycles x 10

Fig. 15: Actual and modeled raw bit error rate using the

three evaluated threshold voltage distribution models when

reading with fixed default read reference voltages (Vier),
across different P/E cycle counts.

pages, and for all of the pages. We make two observations from
this data. First, the normal-Laplace-based and our Student’s t-
based models give a much better estimate of the raw bit error
rate than the Gaussian-based model. Averaged across all P/E
cycle counts, our Student’s t-based model estimates the RBER
for all pages within 13.0% of the actual measured RBER,
while the normal-Laplace-based model is within 14.9% and
the Gaussian-based model is only within 44.7%. This is due
to the limitations of the Gaussian-based model, as it cannot
adjust the tail size or take program errors into account. Second,
the normal-Laplace-based and our Student’s t-based models
tend to overestimate the error rate, which is usually safe for
the purposes of many optimizations, because overestimation
results in more than adequate ECC correction capability to
remain available for these errors. In contrast, the Gaussian-
based model always underestimates the raw bit error rate,
which, if used for an optimization that relies on an RBER
estimation, can cause the number of errors to exceed the
correction capability of ECC, resulting in uncorrectable errors
during reads. We conclude that our Student’s t-based model is
effective at providing an accurate estimate of the raw bit error
rate for use by the flash controller.

6.2. Optimal Read Reference Voltage Prediction

As we discussed in Section 2.4, when the threshold voltage
distribution shifts, it is important to move the read refer-
ence voltage to the point where the number of read errors
is minimized. After the shift occurs, the threshold voltage
distributions of each state may overlap with each other, causing
many of the cells within the overlapping regions to be misread.
The number of errors due to misread cells can be minimized
by setting the read reference voltage to be at the point
where the distributions of two neighboring states intersect,
which we call the optimal read reference voltage (V,p:) [4].
Once the optimal read reference voltage is applied, the raw
bit error rate is minimized, improving the reliability of the
device. Furthermore, since fewer errors are corrected, and
fewer read-retries are needed, read latency is also significantly
reduced [3].

Prior work proposes to learn and record the optimal read
reference voltage periodically [3, 32, 39] by sampling the
threshold voltages of some of the cells in each flash block,
but this sampling requires time and storage overhead. With
our new distribution model, we can determine the optimal read
reference voltage from the model and predict how it changes,
without having to exhaustively learn it for each block. From
our threshold voltage distribution model, we can predict the
optimal read reference voltage by finding the point at which
the probability density functions of the distributions of two
neighboring states are the same (i.e., the intersection of the
two distributions).

Figure 16 plots the actual measured and modeled optimal
read reference voltage using the three static models from
Section 4, at different P/E cycle counts.’ Each graph shows
the voltage chosen for one of the three read reference voltages
(Va, Vi, and V) used to distinguish between the distributions
of two neighboring states (see Figure 1). The x-axis shows
the P/E cycle count, while the y-axis shows the normalized
optimal read reference voltage. We make three observations
from this result. First, the normal-Laplace-based and our Stu-
dent’s t-based models slightly overestimate all three optimal
read reference voltages. Second, the Gaussian-based model
underestimates the optimal read reference voltages in most
cases, and has glitches of underestimation as large as 17
voltage steps. We suspect that this is because the Gaussian-
based model cannot capture the asymmetric tail sizes of the
distribution. Third, at O P/E cycles, the read reference volt-
ages predicted using the normal-Laplace-based model deviate
significantly from the actual optimal read reference voltages.
We find that the normal-Laplace-based model has difficulty
converging to a good value at 0 P/E cycles, while our Student’s
t-based model does not experience any such difficulty.

v

c

—#— Actual
—+&— Gaussian

b —E&— Normal-Laplace
—A— Student'st aad

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

P/E cycles x10* P/E cycles x10* P/E cycles x10*

Fig. 16: Actual and modeled optimal read reference voltages

(Vop:) using the three evaluated threshold voltage distribution
models at different P/E cycle counts.

