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Abstract

Current design complexity trends, poor wire scalability,

and power limitations argue in favor of highly modular on-

chip systems. Today’s state-of-the-art CMPs already fea-

ture up to a hundred discrete cores. With increasing levels

of integration, CMPs with hundreds of cores, cache tiles,

and specialized accelerators are anticipated in the near fu-

ture. Meanwhile, server consolidation and cloud comput-

ing paradigms have emerged as profit vehicles for exploit-

ing abundant resources of chip-multiprocessors. As multi-

ple, potentially malevolent, users begin to share virtualized

resources of a single chip, CMP-level quality-of-service

(QOS) support becomes necessary to provide performance

isolation, service guarantees, and security. This work takes

a topology-aware approach to on-chip QOS. We propose to

segregate shared resources, such as memory controllers and

accelerators, into dedicated islands (shared regions) of the

chip with full hardware QOS support. We rely on a richly

connected Multidrop Express Channel (MECS) topology to

connect individual nodes to shared regions, foregoing QOS

support in much of the substrate and eliminating its respec-

tive overheads. We evaluate several topologies for the QOS-

enabled shared regions, focusing on the interaction between

network-on-chip (NOC) and QOS metrics. We explore a

new topology called Destination Partitioned Subnets (DPS),

which uses a light-weight dedicated network for each desti-

nation node. On synthetic workloads, DPS nearly matches

or outperforms other topologies with comparable bisection

bandwidth in terms of performance, area overhead, energy-

efficiency, fairness, and preemption resilience.

1 Introduction

Complexities of scaling single-threaded performance

have pushed processor designers in the direction of chip-

level integration of multiple cores. Today’s state-of-the-

art commercial general-purpose chips integrate anywhere

from four to one hundred cores [27, 24, 26], while GPUs

and other specialized processors often contain hundreds of

execution resources [21]. In addition to the main proces-

sors, these chips typically integrate cache memories, spe-

cialized accelerators, memory controllers, and other func-

tional entities. As the degree of integration increases with

each technology generation, chips containing hundreds and

even thousands of discrete execution and storage resources

will be likely in the near future.

The abrupt emergence of multi-core chips and their rapid

proliferation have left researchers and industry scrambling

for ways to exploit them. Two notable paradigms have

arisen for monetizing CMPs – server consolidation and

cloud computing. The former allows businesses to reduce

server costs by virtualizing multiple servers on a single chip,

thereby eliminating dedicated hardware boxes for each in-

dividual server. The latter enables delivery of various client

services from remote (i.e., “cloud”) servers. Since a single

CMP can serve multiple users concurrently, hardware, in-

frastructure, and management costs are reduced relative to

a model where each user requires a dedicated CPU.

Unfortunately, these novel usage models create new sys-

tem challenges and vulnerabilities. For instance, in a con-

solidated server scenario, different priorities may be as-

signed to different servers. Thus, web and database servers

for external customers could have a higher priority than in-

tranet servers. But as multiple virtualized servers may be

executing concurrently on a multi-core chip, traditional OS-

level preemptive scheduling policies can fail at properly en-

forcing priorities of different VMs competing for shared re-

sources.

In a cloud setting, multiple users may be virtualized onto

a common physical substrate, creating a number of new

concerns, including inadvertent interference among the dif-

ferent users, deliberate denial-of-service attacks, and side-

channel information leakage vulnerabilities. Researchers

have recently demonstrated a number of such attacks in a

real-world setting on Amazon’s EC2 cloud infrastructure,

highlighting the threat posed by chip-level resource sharing

on a public cloud [23].

Today’s CMPs lack a way to enforce priorities and en-

sure performance-level isolation among the simultaneously-

executing threads. Inter-thread interference may occur in

any of the shared resources present on a CMP, including

caches, memory controllers, and the on-chip network. Re-

searchers have suggested using on-chip hardware quality-

of-service (QOS) mechanisms to enforce priorities, limit the



extent of interference, and provide guarantees for threads

sharing a substrate [10, 15, 18]. While various shared re-

sources have been studied as potential targets for QOS pro-

tection, little attention has been paid to the scalability of

these techniques in CMPs with hundreds of cores, cache

banks, and other discrete entities. In these highly-integrated

CMPs, shared caches and the on-chip network emerge as

potential scalability bottlenecks for chip-wide QOS sup-

port. Both are latency-sensitive distributed structures with

a large number of nodes, requiring a light-weight, coordi-

nated approach to fair capacity and bandwidth allocation.

