
Cache Filtering Techniques to Reduce the Negative
Impact of Useless Speculative Memory References

on Processor Performance

Onur Mutlu
Hyesoon Kim

David N. Armstrong
Yale N. Patt

The University of Texas at Austin

2

Motivation

• Branch prediction and prefetching are widely used by
processors to improve performance.

• Incorrect branch predictions and inaccurate prefetch
requests result in memory references that are not
needed by correct execution: useless speculative
memory references

• These useless references may be detrimental to
processor performance because they cause
– L1/L2 cache pollution
– Bandwidth/resource contention

3

Why are Useless References Bad?

0

2

4

6

8

10

12

14

16

18

20

22

P
er

ce
nt

 I
P

C
 im

pr
ov

em
en

t
ov

er
 b

as
el

in
e

(%
)

No pollution in L1 caches
No pollution in L2 cache
No bandwidth/resource contention

..

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf average

4

Talk Outline

• Motivation
– Negative performance impact of speculative

references is primarily due to L2 cache pollution

• Analysis of Speculative Memory References
• Solution (Cache Filtering Techniques)

• Experimental Evaluation
• Conclusion

5

Speculative L2 Misses

• Current Model:

• A speculative L2-miss allocates a cache block in both L1
and L2 caches (like a non-speculative L2 miss)

• Useless speculative blocks occupy entries in both cache
levels � pollution in both cache levels

L1
Cache

L2 Cache Memory

6

Breakdown of Speculative Data Blocks

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

P
er

ce
nt

ag
e

of
 S

pe
cu

la
ti

ve
ly

-f
et

ch
ed

 D
at

a
B

lo
ck

s
(%

)

Never Needed by Non-speculative Instructions
Needed after Eviction from L2 Cache
Needed while in L2 Cache
Needed while in L1 Data Cache

..

.

gcc mcf crafty parser vortex bzip2 amean

7

Two Observations on Speculative References

• Observation 1:
If a speculatively-fetched cache block is needed
by correct path execution, then it is most likely
needed while it resides in the L1 cache.

• Observation 2:
If a speculatively-fetched cache block is not
needed while it resides in the L1 cache, then it is
likely that the block will never be needed or it will
be needed after it is evicted from the L2 cache.

8

Solution to L2 Pollution: L1 Cache as a Filter

• New Model:

• A speculative L2-miss allocates a cache block only in L1 (unlike a
non-speculative L2 miss)

• A speculatively-fetched block is marked as speculative in the L1
cache

• If it is referenced by a non-speculative instruction while it is in the L1
cache, the block is written back into L2 when it is evicted.

L1
Cache

L2 Cache MemoryFilter

9

L1 Cache as a Filter: Two Filtering Policies

• If a speculatively-fetched block is NOT
referenced by a non-speculative instruction
while it is in the L1 cache:
– Filter the block out of the L2 cache to reduce L2

pollution

• Filtering Policy 1:
It is NOT written back into L2 (no-spec-L2fill)

• Filtering Policy 2:
It is written back into L2, but into the LRU slot of its set
(spec-L2fill-lru)

10

Tradeoffs in Two Policies

• no-spec-L2fill policy:
+ Eliminates all L2 pollution due to speculative references

- Filters out some useful speculatively-fetched blocks that would
have been used if placed in L2.

• spec-L2fill-lru policy:
+ Captures the benefit of useful speculatively-fetched blocks that

are used shortly after being evicted from L1.

- Some L2 pollution due to speculative references remains, but
the effect is less pronounced because a useless block occupies
an L2 cache line for a shorter amount of time.

11

Implementation Cost

• The processor needs to distinguish between speculative
and non-speculative L2 misses
– Requires 1 bit per L2 miss buffer (MSHR) entry
– All hardware prefetches are initially speculative
– Instruction and data L2 miss requests are considered to be non-

speculative until they are known to be speculative
• On the resolution of a mispredicted branch all younger miss buffer

entries are marked as speculative

• Each L1 cache block has an associated speculative bit
– Set if the L2 miss was marked speculative in miss buffer
– Reset if an instruction that accessed the cache block is retired

• Each L1 cache block has an associated write-back bit
– Set if a speculative block is referenced by a non-speculative

instruction

12

Experimental Evaluation

• 8-wide aggressive superscalar, out-of-order baseline,
128-entry instruction window

• Aggressive branch prediction
– 64K-entry gshare, 64K-entry PAs hybrid, 64K-entry selector

• 64 KB, 4-way L1 Instruction and Data Caches
• 512 MB, 8-way Unified L2 cache
• Minimum 500-cycle main memory latency

• Evaluated the filtering mechanisms on two baselines:
– Stream-baseline: with an aggressive hardware stream prefetcher
– Runahead-baseline: with runahead execution [Mutlu et. al.,

HPCA’03], a method of aggressive speculative pre-execution
under an L2 cache miss

13

IPC Delta of Filtering on Stream-baseline

-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

P
er

ce
nt

 I
P

C
 c

ha
ng

e
ov

er
 s

tr
ea

m
-b

as
el

in
e

(%
)

no-spec-L2fill filter policy
spec-L2fill-lru filter policy

..

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf average

14

IPC Delta of Filtering on Runahead-baseline

-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

P
er

ce
nt

 I
P

C
 c

ha
ng

e
ov

er
 r

un
ah

ea
d-

ba
sl

in
e

(%
)

no-spec-L2fill filter policy
spec-L2fill-lru filter policy

..

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf average

15

Observations

• spec-L2fill-lru is a better filtering policy in the presence of
prefetcher references.
– Many prefetched blocks are needed by correct execution shortly

after they are evicted from L1 cache.

• Filtering is more effective for wrong-path references than
for prefetcher references
– If wrong-path references are not needed while they are in the L1

cache, they are more likely to be never needed than prefetcher
references.

– More analysis and data in the paper (Section 3.1)

16

Sensitivity to L1 cache size (Stream-baseline)

-8.0
-7.5
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

IP
C

 c
ha

ng
e

ov
er

 r
es

pe
ct

iv
e

st
re

am
-b

as
el

in
e

(%
)

16KB L1 caches - spec-L2fill-lru policy
32KB L1 caches - spec-L2fill-lru policy
64KB L1 caches - spec-L2fill-lru policy
128KB L1 caches - spec-L2fill-lru policy

..

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf average

17

Sensitivity to L1 cache size (Runahead-baseline)

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5

IP
C

 c
ha

ng
e

ov
er

 r
es

pe
ct

iv
e

ru
na

he
ad

-b
as

el
in

e
(%

)

16KB L1 caches - spec-L2fill-lru policy
32KB L1 caches - spec-L2fill-lru policy
64KB L1 caches - spec-L2fill-lru policy
128KB L1 caches - spec-L2fill-lru policy

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf average

18

Conclusions

• Negative performance impact of speculative references
is mainly due to L2 cache pollution.

• Using the L1 cache as a filter to reduce the L2 cache
pollution is effective.

• Filtering policies are more effective for wrong-path
references than for prefetcher references.

• The bigger the filter (L1 cache), the more effective the
filtering policies.