Figure 17 shows the RBER when we use the actual optimal
read reference voltage to read data, as well as the RBER when
we use the optimal read reference voltages predicted by each

5Note that the default read reference voltages are (V4,Vp,Ve) =
(50,190,330). We observe that the actual optimal read reference voltage can
be higher than the default read reference voltage by as much as 27 voltage
steps.

of the three static models from Section 4, at different P/E
cycle counts. As we did for Figure 15, we show the average
error rate for only the LSB pages, only the MSB pages, and
for all of the pages. We observe that the prediction generated
from the Gaussian-based model results in a significantly higher
MSB error rate than the actual optimal voltage. The normal-
Laplace-based and our Student’s t-based models generate
read reference voltage predictions that result in near-optimal
RBER (within 1.5% and 1.1%, respectively, of the optimal
RBER), despite some difference between the actual optimal
read reference voltage and the model-predicted voltages.

25 107 LSB pages

-3 MSB pages -3 ALL pages
25 x 10 25 x 10

5 —— Actual
° —+&— Gaussian
g ,|—©— Normal-Laplace 2 2
c —A— Student's t b i
S 3
5
S 15 15 15
5
>
©
o 1 1 1
w
]
o
©
2 05 0.5 0.5
Q
<
4
0 0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

P/E cycles x10* P/E cycles x 10 P/E cycles x10*

Fig. 17: RBER achieved by actual and modeled optimal read
reference voltages (V, ;) using the three evaluated threshold
voltage distribution models at different P/E cycle counts.

We evaluate how using the optimal voltages predicted by
each model can improve flash lifetime compared to using the
default read reference voltages. We assume that we have a
state-of-the-art LDPC decoder, which can tolerate a raw bit
error rate as high as 5 x 1073 [13] while still keeping the
required uncorrectable error rate below 1071 [16] during the
flash device’s lifetime.® We also assume that our flash device
refreshes its data every three weeks, limiting the number of
retention and read disturb errors that occur [5]. Using the
actual (i.e., ideal) optimal read reference voltage, flash lifetime
improves by 50.6%. Both our Student’s t-based model and
the normal-Laplace-based model come very close to the ideal
improvement, providing a 48.9% lifetime improvement with
our Student’s t-based model. Due to its lower accuracy, the
Gaussian-based model achieves only a 38.5% improvement.

6.3. Expected Lifetime Estimation

Due to the increasing raw bit error rate at higher P/E cycle
counts, flash memory can endure only a limited number of
writes. To make sure that all data stored in the flash drive is
reliable over the course of a predefined device lifetime (typi-
cally several years), enterprise users limit the number of writes
to each flash drive. Due to process variation, different flash
chips can have different raw bit error rates and thus different
P/E cycle endurance. However, flash vendors conservatively
set the flash drive’s P/E cycle endurance to the worst case

6To tolerate variation in the raw bit error rate, we assume that 10% of the
total ECC correction capability is reserved, lowering the maximum tolerable
raw bit error rate.

(i.e., to the lowest endurance value out of all of the chips that
they produce), as they do not know how fast each individual
flash chip wears out over time. In fact, prior work has tested six
commercial flash drives, and found that they all surpassed their
official endurance specifications by an average of 81% [12].

If the flash controller can monitor how fast each flash chip
wears out due to flash writes, the users can determine the
actual endurance limit of the flash drive, and write more data
to it without worrying about prematurely wearing out the drive
and losing data. The model proposed in this paper enables raw
bit error rate prediction for future P/E cycle counts. Thus, the
controller can predict the endurance limit of each flash chip
by iterating through our dynamic model to predict the point
at which the raw bit error rate exceeds the ECC correction
capability (i.e., when the lifetime actually ends). The flash
controller then communicates this prediction to the file system
to allow higher write intensity to the flash drive.

