Runahead Execution

An Alternativeto Very Large Instruction
Windows for Out-of-order Processors

Onur Mutlu Jared Stark
Yae N. Patt Chris Wilkerson

UT==I503

Qutline

Motivation

Overview

Mechanism
Experimental Evaluation
Conclusions

Motivation

« Qut-of-order processors reguire very large instruction
windows to tolerate today’ s main memory latencies.
— Evenin the presence of caches and prefetchers

 Asmain memory latency (in terms of processor cycles)
Increases, instruction window size should also increase to
fully tolerate the memory latency.

e Building avery large instruction window Is not an easy task.

Small Windows:; Full-window Stalls

| nstructions are retired in-order from the instruction
window to support precise exceptions.

When avery long-latency instruction is not complete, it
blocks retirement and incoming instructions fill the
Instruction window if the window is not large enough.

Processor cannot place new instructions into the window if
the window is already full. Thisis called afull-window
stall.

L2 misses are responsible for most full-window stalls.

80%
70%
60%
50%
40%
30%
20%

% cycleswith full window stalls

10%
0%

Impact of Full-window Stalls

B 512K B L2, 128-entry window
|PC: 0.77

E perfect L2, 128-entry window
B 512K B L 2, 2048-entry window

IPC: 1.15

IPC: 1.69

Machine Model (L2 size, instruction window size)

Overview of Runahead Execution

During a significant percentage of full-window stall cycles,
no work is performed in the processor.

Runahead execution unblocks the full window stall
caused by along-latency L2-miss instruction.

Enter runahead mode when the oldest instruction is an L2-miss load
and remove that load from the processor.

While in runahead mode, keep processing instructions
without updating architectural state and without blocking the
Instruction window due to L2 misses.

When the original load miss returns back, resume normal-mode
execution starting with the runahead-causing load.

Benefits of Runahead Execution

« Loads and stores independent of L2-miss instructions
generate useful prefetch requests:
— From main memory to L2
— FromL2toL1

 |Instructions on the predicted program path are prefetched
Into the trace cache and L 2.

 Hardware prefetcher tables are trained using future
memory access information. The prefetcher also runs
ahead along with the processor.

Mechanism

Entry into Runahead Mode

When an L2-miss load instruction reaches the head of the
Instruction window:

Processor checkpoints architectural register state, branch
history register, return address stack.

Processor records the address of the L2-miss |oad.
Processor enters runahead mode.

L 2-miss |load marks its destination register asinvalid and is
removed from the instruction window.

10

Processing in Runahead Mode

Two types of results are produced: INV (invalid), VALID

First INV result is produced by the L2-miss |oad that
caused entry into runahead mode.

An instruction produces an INV result
— If it sourcesan INV result
— If it missesin the L2 cache (A prefetch request is generated)

INV results are marked using INV bitsin the register file,
store buffer, and runahead cache.

— INV bits prevent introduction of bogus data into the pipeline.
— Bogus values are not used for prefetching/branch resolution.

11

Pseudo-retirement in Runahead M ode

An instruction is examined for pseudo-retirement when it
reaches the head of the instruction window.

An INV instruction is removed from window immediately.

A VALID instruction is removed when it completes
execution and updates only the microarchitectural state.

Pseudo-retired instructions free their allocated resources.

Pseudo-retired runahead stores communicate their data and
INV status to dependent runahead | oads.

12

Runahead Cache

An auxiliary structure that holds the data values and INV bits
for memory |locations modified by pseudo-retired runahead
stores.

ItS purpose is memory communication during runahead mode.

Runahead |oads access store buffer, runahead cache, and L1
data cache in parallel.

Size of runahead cache is very small (512 bytes).

Runahead Branches

Runahead branches use the same predictor as normal branches.

VALID branches are resolved and trigger recovery if
mispredicted.

INV branches cannot be resolved.

13

Exit from Runahead M ode

When the data for the instruction that caused entry into
runahead returns from main memory:

All instructions in the machine are flushed.
INV hits are reset. Runahead cache is flushed.

Processor restores the state as it was before the runahead-
Inducing instruction was fetched.

Processor starts fetch beginning with the runahead-inducing
L 2-miss instruction.