In this work, we take a network-centric, topology-aware

approach to chip-level quality-of-service. To reduce perfor-

mance, area, and energy overheads of network-wide QOS

support, we propose to isolate shared resources, such as

memory controllers and accelerator units, into dedicated re-

gions of the chip. Hardware QOS support in the network

and at the end-points is provided only inside these regions.

As shown in Figure 1(b), a richly-connected MECS topol-

ogy [8] is used to connect each node to the shared region via

a dedicated point-to-multipoint channel, ensuring physical

isolation of memory traffic outside of the QOS-protected

shared region. The majority of nodes on the chip, encom-

passing cores and cache memories, have no QOS support

and enjoy significant savings in router cost and complexity.

The focal point of this paper is the organization of the

shared region. Specifically, we consider the interaction be-

tween network topology and quality-of-service – a first such

study, to the best of our knowledge. We evaluate three net-

work topologies with preemptive QOS support [9] to un-

derstand their respective performance, fairness, and over-

heads. The topologies are mesh, MECS, and Destination

Partitioned Subnets (DPS), a new topology we propose in

this work. DPS uses a dedicated subnetwork for each des-

tination node, enabling complexity-effective routers with

low delay and energy overhead. All topologies show good

fairness and experience little slowdown in the face of ad-

versarial workloads with high preemption rates. On syn-

thetic workloads, DPS consistently matches or outperforms

mesh-based topologies in terms of performance, energy-

efficiency, and preemption resilience. MECS has lower la-

tency and better energy efficiency on long-distance commu-

nication patterns, but is inferior to DPS on shorter transfers.

In the remainder of this paper, Section 2 describes our

proposed system architecture; Section 3 focuses on the or-

ganization of the shared region from the network perspec-

tive; Section 4 details the evaluation methodology; Sec-

tion 5 presents the experimental results; Sections 6 and 7

describe related work and conclude the paper.

2 Topology-aware Quality-of-Service

2.1 Preliminaries

Our target system is a 256-tile CMP. Figure 1(a) shows

the baseline organization, scaled down to 64 tiles for clarity.

To reduce the number of network nodes, we employ four-

way concentration as proposed by Balfour and Dally [1].

This organization reduces the number of network nodes to

64 by integrating four terminals1 at a single router via a

fast crossbar switch. The nodes are interconnected via a

richly connected MECS topology [8]. MECS uses point-to-

multipoint channels that fully connect a given node to other

nodes along each of four cardinal directions. The topology

leverages abundant wire resources found on a chip and is

further aided by concentration, as the bandwidth across a

concentrated node edge is greater than across a single tile.

In the figure, shaded nodes correspond to shared on-chip

memory controllers (MCs). The rest of the nodes integrate

core and cache tiles. Cores can be identical or heteroge-

neous, and the ratio of core to cache tiles can vary. Assum-

ing private last-level caches (an assumption we will later

relax), the memory controllers and the on-chip network are

the only shared resources in the figure. To ensure fair access

to memory bandwidth for all tiles, each of the 64 on-chip

routers needs to provide some QOS support, in addition to

a QOS mechanism at the memory controllers. Assuming

XY dimension-order routing, the routers must fairly pro-

vision row link bandwidth among the four terminals and

regulate access to the shared column links, which become

a contended resource as multiple tiles in a given row send

packets to the same MC tile.

Unfortunately, per-hop QOS support is a weighty propo-

sition. Traditional network QOS schemes require per-flow

buffering at each router, which is undesirable in an on-

chip setting due to the associated area and energy over-

heads. Recent work in on-chip QOS proposed relaxing

the buffer requirements by using preemption to guarantee

freedom from priority inversion [9]. While the scheme,

called Preemptive Virtual Clock (PVC), significantly re-

duces cost over prior work, it nevertheless incurs certain

overheads and preemption-induced performance degrada-

tions that may limit its ability to scale to large on-chip net-

works.

2.2 Topology-aware Architecture

In this work, we take a topology-aware approach to on-

chip QOS. We observe that network QOS support is re-

quired to ensure fairness of only the shared links. In a

1A node refers to a network node, while a terminal is a discrete sys-

tem resource, such as a core, cache tile, or memory controller, that has a

dedicated port at a network node.
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Figure 1. 64-tile CMP with 4-way concentration and MECS interconnect. Light nodes integrate core
and cache tiles; shaded nodes show memory controllers; ‘Q’ indicates hardware QOS support at the
node.

MECS network, most sharing occurs within the column

links, as row links are shared by just the four terminals of

a source node. We can eliminate row-link QOS support by

co-scheduling only “friendly” threads (i.e., those belonging

to the same application or virtual machine) onto a node. To

reduce the extent of QOS support in columns, we propose to

isolate shared resources by placing them into one or more

dedicated columns, called shared regions, and only provi-

sion QOS support inside these regions, eliminating cost and

performance overheads of QOS in the rest of the network.