We estimate the lifetime improvements using this technique,
with the same assumptions we made in Section 6.2 and the
data shown in Section 6.1. With our dynamic model, we safely
achieve 69.9% higher P/E cycle endurance than manufacturer
specification. This translates to 69.9% more tolerable writes
per day, if we assume that the flash device will be used for
the same number of years (i.e., lifetime) as before.

7. Related Work

To our knowledge, this paper is the first to (1) propose
a threshold voltage distribution model that is both highly
accurate and computationally efficient, (2) propose a dynamic
threshold voltage distribution model that predicts how the pa-
rameters of this model change with increasing program/erase
cycle count, and (3) demonstrate several new practical uses
of this threshold voltage distribution model within a flash
controller to improve flash memory reliability.

We have already comprehensively compared our Student’s
t-based static model to the two most relevant models based on
real characterization results, the Gaussian-based model [8,27]
and the normal-Laplace-based model [35], in Sections 4.1,
4.2, and 6. We show that our Student’s t-based model has
an error rate within 0.11% of the error rate of the highly-
accurate normal-Laplace model, while requiring 4.41x less
computation time. Several prior works fit the threshold voltage
distribution to other models that are either less accurate or
more complex, such as the beta distribution [8], gamma
distribution [8], log-normal distribution [8], Weibull distribu-
tion [8], and beta-binomial probability distribution [40]. Other
prior works model the threshold voltage distribution based
on idealized circuit-level models [10, 27, 31]. These models
capture some of the desired threshold voltage distribution
behavior, but are less accurate than those derived from real
characterization.

A few works also propose dynamic models of the threshold
voltage distribution shifts based on the power law [4, 8, 35].
While these models are sufficient for offline analysis, they are
unsuitable for deployment in today’s flash controllers, as they
fail to achieve high accuracy and low computational complex-
ity at the same time. Our dynamic model also uses the power

law, but is based on our new, accurate, and low-complexity
Student’s t-based static model. We show that our model has
an error rate of only 2.72% when estimating the distribution
at 20K P/E cycles, even though it uses characterization data
collected at only four different P/E cycle counts from the past
(up to 10K P/E cycles). While other dynamic models based on
idealized circuit models exist [10,31], they are not validated
with real characterization data, and cannot achieve the same
accuracy as our model.

Prior works propose and evaluate techniques for raw bit
error rate estimation [35,36], optimal read reference voltage
estimation [3,32,33,39], and LDPC soft decoding [10,41,44].
These works utilize a threshold voltage distribution model only
offline, or do not utilize a threshold voltage distribution model
at all. We show that, by utilizing our model, we can effectively
and practically guide such flash reliability mechanisms online
in the flash controller. We also provide a new mechanism
to exploit process variation for higher flash endurance, by
predicting and safely utilizing the remaining lifetime of a
flash device online. Prior works propose to only tolerate
error rate variation and process variation to improve flash
lifetime [21,28,29].

We note that several prior works have already extensively
studied the impact of retention behavior on the threshold
voltage distribution using real hardware [2,3,5,6]. They show
that commonly-employed refresh mechanisms in flash devices
can successfully mitigate most of the impact of retention on
the threshold voltage distribution [5, 6,24]. As a result, we
expect that even without capturing the effects of retention,
our proposed threshold voltage distribution model will work
well in practice.

8. Future Work

We believe that there are many other applications of our
online threshold voltage distribution model, in addition to the
examples we present in Section 6. For example, we envision
future work that attains further flash lifetime improvements
by using our online model to estimate soft information for
a commonly-used error correction technique known as low-
density parity check (LDPC) codes [11] (Section 8.1). We
also envision future work that demonstrates the potential
performance benefits of the applications we discussed in Sec-
tion 6, as well as work that develops new applications of our
online model to further improve performance (Section 8.2). We
briefly discuss a high-level overview of these two directions
in this section.