14

Experimental Evaluation

15

Basaline Processor

3-wide fetch, 29-stage pipeline

128-entry instruction window

32 KB, 8-way, 3-cycle L1 data cache, write-back

512 KB, 8-way, 16-cycle L2 unified cache, write-back
Approximately 500-cycle penalty for L2 misses
Streaming prefetcher (16 streams)

16

Benchmarks

Selected traces out of apool of 280 traces

Evaluated performance on those that gain at least 10% IPC
Improvement with perfect L2 cache

147 traces ssimulated for 30 million x86 instructions

Trace Suites
— SPEC CPU95 (S95): 10 benchmarks, mostly FP
— SPEC FP2k (FP00): 11 benchmarks
— SPECint2k (INTO0O): 6 benchmarks
— Internet (WEB): 18 benchmarks. SpecJob, Webmark2001
— Multimedia (MM): 9 benchmarks. mpeg, speech rec., quake
— Productivity (PROD): 17 benchmarks. Sysmark2k, winstone
— Server (SERV): 2 benchmarks: tpcc, timesten
— Workstation (WS): 7 benchmarks. CAD, nastran, verilog

17

Instructions Per Cycle

18

Performance of Runahead Execution

12%

O No prefetcher, no runahead

B Prefetcher, no runahead
B Runahead, no prefetcher

B Runahead and prefetcher

22%

12%

15%

95 FPOO INTO0O WEB MM

22%

16% 952%

PROD SERV WS AVG

Effect of Frontend on Runahead

« Average number of instructions during runahead: 711
— Before mispredicted INV branch: 431

* Average number of L2 misses during runahead: 2.6
— Before mispredicted INV branch: 2.38

 Runahead becomes more effective with a better frontend:

— Real trace cache: 22% I PC improvement
— Perfect trace cache: 27% | PC improvement
— Perfect branch predictor and trace cache: 31% | PC improvement

19

Instructions Per Cycle

1.5

14

1.3

1.2 1
1.1 A
1.0
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 -
0.3 1
0.2 1
0.1 1

0.0

20

Runahead vs. Large Windows

6%

S95

@ 128-entry window with Runahead
B 256-entry window
@ 384-entry window
W 512-entry window

4%

1%

3%

FPOO

0%

6%

INTOO

WEB

MM

3%

2%
12%

PROD SERV WS AVG

| nstructions Per Cycle

|mportance of Store-L.oad Data Communication

21

1.3 :
804 B Baseline

1.2 @ Runahead, no runahead cache
1.1 - B Runahead with runahead cache

1.0

0.9 - 13% L

0.8 1 9%

0.7 1

0%

0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 A
0.0 -

12% 23%
5%

05 FPOO INTO0O WEB MM PROD SERV

22

Conclusions

Runahead execution results in 22% | PC increase over the
baseline processor with a 128-entry window and a streaming
prefetcher.

Thisiswithin 1% of the IPC of a 384-entry window machine.
Runahead and the streaming prefetcher interact positively.

Store-load data communication through memory in runahead
mode is vital for high performance.

Backup Slides

23

Added Bits & Structures

Check pointed
Y 2 State
Ep EP
T EB ~ PHYSICAL E‘TZEFES
w1 ueue
P ECHEDULER REG. EILE
REORDER
BUFFER
TEACE Frontend INT ¥ o S
CACHE —-—-- m BAT Int Usp Queue =
FETCH SCHEDULER INT | EXEC
UNLT PETYSICAL UNLTS
REMAMER REC. FILE I
l. T i DD R
: : e Uop Quen BIEM ' ¥ GEM . ¥
A RCHEDULER UNITS L1
R Eﬂﬁa - RETIREMENT
1
: _______ ; T | _ | Selpctic ek
' | Stveaim—based ! - - == - [ogig
;] : Hardwale ol ; : : —
hsiroction | 1
Prefetcher | 1
Diecode] i i ! | | STORE -
' l i . BUFFER
I + I 1 ! | —— R T
I 1
i ' l I !
I
: --=m L2 Access Quene P S P P T T ! :
| .
1 T I
1 1 RS e e a8 I
I
: ¥ ! RUNAHEAD
b e e CACHE
From memaly
L2 CACHE o = = oo
Fronl Side Bus To mematy
——————————————— s - -