Our approach relies on richly-connected MECS channels to

ensure single-hop access into shared regions, thereby by-

passing intermediate nodes and eliminating them as sources

of interference in unprotected regions of the network. Fig-

ure 1(b) shows the proposed scheme.

Supporting efficient on-chip data sharing requires inter-

node communication, which again raises the possibility of

interference among the different network streams. To avoid

re-introducing QOS support outside of the shared resource

regions, we require the operating system (hypervisor) to

place all threads of a given application (VM) in a convex

region, called a domain, also shown in Figure 1(b). The

resulting organization permits data sharing among the set

of nodes making up the domain, as the convex shape en-

sures that all cache traffic stays within the allocated region.

The scheme combines the benefits of increased capacity of a

shared cache with physical isolation that precludes the need

for cache-level hardware QOS support. An access to the

shared region, such as a cache miss traveling to a memory

controller, first traverses a non-shared MECS channel along

the row in which the access originated before switching to

a QOS-protected column containing shared resources.

Summarizing, our approach to chip-wide quality-of-

service requires three components: a richly-connected

topology that eliminates the need for QOS in non-shared

regions, hardware QOS logic inside the shared regions, and

operating system support. We now provide additional de-

tails on the role of each of these.

Topology: A topology with a high degree of connectivity is

integral to our scheme, as it provides physical isolation for

traffic between non-adjacent routers. We exploit the con-

nectivity to limit the extent of hardware QOS support to

a few confined regions of the chip, which can be reached

from any node without going through any other node. With

XY dimension-order routed MECS topology, the shared re-

source regions must be organized as columns in the two-

dimensional grid of nodes to maintain the single-hop reach-

ability property. We chose the MECS topology due to its

attractive scalability properties and low router complexity;

other topologies, such as the flattened butterfly [13], could

also be employed.

Shared regions: The one or more regions containing

shared resources serve two purposes. The first is to ensure

fair access to shared resources, which requires hardware

QOS support at both routers and end-points within each col-

umn. The second is to support inter-process or inter-VM

communication, which also necessitates QOS protection at

the routers, and is easily accommodated by our scheme.

To understand why inter-process/VM traffic must flow

through shared regions, consider the case of VM #1 and

VM #3 in Figure 1(b) sharing content. If the data originates
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at the top-left node of VM #1 and is destined for the bottom-

right node of VM #3, packets will route in dimension-order

toward VM #2, switching dimensions at its top node. With

no QOS support at the turn node, inter-VM traffic can cause

considerable interference with respect to local traffic of VM

#2. To avoid such scenarios, we require all inter-process and

inter-VM communication to transit via the QOS-equipped

shared columns. While the requirement may result in non-

minimal routes, as is the case in the example above, the ex-

pected frequency of such transfers is relatively low and they

are typically not performance critical. As such, we antic-

ipate latency and energy overheads incurred by additional

network hops of inter-domain transfers to be modest.

OS support: We rely on the operating system to provide

the following three services:

• Schedule threads from only the same application or

virtual machine to run on a given node.

• Allocate compute and storage resources (core and

cache tiles) to an application or virtual machine, en-

suring that the domain complies with the convex

shape property.

• Assign bandwidth or priorities to flows, defined at

the granularity of a thread, application, or virtual

machine, by programming memory-mapped registers

at QOS-enabled routers and resources in shared re-

gions.

As existing operating systems already provide schedul-

ing services and support different process priorities, the ad-

ditional requirements are very modest, requiring little de-

veloper effort and negligible run-time overhead.

3 Shared Region Organization

3.1 QOS support

Historically, high-performance network QOS schemes

have required per-flow queues at each router node to iso-

late and schedule packets from different flows [7, 14, 5, 28].

As a result, these schemes had considerable router buffer

requirements and scheduling complexity in larger network

configurations, resulting in area, energy, and latency over-

heads that are undesirable in an on-chip setting. In response,

researchers have recently proposed new approaches that try

to address QOS requirements of on-chip networks [15, 9].

In this work, we adopt Preemptive Virtual Clock (PVC)

as our preferred QOS mechanism [9]. PVC does not re-

quire per-flowing queuing, necessitating just enough virtual

channels to cover the round-trip credit latency of a link.

PVC features a light-weight packet prioritization function

evolved from the Virtual Clock scheme [28]. Routers track

each flow’s bandwidth consumption, which is scaled by a

flow’s assigned rate of service to yield packet priority. To

limit the extent to which a flow’s present priority is affected

by its past bandwidth consumption, all bandwidth counters

are periodically cleared. The interval between two succes-

sive flushes is called a frame, whose duration determines

the granularity of the scheme’s guarantees.

