
Bottleneck Identification and Scheduling

 in Multithreaded Applications

José A. Joao

M. Aater Suleman

Onur Mutlu

Yale N. Patt

Executive Summary
 Problem: Performance and scalability of multithreaded applications

are limited by serializing bottlenecks

 different types: critical sections, barriers, slow pipeline stages

 importance (criticality) of a bottleneck can change over time

 Our Goal: Dynamically identify the most important bottlenecks and
accelerate them

 How to identify the most critical bottlenecks

 How to efficiently accelerate them

 Solution: Bottleneck Identification and Scheduling (BIS)

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and
implement waiting for bottlenecks with a special instruction (BottleneckWait)

 Hardware: identify bottlenecks that cause the most thread waiting and
accelerate those bottlenecks on large cores of an asymmetric multi-core system

 Improves multithreaded application performance and scalability,
outperforms previous work, and performance improves with more cores

 2

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling

 Evaluation

 Conclusions

3

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists  on the critical path

 Critical sections
 Ensure mutual exclusion  likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing  the latest thread arriving

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait  on the critical path

4

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

 Lock A

 Traverse list A

 Remove X from A

 Unlock A

 Compute on X

 Lock B

 Traverse list B

 Insert X into B

 Unlock B

until A is empty

5

Lock A is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

6

MySQL running Sysbench queries, 16 threads

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling

 Evaluation

 Conclusions

7

Previous Work

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07]

 Accelerate only the Amdahl’s bottleneck

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09]

 Accelerate only critical sections

 Does not take into account importance of critical sections

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11]

 Accelerate only stages with lowest throughput

 Slow to adapt to phase changes (software based library)

No previous work can accelerate all three types of bottlenecks or
quickly adapts to fine-grain changes in the importance of bottlenecks

Our goal: general mechanism to identify performance-limiting bottlenecks of
any type and accelerate them on an ACMP

8

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling (BIS)

 Methodology

 Results

 Conclusions

9

10

Bottleneck Identification and Scheduling (BIS)

 Key insight:

 Thread waiting reduces parallelism and
is likely to reduce performance

 Code causing the most thread waiting
 likely critical path

 Key idea:

 Dynamically identify bottlenecks that cause
the most thread waiting

 Accelerate them (using powerful cores in an ACMP)

1. Annotate

bottleneck code

2. Implement waiting

 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

11

Bottleneck Identification and Scheduling (BIS)

 while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

Critical Sections: Code Modifications

12

 …

 …

 Wait loop for watch_addr

 …

Critical Sections: Code Modifications

 …

 BottleneckCall bid, targetPC

 …

targetPC: while cannot acquire lock

 acquire lock

 …

 release lock

 BottleneckReturn bid

13

 BottleneckWait bid, watch_addr

 …

 …

 Wait loop for watch_addr

 …

Critical Sections: Code Modifications

 …

 BottleneckCall bid, targetPC

 …

targetPC: while cannot acquire lock

 acquire lock

 …

 release lock

 BottleneckReturn bid

14

 BottleneckWait bid, watch_addr

 …

 …
Used to enable

acceleration

Used to keep track of
waiting cycles

15

Barriers: Code Modifications

 …

 BottleneckCall bid, targetPC

 enter barrier

 while not all threads in barrier

 BottleneckWait bid, watch_addr

 exit barrier

 …

targetPC: code running for the barrier

 …

 BottleneckReturn bid

16

Pipeline Stages: Code Modifications

 BottleneckCall bid, targetPC

 …

targetPC: while not done

 while empty queue

 BottleneckWait prev_bid

 dequeue work

 do the work …

 while full queue

 BottleneckWait next_bid

 enqueue next work

 BottleneckReturn bid

1. Annotate

bottleneck code

2. Implements waiting

 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

17

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

 Performance-limiting bottleneck identification and
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways

 Increasing core frequency/voltage

 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP

18

Large core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core
Small

 core

Small

 core

1. Annotate

bottleneck code

2. Implements waiting

 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

19

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

20

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Determining Thread Waiting Cycles for Each Bottleneck

21

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0

Determining Thread Waiting Cycles for Each Bottleneck

22

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 1

Determining Thread Waiting Cycles for Each Bottleneck

23

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=2, twc = 1

Determining Thread Waiting Cycles for Each Bottleneck

24

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=2, twc = 3

Determining Thread Waiting Cycles for Each Bottleneck

25

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=2, twc = 5

1. Annotate

bottleneck code

2. Implements waiting

 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

26

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

27

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

bid=x4600, twc=100

bid=x4700, twc=10000

Bottleneck Acceleration

28

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckCall x4600

Execute locally

bid=x4600, twc=100

bid=x4700, twc=10000

 twc < Threshold

Bottleneck Acceleration

29

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckCall x4700

Execute locally Execute remotely

bid=x4600, twc=100

bid=x4700, twc=10000  twc > Threshold

Bottleneck Acceleration

30

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

BottleneckCall x4700

Execute locally Execute remotely

bid=x4600, twc=100

bid=x4700, twc=10000

Bottleneck Acceleration

31

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

Acceleration

Index Table (AIT)
bid=x4700 , large core 0

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

bid=x4700 , large core 0

 twc < Threshold

 twc > Threshold

BIS Mechanisms

 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles 

 Accelerating Bottlenecks 

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization

 Preemptive acceleration

 Support for multiple large cores

32

False Serialization and Starvation

 Observation: Bottlenecks are picked from Scheduling Buffer
in Thread Waiting Cycles order