8.1. Soft Information Estimation for LDPC Codes

To tolerate flash errors more efficiently, today’s flash con-
trollers use LDPC codes to detect and correct multiple raw
bit errors in the data read from the flash memory chan-
nel [10, 41, 44]. An LDPC code can use soft information
about each bit to increase the probability of correcting the
raw bit errors. This soft information is provided by the flash
controller, which estimates the probability of each bit being a
1 or a 0 using the threshold voltage of a cell. A modern flash

16

controller typically obtains this probability from a Gaussian-
based model for the threshold voltage distribution, since the
soft information can be computed as a quadratic function of the
threshold voltage. However, as we have shown in Section 4, the
Gaussian-based model underestimates the probability density
at the tail of the distribution, and does not model program
errors. Thus, the model can provide inaccurate information
to the LDPC decoder. This compromises the error correction
capability of the LDPC codes, thus reducing the reliability and
performance of the flash drive.

With the models proposed in this paper, we now have
an accurate threshold voltage distribution model that adapts
to the P/E cycle of each block, and can be implemented
within the flash controller. Using our Student’s t-based model,
we can accurately and efficiently compute the probability
density for any threshold voltage range to provide accurate
soft information to the flash controller. By increasing the
accuracy of this soft information, we effectively increase the
error correction capability of the LDPC code, which can lead
to longer flash lifetime and better read performance [10,41,44].
We leave the precise implementation of such a mechanism for
future work.

8.2. Improving Flash Performance

While the applications of our threshold voltage distribution
model that we have discussed in Sections 6 and 8.1 aim to
improve reliability, they can also improve flash performance.
For example, by predicting and applying the optimal read
reference voltage (Section 6.2), we can greatly lower the
probability that read-retries need to be performed for a read
operation, which also reduces the number of ECC decoding
iterations, both of which lead to a lower read latency [3].
Other applications can also take advantage of our model to
improve flash performance. For example, we can minimize
the ECC decoding latency by adaptively applying a weaker
ECC code when the raw bit error rate indicated by our model
is low [13, 14, 42,43]. We expect and hope future work to
evaluate the performance benefits of these applications, and to
propose other new applications of our online model that can
improve flash performance.

9. Conclusion

This paper introduces a new threshold voltage distribu-
tion model for modern NAND flash memory devices. Our
model is based on a new experimental characterization of
the threshold voltage distribution and how it shifts over time
using state-of-the-art 1X-nm MLC NAND flash chips. Our
characterization shows that the threshold voltage distribu-
tion can be approximated using our modified version of the
Student’s t-distribution, and that the amount by which the
distribution shifts as the P/E cycle count increases is governed
by the power law. Our new model, which combines these
two observations in its static and dynamic components, is
capable of accurately capturing the current and predicting the
future threshold voltage distribution of flash memory cells.
We show that our model achieves low modeling error, and
is computationally simple enough to implement online in a

flash controller. We demonstrate various applications of our
model in a flash controller. We show that these applications
improve flash lifetime by 48.9% and/or enable the flash device
to safely utilize 69.9% more P/E cycles than manufacturer
specification. We conclude that our proposed threshold voltage
distribution model for modern MLC NAND flash memory
devices is practical and effective. We hope that our paper
inspires future work to improve upon our online flash channel
model, and to develop and evaluate new techniques that take
advantage of such a model to increase flash memory reliability
and performance.

Acknowledgments

We thank the anonymous reviewers for their feedback.
This work is partially supported by the Intel Science and
Technology Center, the CMU Data Storage Systems Center,
NSF grants 1212962 and 1320531, and gifts from Intel and
Seagate.

References

[1]1 Y. Cai, E. F. Haratsch, M. P. McCartney, and K. Mai, “FPGA-Based
Solid-State Drive Prototyping Platform,” in FCCM, 2011.

[2] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis,”
in DATE, 2012.