Since routers in a PVC network do not have dedicated

buffer resources for each flow, lower priority packets may

block packets with higher dynamic priority, a situation

termed priority inversion. PVC detects priority inversion

situations and resolves them through preemption of lower-

priority packets. Discarded packets require retransmission,

which is supported through a combination of a per-source

window of outstanding packets and a dedicated ACK net-

work used to acknowledge every delivered and discarded

packet. In addition to the low-bandwidth, low-complexity

ACK network, PVC requires per-flow state at each router

node, whose size is proportional to the number of nodes

on a chip and the number of router ports. Key limita-

tion to PVC’s performance scalability is its preemptive na-

ture, which can reduce throughput at high packet discard

rates. Although our work targets large CMP configurations,

we only require QOS support in shared resource columns,

thereby limiting resource and potential performance over-

heads of PVC.

3.2 Topologies

MECS is a natural consideration for the shared region as

it is already deployed in the rest of the chip. To reduce com-

plexity, MECS employs asymmetric routers with the num-

ber of row or column inputs equal to the number of nodes in

a dimension (eight, in our case), but just two network out-

puts per dimension (one in each direction). Multiple input

ports share a crossbar port, thereby reducing switch degree

and arbitration complexity.

Figure 2(a) shows a PVC-enabled MECS router. While

the MECS topology is a good fit for the main network, it

may be less than ideal in the shared region. The reason

is the increased complexity of a MECS router once QOS

support is added to it. Long channel spans and the need

to segregate flows necessitate considerable buffer and vir-

tual channel (VC) resources to cover large round-trip credit

latencies, even in the absence of per-flow queuing. In ad-

dition, scheduling complexity is quite high due to the pres-

ence of multiple VCs at each input port, multiple input ports

from each direction, and multiple directions that may all be

competing for a given output port.

In comparison, a mesh router has fewer input ports and

short channel spans, leading to lower buffer requirements

and simpler arbitration than its MECS counterpart. How-

ever, a basic mesh topology does not fully leverage the rich

wire resources available on a chip, motivating researchers
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Figure 2. Shared region details.

to propose replicated networks [1]. Replication increases

the channel count by the degree of replication at the cost

of additional router resources. Although prior work argues

that full replication that requires new router instances for the

additional channels can significantly reduce crossbar com-

plexity, it ignores the buffering, wire, and arbitration over-

head of bypass paths to and from the terminals [8, 1]. In this

work, we consider a variant of the approach that replicates

the channels and associated router ports, but maintains a

single monolithic crossbar at each node. Figure 2(b) shows

an example network with twice the channel count of a basic

mesh.

In addition to mesh and MECS topologies, we also

consider a new network organization called Destination

Partitioned Subnets (DPS). DPS uses a dedicated low-

complexity network for each destination node; a 4-node

DPS topology is shown in Figure 2(c). The motivation be-

hind DPS is to combine low router complexity of the mesh

topology with improved wire utilization and long-distance

communication efficiency found in MECS.

A packet in a DPS network goes through routing, prior-

ity computation, and crossbar traversal only at source and

destination nodes. Because each subnet maps to a unique

destination node, once a packet enters a subnet, it does not

need to be routed or switched to a different output port with

respect to other packets until it reaches the destination – a

subnet’s end-point. Intermediate hops require only two in-

put ports (network and local) and a single output port; as a

result, a simple 2:1 mux suffices as a switch (Figure 2(c)).

Flow tracking and priority computation are not required at

intermediate hops either, eliminating the overheads of flow

state queries and updates. In all, these simplifications en-

able a single-cycle router traversal for packets at intermedi-

ate DPS hops.

DPS source and destination nodes look similar to those

in a mesh. Source-side, a larger number of output ports in a

DPS router (one port per subnet) results in increased cross-

bar complexity. Tables containing flow state also have to

be scaled up, since bandwidth utilization is maintained for

each output port separately. Arbitration complexity is not

affected, since the different output arbiters operate indepen-

dently. Destination-side, DPS and mesh routers are virtually

identical.

4 Experimental Methodology

We use an in-house simulator to evaluate the different

topologies for the QOS-enabled shared region, which is em-

bodied within a single column of an 8x8 grid of nodes in a

large scale CMP. Figure 1(b) shows a diagram of a scaled

down 4x4 grid with a similar organization. One column in

the middle of the grid is devoted to shared resources with

one terminal per node; the rest of the network employs 4-

way concentration and a MECS interconnect. To focus our

study, we examine only the network within the shard col-

umn. Our target is 32-nm process technology with on-chip

voltage of 0.9 V.