 Problem: An independent bottleneck that is ready to execute
has to wait for another bottleneck that has higher thread
waiting cycles  False serialization

 Starvation: Extreme false serialization

 Solution: Large core detects when a bottleneck is ready to
execute in the Scheduling Buffer but it cannot  sends the

bottleneck back to the small core

33

Preemptive Acceleration

 Observation: A bottleneck executing on a small core can
become the bottleneck with the highest thread waiting cycles

 Problem: This bottleneck should really be accelerated (i.e.,
executed on the large core)

 Solution: The Bottleneck Table detects the situation and
sends a preemption signal to the small core. Small core:

 saves register state on stack, ships the bottleneck to the large core

 Main acceleration mechanism for barriers and pipeline stages

34

Support for Multiple Large Cores

 Objective: to accelerate independent bottlenecks

 Each large core has its own Scheduling Buffer
(shared by all of its SMT threads)

 Bottleneck Table assigns each bottleneck to
a fixed large core context to

 preserve cache locality

 avoid busy waiting

 Preemptive acceleration extended to send multiple
instances of a bottleneck to different large core contexts

35

Hardware Cost

 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core,
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB

36

BIS Performance Trade-offs
 Bottleneck identification:

 Small cost: BottleneckWait instruction and Bottleneck Table

 Bottleneck acceleration on an ACMP (execution migration):

 Faster bottleneck execution vs. fewer parallel threads

 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality

 Shared data stays on large core (good)

 Private data migrates to large core (bad, but latency hidden with
Data Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency

 Migration latency usually hidden by waiting (good)

 Unless bottleneck not contended (bad, but likely to not be on critical path)

37

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling

 Evaluation

 Conclusions

38

Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications

 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT

 1 large core is area-equivalent to 4 small cores

 Details:

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

39

Comparison Points (Area-Equivalent)

 SCMP (Symmetric CMP)

 All small cores

 Results in the paper

 ACMP (Asymmetric CMP)

 Accelerates only Amdahl’s serial portions

 Our baseline

 ACS (Accelerated Critical Sections)

 Accelerates only critical sections and Amdahl’s serial portions

 Applicable to multithreaded workloads
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)

 Accelerates only slowest pipeline stages

 Applicable to pipeline-parallel workloads (rank, pagemine)

40

BIS Performance Improvement

41

Optimal number of threads, 28 small cores, 1 large core

ACS FDP

BIS Performance Improvement

42

Optimal number of threads, 28 small cores, 1 large core

limiting bottlenecks change over time

BIS Performance Improvement

43

Optimal number of threads, 28 small cores, 1 large core

barriers, which ACS

cannot accelerate

BIS Performance Improvement

44

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%

 BIS improves scalability on 4 of the benchmarks

Why Does BIS Work?

45

Fraction of execution time spent on predicted-important bottlenecks

Why Does BIS Work?

46

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

Why Does BIS Work?

47

 Coverage: fraction of program critical path that is actually identified as bottlenecks

 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

Scaling Results

48

Performance increases with:

1) More small cores

 Contention due to bottlenecks
increases

 Loss of parallel throughput due
to large core reduces

2) More large cores

 Can accelerate
independent bottlenecks

 Without reducing parallel
throughput (enough cores)

2.4%
6.2%

15% 19%

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling

 Evaluation

 Conclusions

49

Conclusions

 Serializing bottlenecks of different types limit performance of
multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution:

 Dynamically identifies bottlenecks that cause the most thread waiting
and accelerates them on large cores of an ACMP

 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:

 15% speedup over ACS/FDP

 Can accelerate multiple independent critical bottlenecks

 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration
for future ACMPs without programmer effort

50

Thank you.

Bottleneck Identification and Scheduling

 in Multithreaded Applications

José A. Joao

M. Aater Suleman

Onur Mutlu

Yale N. Patt

Backup Slides

Major Contributions

 New bottleneck criticality predictor: thread waiting
cycles
 New mechanisms (compiler, ISA, hardware) to accomplish this

 Generality to multiple bottlenecks

 Fine-grained adaptivity of mechanisms

 Applicability to multiple cores

54

Workloads

55

Scalability at Same Area Budgets

56

iplookup mysql-1 mysql-2 mysql-3

specjbb sqlite tsp webcache

mg ft rank pagemine

Scalability at Same Area Budgets

57

iplookup mysql-1 mysql-2 mysql-3

specjbb sqlite tsp webcache

mg ft rank pagemine

Scalability at Same Area Budgets

58

iplookup mysql-1 mysql-2 mysql-3

specjbb sqlite tsp webcache

mg ft rank pagemine

Scalability with #threads = #cores (I)

59

iplookup mysql-1

60

mysql-2 mysql-3

Scalability with #threads = #cores (II)

61

specjbb sqlite

Scalability with #threads = #cores (III)

62

tsp webcache

Scalability with #threads = #cores (IV)

63

mg ft

Scalability with #threads = #cores (V)

64

rank pagemine

Scalability with #threads = #cores (VI)

Optimal number of threads – Area=8

65

Optimal number of threads – Area=16

66

Optimal number of threads – Area=32

67

Optimal number of threads – Area=64

68

BIS and Data Marshaling, 28 T, Area=32

69

