Address-Value Delta (AVD)
Prediction

Onur Mutlu
Hyesoon Kim
Yale N. Patt

==ECE

What is AVD Prediction?

A new prediction technique
used to break the data dependencies between
dependent load instructions

AVD Prediction \-'—(ECE

Talk Outline

= Background on Runahead Execution

= The Problem: Dependent Cache Misses
= AVD Prediction

= Why Does It Work?

= Evaluation

= Conclusions

AVD Prediction \-‘—(ECE

Background on Runahead Execution

A technique to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is an L2 miss:

o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Instructions are speculatively pre-executed

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original L2 miss returns

o Checkpoint is restored and normal execution resumes

AVD Prediction \I'-{ E CE 4

Runahead Example

Small Window:
Load 1 Miss Load 2 Miss

Miss 1 Miss 2

Runahead:| Works when Load 1 and 2 are independent :
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

Miss 1

Saved Cycles

Miss 2

AVD Prediction \-'—(ECE 5

The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Addr@x

-~

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
= This limitation results in

o wasted opportunity to improve performance

o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome

AVD Prediction \"—(ECE 6

The Goal

Enable the parallelization of dependent L2 cache misses in
runahead mode with a low-cost mechanism

How:

o Predict the values of L2-miss address (pointer) loads

Address load: loads an address into its destination register,
which is later used to calculate the address of another load

as opposed to data load

AVD Prediction \I'—{ E CE

Parallelizing Dependent Misses

@not Compute Its Addr@’c

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Miss 1 MG S 2 e e s "]

@e Predicted Can Compute Its Add@‘:/

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

: Instructions

Saved Cycles
Miss 1

Miss 2

AVD Prediction \-'—(ECE 8

A Question

How can we predict the values of address loads
with low hardware cost and complexity?

AVD Prediction \-'—(ECE 9

Talk Outline

Background on Runahead Execution
The Problem: Dependent Cache Misses
AVD Prediction

Why Does It Work?

Evaluation

Conclusions

AVD Prediction =EVv=FECE

10

The Solution: AVD Prediction

Address-value delta (AVD) of a load instruction defined as:

AVD

= Effective Address of Load — Data Value of Load

For some address loads, AVD is stable

An AVD predictor keeps track of the AVDs of address loads

When a load is an L2 miss in runahead mode, AVD
predictor is consulted

If the predictor returns a stable (confident) AVD for that

load, t

ne value of the load is predicted

Prec

AVD Prediction

icted Value = Effective Address — Predicted AVD

EE=ECE 11

Identifying Address L.oads in Hardware

Insight:
o If the AVD is too large, the value that is loaded is likely not an
address

Only keep track of loads that satisfy:
-MaxAVD = AVD = +MaxAVD

This identification mechanism eliminates many loads from
consideration

o Enables the AVD predictor to be small

AVD Prediction \‘T’(E CE 12

An Implementable AVD Predictor

Set-associative prediction table

Prediction table entry consists of

o Tag (Program Counter of the load)

o Last AVD seen for the load

o Confidence counter for the recorded AVD

Updated when an address load is retired in normal mode
Accessed when a load misses in L2 cache in runahead mode

Recovery-free: No need to recover the state of the processor
or the predictor on misprediction

o Runahead mode is purely speculative

AVD Prediction \‘T’(E CE 13

AVD Update Logic

Effective Address Data Value

counputed AW D = Effective Addt — Data Yaloe

I

I

I

i

I

I

I

I

I

I

I

i

i » = Confid
! _ ahtide hce
I

I

: t
I

I

I

I

i

I

I

i

I

[] =T

Tag Cont | AVD
valid AYD?
-

AVD Prediction =EVv=FECE

AVD Prediction Logic

Predictedy’] Pradisted VAl
(not INW 1) = Effective Addr— AVD

i s :
1 ‘ T
i Tag Conf | AWD
Program Counter of Effective Address of
LZ2—miss Load LZ2—miss Load

AVD Prediction =EVv=FECE

Talk Outline

Background on Runahead Execution
The Problem: Dependent Cache Misses
AVD Prediction

Why Does It Work?

Evaluation

Conclusions

AVD Prediction =EVv=FECE

16

Why Do Stable AVDs Occur?

Regularity in the way data structures are
o allocated in memory AND
o traversed

Two types of loads can have stable AVDs

o Traversal address loads
Produce addresses consumed by address loads

o Leaf address loads
Produce addresses consumed by data loads

AVD Prediction \I'-{ E CE

17

Traversal Address L.oads

Regularly-allocated linked list:

A traversal address load loads the
pointer to next node:

node = node->next

AVD = Effective Addr — Data Value

/\ /~\
Effective Addr Di(ta Vélye /AVD
A Ak VI K
A+k A+2k -k
A+2k A+3k -k
A+3k | A+4k] -k
A+4k \A+51;/ -k
\ \
Striding Stable AVD
data value

AVD Prediction

[SIES=ECE

18

Properties of Traversal-based AVDs

Stable AVDs can be captured with a stride value predictor

Stable AVDs disappear with the re-organization of the data
structure (e.g., sorting)

A A+3k

A+k Sortmg A+k
A+2k Distance between
I
A+3K Aok nodes NOT constant! 3

Stability of AVDs is dependent on the behavior of the
memory allocator

o Allocation of contiguous, fixed-size chunks is useful

AVD Prediction =v=FECE 19

Leaf Address LLoads

Sorted dictionary in parser: Dictionary looked up for an input word.
Nodes point to strings (words)