Each router in the shared region has some topology-

dependent number of column inputs, in addition to a ter-

minal port and seven row inputs from MECS channels in

east and west directions. Up to four MECS inputs (those ar-

riving from the same direction) share a single crossbar port.

Similarly, three ports are devoted to east, west, and terminal

outputs, in addition to the north/south ports.

Table 1 summarizes the simulated configurations, con-

sisting of mesh, MECS, and DPS topologies. We consider

three mesh variants with 1x (baseline), 2x, and 4x replica-

tion. In all cases, we assume 128-bit channel width; thus,

MECS, DPS, and mesh x4 have equal bisection bandwidth,

while mesh x1 and mesh x2 topologies feature more com-
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Table 1. Shared region topology details

Network 8 nodes (one column), 16-byte links,

1 cycle wire delay between adjacent routers,

DOR routing, virtual cut-through flow control

QOS Preemptive Virtual Clock (50K cycle frame)

Benchmarks hotspot, uniform random, and tornado;

1- and 4-flit packets, stochastically generated

Topologies mesh x1, mesh x2, mesh x4, MECS, DPS

mesh 6 VCs per network port,

2 stage pipeline (VA, XT)

MECS 14 VCs per network port,

3 stage pipeline (VA-local, VA-global, XT)

DPS 5 VCs per network port,

2 stage pipeline as source/dest (VA, XT),

1 stage pipeline at intermediate hops

common 4 flits/VC; 1 injection VC, 2 ejection VCs,

1 reserved VC at each network port

pact routers in exchange for less bisection bandwidth. Wire

delay is one cycle between adjacent routers. All topologies

use PVC for QOS support.

We faithfully model all aspects of each topology’s router

pipeline, which consists of virtual channel allocation (VA)

and crossbar traversal (XT). We use virtual cut-through flow

control [12], transferring an entire packet upon its acquisi-

tion of a virtual channel, and eliminating the crossbar arbi-

tration stage as a result. Arrival of higher-priority packets

does not interrupt an on-going transfer, but a preemption

does. Due to the large number of ports and virtual chan-

nels, MECS routers require 2 cycles for arbitration; mesh

and DPS arbitrate in a single cycle. All topologies enjoy a

single-cycle crossbar traversal. As explained in Section 3.2,

intermediate hops in a DPS network have just one cycle of

router latency due to elimination of crossbar traversal. In

all topologies, source hops require an additional cycle for

route and priority computation; look-ahead routing and pri-

ority reuse [9] are subsequently employed to remove these

stages from the critical path.

We assume two packet sizes, corresponding to request

and reply traffic classes, but do not specialize the input

buffers. With virtual cut-through switching, each virtual

channel needs to hold the largest possible packet, which is

four flits in our network. Worst-case traffic consists of a

stream of single-flit request packets, each of which requires

a separate VC. We use this as a guideline for provisioning

the number of VCs at each input port based on the topology-

specific round-trip credit latency; Table 1 lists the buffer or-

ganizations for each topology. In a MECS network, we do

not employ location-dependent buffer sizing, provisioning

buffers uniformly in all routers. In all topologies, we re-

serve one VC at each network port for rate-compliant traffic

to reduce preemption incidence [9].

For area and energy evaluation, we use a combination of
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analytical models, Orion [11], and CACTI [17]. We mod-

ify Orion to more accurately model our crossbar configura-

tions. In CACTI, we add support for modeling small SRAM

arrays with data flow typical of a NOC router. We assume

both input buffers and flow state tables are SRAM-based.

5 Evaluation Results

We evaluate the different topologies for the shared region

(column) on area efficiency, latency and throughput, fair-

ness, susceptibility to preemptions, and energy efficiency.

5.1 Area

Our area model accounts for three primary components

of overhead: input buffers, crossbar switch fabric, and flow

state tables. Figure 3 shows the router area overhead of dif-

ferent topologies. The dotted line shows buffer capacity al-

located to row inputs, identical across all topologies.

Mesh x1 is the most area-efficient topology as its routers

have fewer ports than those in other organizations, leading

to a compact crossbar and small buffer overhead. Mesh x4,

on the other hand, has the largest footprint, mostly due to

a crossbar that is roughly four times larger than that in a

baseline mesh. Crossbar area is proportional to the product

of input and output port counts, which is 5x5 in mesh x1

and 11x11 in mesh x4, explaining the overhead of the 4-

way replicated mesh. As expected, the MECS topology has

the largest buffer footprint, but a compact crossbar thanks

to just one switch port per direction (Figure 2(a)). DPS

router’s area overhead is comparable to that of MECS, as

DPS has smaller buffer requirements but a larger crossbar

due to the large number of column outputs at each node.

