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What is AVD Prediction?

A new prediction technique
used to break the data dependencies between
dependent load instructions
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Background on Runahead Execution

A technique to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is an L2 miss:

o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Instructions are speculatively pre-executed

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original L2 miss returns

o Checkpoint is restored and normal execution resumes
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Runahead Example

Small Window:
Load 1 Miss Load 2 Miss

Miss 1 Miss 2

Runahead:| Works when Load 1 and 2 are independent :
Load 1 Miss  Load 2 Miss Load 1 Hit Load 2 Hit

Miss 1

Saved Cycles

Miss 2
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The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Addr@x

-~

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
= This limitation results in

o wasted opportunity to improve performance

o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome
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The Goal

Enable the parallelization of dependent L2 cache misses in
runahead mode with a low-cost mechanism

How:

o Predict the values of L2-miss address (pointer) loads

Address load: loads an address into its destination register,
which is later used to calculate the address of another load

as opposed to data load
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Parallelizing Dependent Misses

@not Compute Its Addr@’c

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Miss 1 MG S 2 e e s "]

@e Predicted Can Compute Its Add@‘:/

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

: Instructions

Saved Cycles
Miss 1

Miss 2
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A Question

How can we predict the values of address loads
with low hardware cost and complexity?
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The Solution: AVD Prediction

Address-value delta (AVD) of a load instruction defined as:

AVD

= Effective Address of Load — Data Value of Load

For some address loads, AVD is stable

An AVD predictor keeps track of the AVDs of address loads

When a load is an L2 miss in runahead mode, AVD
predictor is consulted

If the predictor returns a stable (confident) AVD for that

load, t

ne value of the load is predicted

Prec

AVD Prediction

icted Value = Effective Address — Predicted AVD
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Identifying Address L.oads in Hardware

Insight:
o If the AVD is too large, the value that is loaded is likely not an
address

Only keep track of loads that satisfy:
-MaxAVD = AVD = +MaxAVD

This identification mechanism eliminates many loads from
consideration

o Enables the AVD predictor to be small
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An Implementable AVD Predictor

Set-associative prediction table

Prediction table entry consists of

o Tag (Program Counter of the load)

o Last AVD seen for the load

o Confidence counter for the recorded AVD

Updated when an address load is retired in normal mode
Accessed when a load misses in L2 cache in runahead mode

Recovery-free: No need to recover the state of the processor
or the predictor on misprediction

o Runahead mode is purely speculative
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AVD Update Logic

Effective Address  Data Value
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AVD Prediction Logic

Predictedy’] Pradisted VAl
(not INW 1) = Effective Addr— AVD

i s :
1 ‘ T
i Tag Conf | AWD
Program Counter of Effective Address of
LZ2—miss Load LZ2—miss Load
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Why Do Stable AVDs Occur?

Regularity in the way data structures are
o allocated in memory AND
o traversed

Two types of loads can have stable AVDs

o Traversal address loads
Produce addresses consumed by address loads

o Leaf address loads
Produce addresses consumed by data loads
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Traversal Address L.oads

Regularly-allocated linked list:

A traversal address load loads the
pointer to next node:

node = node->next

AVD = Effective Addr — Data Value

/\ /~\
Effective Addr Di(ta Vélye /AVD
A Ak VI K
A+k A+2k -k
A+2k A+3k -k
A+3k | A+4k ] -k
A+4k \A+51;/ -k
\ \
Striding Stable AVD
data value

AVD Prediction
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Properties of Traversal-based AVDs

Stable AVDs can be captured with a stride value predictor

Stable AVDs disappear with the re-organization of the data
structure (e.g., sorting)

A A+3k

A+k Sortmg A+k
A+2k Distance between
I
A+3K Aok nodes NOT constant! 3

Stability of AVDs is dependent on the behavior of the
memory allocator

o Allocation of contiguous, fixed-size chunks is useful
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Leaf Address LLoads

Sorted dictionary in parser: Dictionary looked up for an input word.
Nodes point to strings (words)

String and node allocated consecutively A leaf address load loads the pointer to

the string of each node:
lookup (node, input) { // ...

| A+k ptr_str = node>string;
m = check_match(ptr_str, input);
if (m>=0) lookup(node->right, input);
B+k A if (m<0) lookup(node->left, input);
B AVD = Effective Addr — Data Value
D+k é Evk \G+k Effective Addr | Data Vaiue/ AVD |
A+Kk A Kk
5 & 85 9 SPE R w4

No stride! Stable AVD
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Properties of Leat-based AVDs

Stab
Stab

e AVDs cannot be captured with a stride value predictor
e AVDs do not disappear with the re-organization of

the d

ata structure (e.g., sorting)

|A+K | CH+k Distance between

node and string
é}A Sorting éc still constant! \/
B+k C+k » A+k B+k

Sle S &

Stabi
mem

lity of AVDs is dependent on the behavior of the
ory allocator
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Baseline Processor

Execution-driven Alpha simulator

8-wide superscalar processor

128-entry instruction window, 20-stage pipeline

64 KB, 4-way, 2-cycle L1 data and instruction caches
1 MB, 32-way, 10-cycle unified L2 cache

500-cycle minimum main memory latency

32 DRAM banks, 32-byte wide processor-memory bus (4:1
frequency ratio), 128 outstanding misses

o Detailed memory model

Pointer-intensive benchmarks from Olden and SPEC INTOO
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Performance of AVD Prediction

Normalized Execution Time
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Etffect on Executed Instructions

Normalized Number of Executed Instructions
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AVD Prediction vs. Stride Value Prediction

Performance:

o Both can capture traversal address loads with stable AVDs
e.g., treeadd

o Stride VP cannot capture leaf address loads with stable AVDs
e.g., health, mst, parser

o AVD predictor cannot capture data loads with striding data
values

Predicting these can be useful for the correct resolution of
mispredicted L2-miss dependent branches, e.qg., parser

Complexity:
o AVD predictor requires much fewer entries (only address loads)
o AVD prediction logic is simpler (no stride maintenance)
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AVD vs. Stride VP Performance

1.00

0.98

0.96

Normalized Execution Time (excluding health)

0.82 -

0.80 -

!

0.94 -

0.92 -

0.90 -

0.88 A

0.86

0.84 -

HAVD
M stride

B hybrid

16 entries

4096 entries

AVD Prediction

[SIES=ECE

27



Conclusions

Runahead execution is unable to parallelize dependent L2
cache misses

A very simple, 16-entry (102-byte) AVD predictor reduces
this limitation on pointer-intensive applications

o Increases runahead execution performance by 12.1%
o Reduces executed instructions by 13.3%

AVD prediction takes advantage of the regularity in the
memory allocation patterns of programs

Software (programs, compilers, memory allocators) can be
written to take advantage of AVD prediction
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Normalized Execution Time
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Effect of Confidence Threshold

Normalized Execution Time
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Effect of MaxAVD
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FEttect of Memory Latency
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