[3] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention
in MLC NAND Flash Memory: Characterization, Optimization, and
Recovery,” in HPCA, 2015.

[4] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference in
MLC NAND Flash Memory: Characterization, Modeling, and Mitiga-
tion,” in ICCD, 2013.

[5] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and
K. Mai, “Flash Correct and Refresh: Retention Aware Management for
Increased Lifetime,” in /CCD, 2012.

[6] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and
K. Mai, “Error Analysis and Retention-Aware Error Management for
NAND Flash Memory,” Intel Technology Journal (ITJ), 2013.

[71 Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and
K. Mai, “Neighbor Cell Assisted Error Correction in MLC NAND Flash
Memories,” in SIGMETRICS, 2014.

[8] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage
Distribution in MLC NAND Flash Memory: Characterization, Analysis,
and Modeling,” in DATE, 2013.

[9]1 Y. Cai, Y. Luo, S. Ghose, E. F. Haratsch, K. Mai, and O. Mutlu,

“Read Disturb Errors in MLC NAND Flash Memory: Characterization,

Mitigation, and Recovery,” in DSN, 2015.

G. Dong, N. Xie, and T. Zhang, “Enabling NAND Flash Memory

Use Soft-Decision Error Correction Codes at Minimal Read Latency

Overhead,” IEEE Trans. Circuits Syst. I, Reg. Papers, 2013.

R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions

on Information Theory, 1962.

G. Gasior, “The SSD Endurance Experiment: They’re All Dead,”

http://techreport.com/review/27909/the- ssd-endurance-experiment-

theyre-all-dead. 2015.

E. E Haratsch, “LDPC Code Concepts and Performance on High-

Density Flash Memory,” in Flash Memory Summit, 2014.

E. F. Haratsch, “Controller Concepts for 1y/1z nm and 3D NAND Flash,”

in Flash Memory Summit, 2015.

Q. Huang, S. Lin, and K. A. Abdel-Ghaffar, “Error-Correcting Codes

for Flash Coding,” IEEE Trans. Inf. Theory, 2011.

JEDEC Solid State Technology Assn., “Failure Mechanisms and Models

for Semiconductor Devices,” JEDEC Publication JEP122-B, 2003.

J. Jeong, S. S. Hahn, S. Lee, and J. Kim, “Advanced Flash Technology

Status, Scaling Trends & Implications to Enterprise SSD Technology

Enablement,” in Flash Memory Summit, 2012.

J. Jeong, S. S. Hahn, S. Lee, and J. Kim, “Lifetime Improvement of

NAND Flash-Based Storage Systems Using Dynamic Program and Erase

Scaling,” in FAST, 2014.

[10]

(11]

(12]

[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]

(21]

[22]
[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The
Annals of Mathematical Statistics, 1951.

C. Lee, S.-K. Lee, S. Ahn, J. Lee, W. Park, Y. Cho, C. Jang, C. Yang,
S. Chung, I.-S. Yun et al., “A 32-Gb MLC NAND Flash Memory with
Vth Endurance Enhancing Schemes in 32 nm CMOS,” JSSC, 2011.

J. Li, K. Zhao, J. Ma, and T. Zhang, “Realizing Unequal Error Correction
for NAND Flash Memory at Minimal Read Latency Overhead,” IEEE
Trans. Circuits Syst. 1I, Express Briefs, 2014.

Q. Li, H. Chang, A. Jiang, and E. F. Haratsch, “Joint Decoding of
Content-Replication Codes for Flash Memories,” in Allerton, 2015.
R.-S. Liu, C.-L. Yang, and W. Wu, “Optimizing NAND Flash-Based
SSDs via Retention Relaxation,” in FAST, 2012.

Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: Improving
NAND Flash Memory Lifetime with Write-Hotness Aware Retention
Management,” in MSST, 2015.

Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “An Accurate
and Practical Threshold Voltage Distribution Model for Modern MLC
NAND Flash Memory,” Carnegie Mellon Univ., SAFARI Research
Group, Tech. Rep. 2016-006, 2016.

N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. R. Nevill, “Bit Error Rate in NAND
Flash Memories,” in IRPS, 2008.

R. Motwani, “Estimation of Flash Memory Level Distributions Us-
ing Interpolation Techniques for Optimizing the Read Reference,” in
GLOBECOM, 2015.

R. Motwani and C. Ong, “Design of LDPC Coding Schemes for
Exploitation of Bit Error Rate Diversity Across Dies in NAND Flash
Memory,” in ICNC, 2013.

R. Motwani and C. Ong, “Soft Decision Decoding of RAID Stripe for
Higher Endurance of Flash Memory Based Solid State Drives,” in ICNC,
2015.

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimiza-
tion,” The Computer Journal, 1965.

Y. Pan, G. Dong, and T. Zhang, “Exploiting Memory Device Wear-Out
Dynamics to Improve NAND Flash Memory System Performance,” in
FAST, 2011.

N. Papandreou, T. Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou,
C. Camp, T. Griffin, G. Tressler, and A. Walls, “Using Adaptive Read
Voltage Thresholds to Enhance The Reliability of MLC NAND Flash
Memory Systems,” in GLSVLSI, 2014.

N. Papandreou, T. Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou,
C. Camp, T. Griffin, G. Tressler, and A. Walls, “Enhancing the Re-
liability of MLC NAND Flash Memory Systems by Read Channel
Optimization,” ACM TODAES, 2015.

K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y. Choi, Y.-T. Lee,
C. Kim, and K. Kim, “A Zeroing Cell-to-Cell Interference Page Archi-
tecture with Temporary LSB Storing and Paralle]l MSB Program Scheme
for MLC NAND Flash Memories,” JSSC, 2008.

T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling
of the Threshold Voltage Distributions of Sub-20nm NAND Flash
Memory,” in GLOBECOM, 2014.

A. Prodromakis, S. Korkotsides, and T. Antonakopoulos, “MLC NAND
Flash Memory: Aging Effect and Chip/Channel Emulation,” Micropro-
cessors and Microsystems, 2015.

W. J. Reed, “The Normal-Laplace Distribution and Its Relatives,”
in Advances in Distribution Theory, Order Statistics, and Inference.
Springer, 2006.

M. Speigel, “Theory and Problems of Probability and Statistics,”
McGraw-Hill, 1992.

H. Tabrizi, B. Peleato, R. Agarwal, and J. Ferreira, “Improving NAND
Flash Read Performance Through Learning,” in ICC, 2015.

V. Taranalli, H. Uchikawa, and P. H. Siegel, “Channel Models For Multi-
Level Cell Flash Memories Based on Empirical Error Analysis,” 2016.
http://arxiv.org/abs/1602.07743

J. Wang, K. Vakilinia, T.-Y. Chen, T. Courtade, G. Dong, T. Zhang,
H. Shankar, and R. Wesel, “Enhanced Precision Through Multiple Reads
for LDPC Decoding in Flash Memories,” JSAC, 2014.

G. Wu, X. He, N. Xie, and T. Zhang, “DiffECC: Improving SSD Read
Performance Using Differentiated Error Correction Coding Schemes,”
in MASCOTS, 2010.

L. Yuan, H. Liu, P. Jia, and Y. Yang, “An Adaptive ECC Scheme for
Dynamic Protection of NAND Flash Memories,” in ICASSP, 2015.

K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang, “LDPC-
in-SSD: Making Advanced Error Correction Codes Work Effectively in
Solid State Drives,” in FAST, 2013.