Mesh x2 has a similar router footprint to MECS and DPS

but supports just half the bisection bandwidth. In all net-

works, PVC’s per-flow state is not a significant contributor

to area overhead.
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Figure 4. Latency and throughput on synthetic traffic.

5.2 Performance

Figure 4 shows the performance of different schemes on

two traffic patterns: uniform random and tornado. The for-

mer is benign, with different sources stochastically spread-

ing traffic across different destinations, while the latter is

a challenge workload for rings and meshes which concen-

trates the traffic from each source on a destination half-way

across the dimension [3]. While these workloads are not

directly correlated to expected traffic patterns in the shared

region of a CMP, they stress the network in different ways

and provide insight into the behavior of different topology

options. Each curve corresponds to a topology and shows

the load on the X axis and average packet latency on the Y

axis.

Not surprisingly, the baseline mesh and mesh x2 topolo-

gies show the worst throughput due to lower bisection band-

width relative to the other network configurations. Mesh x4

has competitive performance on random traffic, but is un-

able to load balance the tornado pattern. Both MECS and

DPS show good scalability on tornado thanks to their abil-

ity to isolate traffic between each source-destination pair.

On both workloads, DPS matches the throughput of MECS

with just a fraction of the latter’s buffer resources. In gen-

eral, throughput is constrained in these topologies by asym-

metry between the number of input and output ports at each

node. Adding switch ports would improve throughput at the

cost of additional switch area and energy.

On both traffic patterns, MECS and DPS enjoy lower

average packet latency than mesh topologies. Meshes are

slower due to the multi-cycle router traversals at each inter-

mediate hop. A MECS network has deeper router pipelines

than a mesh, but avoids all intermediate hops. The DPS

topology has shallow mesh-like router pipelines at source

and destination nodes with single-cycle intermediate hop

traversals. On random traffic, MECS and DPS have nearly

identical latency and are 13% faster than any mesh vari-

ant. On tornado, the longer communication distance fa-

vors MECS, as it is able to amortize larger router delay

over longer flight time for a 7% latency advantage over

DPS (24% versus mesh). While longer path lengths favor

MECS, shorter communication distances favor DPS, which

has lower router delay.

Preemptions rate (not shown) was measured to be quite

low for all topologies. In saturation, the baseline mesh had

the highest discard rate with nearly 7% of all packets re-

played under random traffic; MECS had the lowest rate of

just 0.04%. Mesh x2, mesh x4, and DPS replayed 5%,

0.1%, and 2% of their packets, respectively. By compar-

ison, tornado traffic generated fewer preemptions for each

topology. In general, topologies with greater channel re-

sources show better immunity to preemptions on these per-

mutations.

5.3 QOS and Preemption Impact

To measure the impact of the topology on fairness, we

first use a hotspot traffic pattern, following the methodol-

ogy of Grot et al. [9]. The terminal port of node 0 acts as

a hotspot to which all injectors (including the row inputs

at node 0) stream traffic. Prior work showed that without

QOS support, sources closer to the hotspot get a dispropor-

tionately large share of the bandwidth, while distant nodes

are essentially starved [15, 9].

Table 2 shows the results of the experiment. In general,

all topologies provide good fairness on this workload, and

the results are in line with the original PVC work. The

maximum deviation from the mean across the topologies

is 1.9%, corresponding to the DPS network. MECS has the

strongest fairness with a maximum deviation of just 0.3%

and standard deviation of 0.1%. Unlike performance results

in the previous section, fairness seems to correlate with net-

work buffer capacity, as topologies with more buffering pro-

vide better fairness.

Preemption rate is very low, as preemption-throttling

mechanisms built into PVC are quite effective here. Key
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Table 2. Relative throughput of different QOS schemes, in flits (%).

mean min (% of mean) max (% of mean) std dev (% of mean)

mesh x1 4,184 4,134 (98.8%) 4259 (101.8%) 39.1 (0.9%)

mesh x2 4,197 4,148 (98.8%) 4256 (101.4%) 27.6 (0.7%)

mesh x4 4,221 4,167 (98.7%) 4278 (101.4%) 30.1 (0.7%)

MECS 4,193 4,180 (99.7%) 4203 (100.2%) 4.9 (0.1%)

DPS 4,188 4,125 (98.5%) 4266 (101.9%) 44.4 (1.1%)

among these is the reserved flit quota that each source is al-

located. In each frame interval, the first N flits from each

source are non-preemptable, where N is a function of the

rate assigned to the source and the frame duration. With

all sources transmitting, virtually all packets fall under the

reserved cap, throttling preemptions.