24

Scoess Qoene

Runahead-Prefetcher | nteraction

25

1.4
1.3 1
1.2 1

@ No prefetcher, no runahead

B Prefetcher, no runahead
[0 Runahead, no prefetcher
B Runahead and prefetcher

36%

laW. VaVi
470

1.1-

210
3]

82%

T 0.8

207

=
5 0.6

17%

>
05
Z04-

0.3 1
0.2 1

bl

53%

0.0

tpcc verilog nastran

3
X

48%

ERER
il

gcc vortex mgrid apsi ammp

Instructions Per Cycle

14

Effect of a Better Frontend

26

13

13%

20%

@ Baseline w/ perf TC

1.2

1.1

1.0

0.9

0.8 1

0.7 1

0.6 1

0.5 1

0.4 -

0.3 1

0.2 1

0.1 1

13%

29%

B Runahead w/ perf TC

PV Vi
o470

15%

21%

26%

O Baseline w/ perf TC and BP
O Runahead w/ perf TC and BP

0,
3504 20%

8%
15%

37%

31%

27% 8% o71%

75%

0.0

S95

FPOO INTOO WEB

MM

PROD

SERV WS AVG

Cycles orinstructions after the runahead-causing L2 miss

850

800

750

700

650

600

550

500

450

400

350

300

250

200

150

100

50

When do we see the L2 misses in Runahead?

L2 Data Miss Distances

N

—e—cycles
—s— nstrs

miss 1

miss2 miss3 miss4 miss5 miss6 miss7 miss8 miss9 miss 10 miss 11 miss 12 miss 13 miss 14 miss 15 miss 16

nth out-of-window miss

27

Percentage of first out-of-window L2 misses

45.00%

40.00%

35.00%

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

Distance of thefirst L2 miss in runahead mode

Where does the first L2 miss occur?

‘Il e

128-256 256-384 384-512 512-640 640-768 768-896 896-1024 1024-1536

Distance in instructions from the runahead-causing L2 miss

1536+

28

I nstructions Per Cycle

Instruction vs. Data Prefetching Benefit

29

1.3

87% W Baseline

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2 1
0.1 1

0.0 -

O Runahead with no inst benefit

B Runahead with all benefits

87/%

91%

74%

88%

5504 96%

S95 FPOO INTOO WEB MM PROD SERV

0,
S
D

Ingtructions Per Cycle

1.4

Runahead with aLarger L2 Cache

1.3

6%

@ No Runahead - 0.5 MB L2

1.2 A
1.1

0.9 -
0.8 1
0.7 -
0.6
0.5 -
0.4 A
0.3 1
0.2 -
0.1 A

70/
7

U
12%

B Runahead - 0.5 MB L2
0 No Runahead -1 MB L2

B Runahead -1 MB L2

27%

13%

8%

O No Runahead -4 MB L2
B Runahead -4 MB L2

11%

19%

12%

10%

12%

S95

30%

J.\J/U

30%

14%

FPOO INTOO

8% 179

22%

130 32%

PROD

520/40 Y0

16%

SERV WS AVG

31

Runahead on in-order?

12% Ein-order baseline

M in-order baseline with runahead

[1 out-of-order baseline

M out-of-order baseline with runahead

12%

22%

16% 52%

21%

28%

95 FPOO INTOO WEB MM PROD SERV WS AVG

Instructions Per Cycle

1.0~

-
Lh
L

=
=
L b

Future Model Results

mm Fpinie baseline

23% = With Ronahead
mm With Peifect L2
6l%

595 INTOO WEB MM PROD SERV
Suite

1%

W5

23%

AVG

32

Instructions Per Cycle

[—
n o
| i 1 i

=
=
L i

Future Model with Better Frontend

== Fuiure baseline with Peitect TC, pertect BP
we Fotnre baseline with Pettect TC, pertect BP and Runahead
m= Fointe baseline with Petfect TC, p:l'Fn:i BP and Peitecti L2

19% 3405

395 Bib 0% 530

38% 1%

bE%

595 INTOO WEB MM PROD SERV WS AVG
Suite

33

