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Executive Summary 
 Problem: Performance and scalability of multithreaded applications  

are limited by serializing bottlenecks 

 different types: critical sections, barriers, slow pipeline stages 

 importance (criticality) of a bottleneck can change over time 
 

 Our Goal: Dynamically identify the most important bottlenecks and  
accelerate them 

 How to identify the most critical bottlenecks 

 How to efficiently accelerate them 
 

 Solution: Bottleneck Identification and Scheduling (BIS) 

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and 
implement waiting for bottlenecks with a special instruction (BottleneckWait) 

 Hardware: identify bottlenecks that cause the most thread waiting and 
accelerate those bottlenecks on large cores of an asymmetric multi-core system 
 

 Improves multithreaded application performance and scalability, 
outperforms previous work, and performance improves with more cores 
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Bottlenecks in Multithreaded Applications 

Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

 Amdahl’s serial portions 
 Only one thread exists  on the critical path 

 

 Critical sections 
 Ensure mutual exclusion  likely to be on the critical path if contended 

 

 Barriers 
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path 
 

 Pipeline stages 

 Different stages of a loop iteration may execute on different threads,  
slowest stage makes other stages wait  on the critical path 
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Observation: Limiting Bottlenecks Change Over Time 

A=full linked list; B=empty linked list 

repeat 

 Lock A 

  Traverse list A 

  Remove X from A 

 Unlock A 

 Compute on X 

 Lock B 

  Traverse list B 

  Insert X into B 

 Unlock B 

until A is empty 
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Lock A is limiter 

32 threads 



Limiting Bottlenecks Do Change on Real Applications 
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MySQL running Sysbench queries, 16 threads 
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Previous Work 

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]  

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07] 

 Accelerate only the Amdahl’s bottleneck 
 

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09] 

 Accelerate only critical sections 

 Does not take into account importance of critical sections 
 

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11] 

 Accelerate only stages with lowest throughput 

 Slow to adapt to phase changes (software based library) 

 

No previous work can accelerate all three types of bottlenecks or  
quickly adapts to fine-grain changes in the importance of bottlenecks 

 

Our goal: general mechanism to identify performance-limiting bottlenecks of 
any type and accelerate them on an ACMP 
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Bottleneck Identification and Scheduling (BIS) 

 Key insight: 

 Thread waiting reduces parallelism and  
is likely to reduce performance 

 Code causing the most thread waiting                             
 likely critical path 
 

 

 

 Key idea: 

 Dynamically identify bottlenecks that cause  
the most thread waiting 

 Accelerate them (using powerful cores in an ACMP) 



1. Annotate 

bottleneck code 

2. Implement waiting 

     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



   while cannot acquire lock 

    Wait loop for watch_addr 

   acquire lock 

   … 

   release lock 

 

Critical Sections: Code Modifications 
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   … 

 

 

 

 

 

   … 

 



  

    Wait loop for watch_addr 

    

   … 

    

 

Critical Sections: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   … 

targetPC:  while cannot acquire lock 

  

   acquire lock 

   … 

   release lock 

   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 

 

 

 

 

 

   … 



  

    Wait loop for watch_addr 

    

   … 

    

 

Critical Sections: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   … 

targetPC:  while cannot acquire lock 

  

   acquire lock 

   … 

   release lock 

   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 

 

 

 

 

 

   … 
Used to enable 

acceleration 

Used to keep track of 
waiting cycles 
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Barriers: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   enter barrier 

   while not all threads in barrier 

    BottleneckWait bid, watch_addr 

   exit barrier 

   … 

targetPC:  code running for the barrier 

   … 

   BottleneckReturn bid 
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Pipeline Stages: Code Modifications 

   BottleneckCall bid, targetPC 

   … 

targetPC: while not done 

    while empty queue 

     BottleneckWait prev_bid 

    dequeue work 

    do the work … 

    while full queue 

     BottleneckWait next_bid 

    enqueue next work 

   BottleneckReturn bid 

 



1. Annotate 

bottleneck code 

2. Implements waiting 

     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



BIS: Hardware Overview 

 Performance-limiting bottleneck identification and 
acceleration are independent tasks 

 Acceleration can be accomplished in multiple ways 

 Increasing core frequency/voltage 

 Prioritization in shared resources [Ebrahimi+, MICRO’11] 