To measure the impact of preemptions on fairness and

performance, we crafted two adversarial workloads. Both

are based on the hotspot traffic pattern, but with only a sub-

set of sources communicating, ensuring that the reserved

quota is exhausted early in the frame, triggering preemp-

tions thereafter.

In Workload 1, only the terminal port at each of the

eight nodes sends traffic toward the hotspot. With eight

sources, the average injection rate must not exceed 12.5%

to prevent saturation. We provision the sources with equal

priorities, but widely different rates, ranging from 5% to

20%; the average is around 14%, guaranteeing high network

contention. Under max-min fairness, a standard definition

for fairness [3], sources with average injection rate un-

der 12.5% should get their full requested share of network

bandwidth; the rest of the bandwidth must be iteratively par-

titioned among the remaining communicating sources. In a

PVC-enabled network operating in saturation, the arrival of

a new packet at a source with a low injection rate will often

trigger a sequence of preemptions as the packet travels to-

ward the destination. Preemptions occur because the new

packet has a higher priority relative to others, and when

buffers are scarce, PVC discards lower priority packets to

ensure forward progress by higher priority ones.

Figure 5(a) shows the percentage of all packets that expe-

rience a preemption and the total number of hop traversals

that are wasted and need to be replayed. To normalize the

comparison, we convert the hop count in a MECS network

to the corresponding number of hops in a mesh based on the

communication distance. Note that a single packet may be

preempted multiple times; each such occurrence is counted

as a separate event. In general, we see that the fraction of

preempted packets is greater than the fraction of replayed

hops, which occurs because most preemptions occur close

to or right at the source node, before all of the victim’s flits

have been transferred. The sole exception to this trend is the

MECS topology, whose fraction of discarded hops is equal

to that of discarded packets. We believe this occurs due to

the topology’s rich buffer resources, which greatly diminish

the likelihood of a packet being preempted in the middle

of a transfer. Since replayed hops reduce network through-

put and increase energy consumption, reducing hop-level

replay is more important than lowering the packet discard

metric. The mesh x1 and DPS topologies incur the fewest

number of replayed hops (9%), closely followed by MECS

(10%). In DPS, all of the traffic is concentrated on a sin-

gle subnet, mimicking the behavior and performance of the

baseline mesh topology. The mesh x2 and mesh x4 topolo-

gies show the worst preemption rates, with over 28% of all

messages (24% hops) replayed. The reason behind such

poor performance is the thrashing that results as flows trav-

eling on parallel networks converge at the destination node.

Figure 6(a) shows the impact of preemptions on the per-

formance of different topologies by measuring the slow-

down compared to preemption-free execution in the same

topology with per-flow queuing. The slowdown is less than

5%, demonstrating that preemptions have small impact on

the completion time of the workload. The figure also shows

the deviation from the expected throughput based on max-

min fairness; the thick blue bar shows the average across all

nodes while the error bars plot the range of deviation for in-

dividual sources. All topologies show comparable behavior

with the average deviation across all nodes under 1%. DPS

enjoys the smallest range of deviations among individual

sources, indicating good throughput fairness.

In constructing Workload 2, we attempted to stress the

MECS topology, as it has significantly larger buffer re-

sources compared to meshes and DPS. The general ap-

proach is identical to that of Workload 1; the only difference

is in the set of injectors. For this workload, we activated

all eight injectors at node 7 (the farthest from the hotspot)

to pressure one downstream MECS port and one additional

injector at node 6 to ensure contention at the destination

output port.

Figures 5(b) and 6(b) summarize the results on Workload

2. Compared to Workload 1, MECS sees only a slight in-

crease in its preemption rate and unfairness, as measured by

throughput of individual nodes versus expected throughput,

demonstrating good resilience to potential attack patterns.

Both mesh x1 and DPS see their preemption rates drop sig-
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Figure 5. Fraction of all packets that experience preemption events and hop traversals that are
wasted as a result of preemptions.
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Figure 6. Slowdown due to preemptions and deviation from the expected throughput.

nificantly, with few preemptions past the source nodes. The

replicated mesh topologies, however, continue to experi-

ence high incidence of preemption, as packets that diverge

at the source and travel on different networks can trigger

preemptions once they reach the destination and compete

for the same output port.

5.4 Energy efficiency

We evaluate the energy efficiency of different topolo-

gies by deriving the energy expended accessing the input

buffers, traversing the crossbar, as well as querying and

updating flow state at each network hop. We break down

router energy overhead of different topologies based on the

type of network hop – source, intermediate, or destination –

since the cost of each varies. We also show the energy ex-

pended for a 3-hop packet traversal, roughly equivalent to

the average communication distance on random traffic.