Yixin Luo received his B.S.E. in Computer En-
gineering from the University of Michigan, Ann
Arbor, and his B.S.E. in Electrical Engineering
from Shanghai Jiao Tong University, in 2012. He
is a Ph.D. candidate at Carnegie Mellon University
(CMU). His research at CMU mainly focuses on
DRAM and flash reliability, and datacenter relia-
bility and cost optimization. He received the best
paper award and the best paper runner-up award
from the IEEE International Symposium on High-
Performance Computer Architecture in 2012 and in

2015, respectively.

Saugata Ghose is a Systems Scientist in the De-
partment of Electrical and Computer Engineering at
Carnegie Mellon University. He is a member of the
SAFARI Research Group, led by Dr. Onur Mutlu.
His current research interests include application-
and system-aware memory and storage systems,
flash reliability, architectural solutions for large-
scale systems, GPUs, and emerging memory tech-
nologies. He received his Ph.D. and M.S. from
Cornell University, where he was the recipient of the
NDSEG Fellowship and the ECE Director’s Ph.D.
Teaching Assistant Award, and received dual B.S. degrees in Computer
Science and in Computer Engineering from Binghamton University.

Yu Cai received his Ph.D. from Carnegie Mellon
University in Computer Engineering. He obtained
his M.S. degree from Tsinghua University in Elec-
tronic Engineering and his B.S. degree from Bei-
jing University of Posts and Telecommunications
in Telecommunication Engineering. He has worked
as a solid-state disk system architect at SK Hynix,
Seagate Technology, Avago Technologies, and LSI
Corporation. Prior to that, he worked on wireless
communications at the Hong Kong Applied Sci-
ence and Technology Research Institute (ASTRI),
Alcatel-Lucent and Microsoft Research Asia (MSRA). He holds 30+ US
patents, and is the author of 20+ peer-reviewed papers. He received the best
paper runner-up award from the IEEE International Symposium on High-
Performance Computer Architecture in 2015.

Erich F. Haratsch is Director of Engineering, Firmware Architecture for
Flash Controllers at Seagate Technology. He leads the development of
advanced features for best-in class SSD performance, endurance, NAND
flash management, signal processing and error correction coding for solid-
state drive controllers. Before joining Seagate, Haratsch was Director of
Engineering at LSI, where he pioneered advanced signal processing and
LDPC-based error correction algorithms for solid-state drive controllers.
Earlier in his career, Haratsch developed signal processing and error correction
technologies for several generations of HDD controllers at LSI and Agere
Systems, which shipped in more than one billion chips. He previously worked
at Bell Labs, where he invented new equalizer and decoder architectures
for Gigabit Ethernet over copper and optical communications. Haratsch is
a frequent speaker at leading industry events, is the author of over 40 peer-
reviewed journal and conference papers, and holds more than 100 US patents.
He earned his M.S. and Ph.D. degrees from the Technical University of
Munich (Germany).

Onur Mutlu is a Full Professor of Computer Sci-
ence at ETH Zurich. He is also a faculty member
at Carnegie Mellon University, where he previously
held the William D. and Nancy W. Strecker Early
Career Professorship. His current broader research
interests are in computer architecture, systems, and
bioinformatics. He is especially interested in inter-
actions across domains and between applications,
system software, compilers, and microarchitecture,
with a major current focus on memory and storage
systems. He obtained his Ph.D. and M.S. in ECE
from the University of Texas at Austin and B.S. degrees in Computer
Engineering and Psychology from the University of Michigan, Ann Arbor.
His industrial experience spans starting the Computer Architecture Group
at Microsoft Research (2006-2009), and various product and research po-
sitions at Intel Corporation, Advanced Micro Devices, and VMware. He
received the inaugural IEEE Computer Society Young Computer Architect
Award, the inaugural Intel Early Career Faculty Award, faculty partnership
awards from various companies, and a healthy number of best paper or
“Top Pick” paper recognitions at various computer systems and architecture
venues. His computer architecture course lectures and materials are freely
available on YouTube, and his research group makes software artifacts
freely available online. For more information, please see his webpage at
http://www.ece.cmu.edu/~omutlu.