String and node allocated consecutively A leaf address load loads the pointer to

the string of each node:
lookup (node, input) { // ...

| A+k ptr_str = node>string;
m = check_match(ptr_str, input);
if (m>=0) lookup(node->right, input);
B+k A if (m<0) lookup(node->left, input);
B AVD = Effective Addr — Data Value
D+k é Evk \G+k Effective Addr | Data Vaiue/ AVD |
A+Kk A Kk
5 & 85 9 SPE R w4

No stride! Stable AVD

AVD Prediction \‘T’(E CE 20

Properties of Leat-based AVDs

Stab
Stab

e AVDs cannot be captured with a stride value predictor
e AVDs do not disappear with the re-organization of

the d

ata structure (e.g., sorting)

|A+K | CH+k Distance between

node and string
é}A Sorting éc still constant! \/
B+k C+k » A+k B+k

Sle S &

Stabi
mem

lity of AVDs is dependent on the behavior of the
ory allocator

AVD Prediction =v=FECE 21

Talk Outline

Background on Runahead Execution
The Problem: Dependent Cache Misses
AVD Prediction

Why Does It Work?

Evaluation

Conclusions

AVD Prediction =EVv=FECE

22

Baseline Processor

Execution-driven Alpha simulator

8-wide superscalar processor

128-entry instruction window, 20-stage pipeline

64 KB, 4-way, 2-cycle L1 data and instruction caches
1 MB, 32-way, 10-cycle unified L2 cache

500-cycle minimum main memory latency

32 DRAM banks, 32-byte wide processor-memory bus (4:1
frequency ratio), 128 outstanding misses

o Detailed memory model

Pointer-intensive benchmarks from Olden and SPEC INTOO

AVD Prediction \‘T’(E CE 23

Performance of AVD Prediction

Normalized Execution Time

0.8 -

0.7

0.5 A

0.4 A

bisort

AVD Prediction

-
0.2
0.1
.

health mst perimeter treeadd tsp voronoi

HW4096 entries
O 16 entries
B4 entries

12.1%

mcf parser twolf vpr AVG

[SIES=ECE

Etffect on Executed Instructions

Normalized Number of Executed Instructions

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr AVG

AVD Prediction \.'—(ECE 25

AVD Prediction vs. Stride Value Prediction

Performance:

o Both can capture traversal address loads with stable AVDs
e.g., treeadd

o Stride VP cannot capture leaf address loads with stable AVDs
e.g., health, mst, parser

o AVD predictor cannot capture data loads with striding data
values

Predicting these can be useful for the correct resolution of
mispredicted L2-miss dependent branches, e.qg., parser

Complexity:
o AVD predictor requires much fewer entries (only address loads)
o AVD prediction logic is simpler (no stride maintenance)

AVD Prediction =v=FECE 26

AVD vs. Stride VP Performance

1.00

0.98

0.96

Normalized Execution Time (excluding health)

0.82 -

0.80 -

!

0.94 -

0.92 -

0.90 -

0.88 A

0.86

0.84 -

HAVD
M stride

B hybrid

16 entries

4096 entries

AVD Prediction

[SIES=ECE

27

Conclusions

Runahead execution is unable to parallelize dependent L2
cache misses

A very simple, 16-entry (102-byte) AVD predictor reduces
this limitation on pointer-intensive applications

o Increases runahead execution performance by 12.1%
o Reduces executed instructions by 13.3%

AVD prediction takes advantage of the regularity in the
memory allocation patterns of programs

Software (programs, compilers, memory allocators) can be
written to take advantage of AVD prediction

AVD Prediction \‘T’(E CE 28

Backup Slides

Normalized Execution Time

The Potential; What if it Could?

2.66

1.6

15

1.4

M no runahead
B runahead

M ideal runahead

AVD Prediction

30

Effect of Confidence Threshold

Normalized Execution Time

2.80 2.53
T Eno conf
1.4 +] Bconfl
1.3 + Oconf 2
Oconf 3
1.2 H
Bmconf 4
1.1 Econf 7
1.0 |
0.9 - = - = = =
0.8 = = = = =
0.7 |
0.6 = = = = = =
0.5 - = = = = = =
0.4 + — — — — — —
0.3 -
0.2 -
0.1
0.0 H
& Q X & S S & <
& & & & & & S < &
AVD Prediction -—' ECE

31

Effect of MaxAVD

1 —

0.9 | - - - = - - -

0.8 + = = - = - - - - -
)
£ 0.7 1
|_
[
2 0.6 B B - - B { miM — —
-
] W 64K
X 0.5 = = = = - - - -
= 8K
E 0.4 H - | - - - || - 01K | |
©
£ 64
o 0.3 H = = = - = - = -
P 032

0.2 -

0.1 -

O 1
& X & & Q& &R s NS & x@o\ K
0 ‘Qe \@ \$®® 40« Q

AVD Prediction =v=FECE 32

FEttect of Memory Latency

1.8

1.6 B no runahead
B runahead
1.4 EAVD (16-entry)

1.2

1.0

Q0
O
o

12.1% 13% /0

0.8 A

0.6

Normalized Execution Time

0.4 A

0.2 A

0.0 -
100 250 500 750 1000

AVD Prediction =v=FECE 33