Figure 7 summarizes our findings. Although mesh

topologies have modest per-hop energy overhead, they are

least efficient on a 3-hop route requiring four router traver-

sals. In contrast, MECS has energy-hungry routers that are

undesirable with intra-node or nearest-neighbor traffic. De-

spite a small crossbar footprint, MECS has the most energy-

hungry switch stage among the evaluated topologies due to

the long input lines feeding the crossbar (see Figure 2(a)).

However, MECS achieves good efficiency on 3-hop traf-

fic by avoiding intermediate hops. DPS combines mesh-

like efficiency at source and destination nodes with low

energy expense at intermediate hops due to elimination of

crossbar traversals, resulting in 17% energy savings over

mesh x1 and 33% over mesh x4. On the 3-hop pattern,

MECS and DPS have nearly identical router energy con-

sumption. Longer communication distances improve the

efficiency of the MECS topology, while near-neighbor pat-

terns favor mesh and DPS configurations.

6 Related Work

A number of researchers have studied cache-level

quality-of-service with the objective of reducing the im-

pact of inter-application interference on performance [25,

10, 20]. We take a different view of QOS in this work, as

our goal is providing cost-effective support for service-level

agreement (SLA) guarantees and improved security through

isolation of cache resources. Previous work in cache QOS

also ignores the shared on-chip interconnect that is used to
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Figure 7. Router energy expended per flit for

different topologies.

access the cache.

Recent work examining fairness and interference reduc-

tion in memory controllers [18, 19] is complementary to

ours, since a comprehensive on-chip QOS solution requires

quality-of-service support at shared end-points, including

memory controllers. Other researchers proposed coordi-

nated policies to partition cache space and memory band-

width [6, 2]. None of these efforts consider the on-chip in-

terconnect and its impact on end-to-end quality-of-service.

At the on-chip interconnect level, application-aware pri-

oritization mechanisms [4] can improve performance met-

rics of multiple applications sharing a substrate, but do

not provide hard guarantees. Rijpkema et al. proposed a

router that combines guaranteed and best-effort service lev-

els through a combination of circuit and wormhole switch-

ing [22]. This approach requires explicit segregation of

memory traffic based on the expected service level, provides

no guarantees to best effort traffic, and fails to take topology

into account.

Finally, Marty and Hill advocate mapping VMs to ded-

icated regions on a chip to facilitate data sharing while re-

ducing interference across VMs [16]. Our work relies on

a similar approach, but goes farther by providing low-cost

QOS support that could be used to provide service-level

guarantees at the chip level. Coherence optimizations de-

scribed by Marty and Hill are orthogonal to our work and

may potentially benefit from efficient broadcast and multi-

cast enabled by MECS.

7 Conclusion

The industry is on a trend of increasing the degree of

integration in chip multiprocessors, with parts containing

hundreds of cores, cache tiles, and other resources likely to

appear in the near future. Meanwhile, increasing reliance

on server consolidation and cloud-based services raises the

possibility that multiple workloads, users, or even compet-

ing businesses will share resources on a common execution

substrate. To enable performance isolation, security, and

SLA guarantees on a die, CMPs must incorporate hardware

QOS mechanisms. Unfortunately, quality-of-service sup-

port at each node of a highly-integrated CMP may be ex-

pensive due to area, energy, and performance overheads as-

sociated with today’s QOS schemes.

In this work, we propose reducing the various costs of

chip-wide QOS support via a topology-aware approach.

Our scheme isolates shared resources in dedicated, QOS-

enabled regions of the chip, allowing designers to forego

QOS hardware in the larger part of the die containing cores

and caches. We leverage the richly-connected MECS topol-

ogy to provide single-hop access from any source node to

the QOS-protected shared region with physical isolation

from memory traffic of other nodes.

We evaluated several topologies as potential intercon-

nect candidates inside the shared region with PVC-based

QOS support. All topologies show good fairness, but dif-

fer widely in their preemptive behavior, performance, area

overhead, and energy efficiency. The most promising con-

figurations are based on MECS and Destination Partitioned

Subnets (DPS), a new topology explored in this work. DPS

uses a light-weight dedicated network for each destination

node, combining low router complexity of mesh topolo-

gies with MECS-like energy and delay efficiency on multi-

hop transfers. On synthetic traffic, DPS matches or out-

performs mesh-based topologies in terms of performance,

energy efficiency and preemption resilience. Compared to

MECS, DPS has better energy efficiency and lower latency

on shorter transfers, while MECS is superior on longer

routes. These initial results are promising and motivate fur-

ther research into the interaction between topology and on-

chip quality-of-service.
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