 Migration to faster cores in an Asymmetric CMP 
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Large core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 
Small 

 core 

Small 

 core 



1. Annotate 

bottleneck code 

2. Implements waiting 

     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Determining Thread Waiting Cycles for Each Bottleneck 

20 

Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 



Determining Thread Waiting Cycles for Each Bottleneck 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 



Determining Thread Waiting Cycles for Each Bottleneck 

22 

Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 1 



Determining Thread Waiting Cycles for Each Bottleneck 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=2, twc = 1 



Determining Thread Waiting Cycles for Each Bottleneck 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2 

BottleneckWait x4500 

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=2, twc = 3 



Determining Thread Waiting Cycles for Each Bottleneck 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2 

BottleneckWait x4500 

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=2, twc = 5 



1. Annotate 

bottleneck code 

2. Implements waiting 

     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

bid=x4600, twc=100 

bid=x4700, twc=10000 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckCall x4600 

Execute locally 

bid=x4600, twc=100 

bid=x4700, twc=10000 

  twc < Threshold 



Bottleneck Acceleration 

29 

Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckCall x4700 

Execute locally Execute remotely 

bid=x4600, twc=100 

bid=x4700, twc=10000   twc > Threshold 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

Scheduling Buffer (SB) 

bid=x4700, pc, sp, core1 

BottleneckCall x4700 

Execute locally Execute remotely 

bid=x4600, twc=100 

bid=x4700, twc=10000 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

Scheduling Buffer (SB) 

Acceleration 

Index Table (AIT) 
bid=x4700 , large core 0 

AIT 

bid=x4600, twc=100 

bid=x4700, twc=10000 

bid=x4700 , large core 0 

  twc < Threshold 

  twc > Threshold 



BIS Mechanisms 

 Basic mechanisms for BIS: 

 Determining Thread Waiting Cycles   

 Accelerating Bottlenecks   

 

 Mechanisms to improve performance and generality of BIS: 

 Dealing with false serialization 

 Preemptive acceleration 

 Support for multiple large cores 
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False Serialization and Starvation 

 Observation: Bottlenecks are picked from Scheduling Buffer 
in Thread Waiting Cycles order 

 

 Problem: An independent bottleneck that is ready to execute  
has to wait for another bottleneck that has higher thread 
waiting cycles  False serialization 

 

 Starvation: Extreme false serialization 

 

 Solution: Large core detects when a bottleneck is ready to 
execute in the Scheduling Buffer but it cannot  sends the 

bottleneck back to the small core 
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Preemptive Acceleration 

 Observation: A bottleneck executing on a small core can 
become the bottleneck with the highest thread waiting cycles 

 
 

 Problem: This bottleneck should really be accelerated (i.e., 
executed on the large core) 

 
 

 Solution: The Bottleneck Table detects the situation and  
sends a preemption signal to the small core. Small core: 

 saves register state on stack, ships the bottleneck to the large core 
 

 

 

 Main acceleration mechanism for barriers and pipeline stages 
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Support for Multiple Large Cores 

 Objective: to accelerate independent bottlenecks 

 

 Each large core has its own Scheduling Buffer  
(shared by all of its SMT threads) 

 

 Bottleneck Table assigns each bottleneck to  
a fixed large core context to 

 preserve cache locality 

 avoid busy waiting 

 

 Preemptive acceleration extended to send multiple 
instances of a bottleneck to different large core contexts 
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Hardware Cost 

 Main structures: 
 

 Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement 

 

 Scheduling Buffers (SB): one table per large core,  
as many entries as small cores 
 

 Acceleration Index Tables (AIT): one 32-entry table 
per small core 
 

 

 

 

 Off the critical path 

 

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB 
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BIS Performance Trade-offs 
 Bottleneck identification: 

 

 Small cost: BottleneckWait instruction and Bottleneck Table 
 

 

 Bottleneck acceleration on an ACMP (execution migration): 
 

 Faster bottleneck execution vs. fewer parallel threads 

 Acceleration offsets loss of parallel throughput with large core counts 
 

 Better shared data locality vs. worse private data locality 

 Shared data stays on large core (good) 

 Private data migrates to large core (bad, but latency hidden with  
Data Marshaling [Suleman+, ISCA’10]) 
 

 Benefit of acceleration vs. migration latency 

 Migration latency usually hidden by waiting (good) 

 Unless bottleneck not contended (bad, but likely to not be on critical path) 
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Methodology 

 Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications 

 Data mining kernels, scientific, database, web, networking, specjbb 
 

 Cycle-level multi-core x86 simulator 

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT 

 1 large core is area-equivalent to 4 small cores 
 

 Details: 

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 4GHz, in-order, 2-wide, 5-stage 

 Private 32KB L1, private 256KB L2, shared 8MB L3 

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency 
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Comparison Points (Area-Equivalent) 

 SCMP (Symmetric CMP) 

 All small cores 

 Results in the paper 
 

 ACMP (Asymmetric CMP) 

 Accelerates only Amdahl’s serial portions 

 Our baseline 
 

 ACS (Accelerated Critical Sections) 

 Accelerates only critical sections and Amdahl’s serial portions 

 Applicable to multithreaded workloads  
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft) 
 

 FDP (Feedback-Directed Pipelining) 

 Accelerates only slowest pipeline stages 

 Applicable to pipeline-parallel workloads (rank, pagemine) 
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BIS Performance Improvement 
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Optimal number of threads, 28 small cores, 1 large core 

ACS FDP 



BIS Performance Improvement 
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Optimal number of threads, 28 small cores, 1 large core 

limiting bottlenecks change over time 



BIS Performance Improvement 
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Optimal number of threads, 28 small cores, 1 large core 

barriers, which ACS  

cannot accelerate 



BIS Performance Improvement 
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Optimal number of threads, 28 small cores, 1 large core 

 BIS outperforms ACS/FDP by 15% and ACMP by 32% 

 BIS improves scalability on 4 of the benchmarks 

 



Why Does BIS Work? 
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Fraction of execution time spent on predicted-important bottlenecks 



Why Does BIS Work? 
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Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



Why Does BIS Work? 
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 Coverage: fraction of program critical path that is actually identified as bottlenecks 

 39% (ACS/FDP) to 59% (BIS) 

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks 

 72% (ACS/FDP) to 73.5% (BIS) 

 

Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



Scaling Results 
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Performance increases with: 

 

1) More small cores 

 Contention due to bottlenecks 
increases 

 Loss of parallel throughput due 
to large core reduces 

 

 

2) More large cores 

 Can accelerate  
independent bottlenecks 

 Without reducing parallel 
throughput (enough cores) 

2.4% 
6.2% 

15% 19% 
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Conclusions 

 Serializing bottlenecks of different types limit performance of 
multithreaded applications: Importance changes over time 
 

 BIS is a hardware/software cooperative solution:  

 Dynamically identifies bottlenecks that cause the most thread waiting 
and accelerates them on large cores of an ACMP 

 Applicable to critical sections, barriers, pipeline stages 
 

 BIS improves application performance and scalability: 

 15% speedup over ACS/FDP 

 Can accelerate multiple independent critical bottlenecks 

 Performance benefits increase with more cores 
 

 Provides comprehensive fine-grained bottleneck acceleration 
for future ACMPs without programmer effort 
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Thank you.  
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Major Contributions 

 New bottleneck criticality predictor: thread waiting 
cycles 
 New mechanisms (compiler, ISA, hardware) to accomplish this 

 

 Generality to multiple bottlenecks 

 

 Fine-grained adaptivity of mechanisms 

 

 Applicability to multiple cores 
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Workloads 

55 



Scalability at Same Area Budgets 

56 

iplookup mysql-1 mysql-2 mysql-3 

specjbb sqlite tsp webcache 

mg ft rank pagemine 



Scalability at Same Area Budgets 
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iplookup mysql-1 mysql-2 mysql-3 

specjbb sqlite tsp webcache 

mg ft rank pagemine 



Scalability at Same Area Budgets 
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iplookup mysql-1 mysql-2 mysql-3 

specjbb sqlite tsp webcache 

mg ft rank pagemine 



Scalability with #threads = #cores (I) 
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iplookup mysql-1 
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mysql-2 mysql-3 

Scalability with #threads = #cores (II) 
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specjbb sqlite 

Scalability with #threads = #cores (III) 



62 

tsp webcache 

Scalability with #threads = #cores (IV) 
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mg ft 

Scalability with #threads = #cores (V) 
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rank pagemine 

Scalability with #threads = #cores (VI) 



Optimal number of threads – Area=8 
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Optimal number of threads – Area=16 
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Optimal number of threads – Area=32 
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Optimal number of threads – Area=64 
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BIS and Data Marshaling, 28 T, Area=32 
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