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1.1 Introduction

As shown in Figure 1.1, a computing system consists of three fundamental
units: (i) units of computation to perform operations on data (e.g., processors,
as we have seen in a previous chapter), (ii) units of storage (or memory)
that store data to be operated on or archived, (iii) units of communication
that communicate data between computation units and storage units. The
storage/memory units are usually categorized into two: (i) memory system,
which acts as a working storage area, storing the data that is currently being
operated on by the running programs, and (ii) the backup storage system,
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2 Memory Systems

e.g., the hard disk, which acts as a backing store, storing data for a longer
term in a persistent manner. This chapter will focus on the “working storage
area” of the processor, i.e., the memory system.

Computing System
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Computing
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FIGURE 1.1: Computing system

The memory system is the repository of data from where data can be
retrieved and updated by the processor (or processors). Throughout the op-
eration of a computing system, the processor reads data from the memory
system, performs computation on the data, and writes the modified data back
into the memory system – continuously repeating this procedure until all the
necessary computation has been performed on all the necessary data.

1.1.1 Basic Concepts and Metrics

The capacity of a memory system is the total amount of data that it can
store. Every piece of data stored in the memory system is associated with
a unique address. For example, the first piece of data has an address of 0,
whereas the last piece of data has an address of capacity − 1. The full range
of possible addresses, spanning from 0 to capacity − 1, is referred to as the
address space of the memory system. Therefore, in order to access a particular
piece of data from the memory system, the processor must supply its address
to the memory system.

The performance of a memory system is characterized by several important
metrics: (i) latency, (ii) bandwidth, and (iii) parallelism. A high-performance
memory system would have low latency, high bandwidth, and high parallelism.
Latency is the amount of time it takes for the processor to access one piece of
data from the memory system. Bandwidth, also known as throughput, is the
rate at which the processor can access pieces of data from the memory system.
At first blush, latency and bandwidth appear to be inverses of each other. For
example, if it takes time T seconds to access one piece of data, then it would be
tempting to assume that 1

T pieces of data can be accessed over the duration of
1 second. However, this is not always true. To fully understand the relationship
between latency and bandwidth, we must also examine the third metric of a
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memory system’s performance. Parallelism is the number of accesses to the
memory system that can be served concurrently. If a memory system has a
parallelism of 1, then all accesses are served one-at-a-time, and this is the only
case in which bandwidth is the inverse of latency. But, if a memory system
has a parallelism of more than 1, then multiple accesses to different addresses
can be served concurrently, thereby overlapping their latencies. For example,
when the parallelism is equal to two, during the amount of time required to
serve one access (T ), another access is served in parallel. Therefore, while the
latency of an individual access remains unchanged at T , the bandwidth of the
memory system doubles to 2

T . More generally, the relationship among latency,
bandwidth, and parallelism of a memory system can be expressed as follows.

Bandwidth [accesses/time] =
Parallelism [unitless]

Latency [time/access]

While the bandwidth can be measured in the unit of accesses-per-time
(equation above), another way of expressing bandwidth is in the unit of bytes-
per-time – i.e., the-amount-of-data-accessed-per-time (equation below).

Bandwidth [bytes/time] =
Parallelism [unitless]

Latency [time/access]
× DataSize [bytes/access]

An additional characteristic of a memory system is cost. The cost of a
memory system is the capital expenditure required to implement it. Cost
is closely related to the capacity and performance of the memory system:
increasing the capacity and performance of a memory system usually also
makes it more expensive.

1.1.2 Two Components of the Memory System

When designing a memory system, computer architects strive to optimize
for all of the three characteristics explained above: large capacity, high perfor-
mance, and low cost. However, a memory system that has both large capacity
and high performance is also very expensive. For example, when one wants to
increase the capacity of memory, it is almost always the case that the latency
of memory also increases. Therefore, when designing a memory system within
a reasonable cost budget, there exists a fundamental trade-off relationship be-
tween capacity and performance: it is possible to achieve either large capacity
or high performance, but not both at the same time in a cost-effective manner.

As a result of the trade-off between capacity and performance, a modern
memory system typically consists of two components, as shown in Figure 1.2:
(i) a cache [44] (pronounced as “cash”), a component that is small but rela-
tively fast-to-access and (ii) main memory, a component that is large but rela-
tively slow-to-access. Between the two, main memory is the all-encompassing
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(i.e., “main”) repository whose capacity is usually determined to minimize
accesses to the storage system. However, if the memory system were to con-
sist only of main memory, then all accesses to the memory system would be
served by main memory, which is slow. That is why a memory system also
contains a cache: although a cache is much smaller than main memory, it is
fast (exactly because it is smaller). The memory system utilizes the cache by
taking a subset of the data from main memory and placing it into the cache
– thereby enabling some of the accesses to the memory system to be served
quickly by the cache. The data stored in the cache are replicas of the data
that are already already stored in main memory. Hence, the capacity of the
memory system as a whole is defined by the capacity of only the main memory
while ignoring the capacity of the cache. In other words, while the processor
can always access the data it wants from main memory, the cache exists to
expedite some of those accesses as long as they are to data that are replicated
in the cache. In fact, most memory systems employ not just one, but multiple
caches, each of which provides a different trade-off between capacity and per-
formance. For example, there can be two caches, one of which is even smaller
and faster than the other. In this case, the data in the smaller cache is a subset
of the data in the larger cache, similar to how the larger cache is a subset of
the main memory.

Memory System

Caches Main Memory

small & fast large & slow

FIGURE 1.2: Memory system

Note that the structure and operation of the hardware components that
make up the cache and main memory can be similar (in fact, they can be
exactly the same). However, the structure and operation of cache and memory
components are affected by (i) the function of the respective components
and (ii) the technology in which they are implemented. The main function
of caches is to store a small amount of data such that it can be accessed
quickly. Traditionally, caches have been designed using the SRAM technology
(so that they are fast), and main memory has been designed using the DRAM
technology (so that it has large capacity). As a result, caches and main memory
have evolved to be different in structure and operation, as we describe in later
sections (Section 1.4 and Section 1.5).
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1.2 Memory Hierarchy

An ideal memory system would have the following three properties: high
performance (i.e., low latency and high bandwidth), large capacity, and low
cost. Realistically, however, technological and physical constraints limit the
design of a memory system that achieves all three properties at the same
time. Rather, one property can be improved only at the expense of another
– i.e., there exists a fundamental trade-off relationship that tightly binds to-
gether performance, capacity, and cost of a memory system. (To simplify the
discussion, we will assume that we always want low cost, restricting ourselves
to the “zero-sum” trade-off relationship between performance and capacity.)
For example, main memory is a component of the memory system that pro-
vides large capacity but at relatively low performance, while a cache is another
component of the memory system that provides high performance but at rela-
tively small capacity. Therefore, caches and main memory lie at opposite ends
of the trade-off spectrum between performance and capacity.

We have mentioned earlier that modern memory systems consist of both
caches and main memory. The reasoning behind this is to achieve the best
of both worlds (performance and capacity) – i.e., a memory system that has
the high performance of a cache and the large capacity of main memory. If
the memory system consists only of main memory, then every access to the
memory system would experience the high latency (i.e., low performance)
of main memory. However, if caches are used in addition to main memory,
then some of the accesses to the memory system would be served by the
caches at low latency, while the remainder of the accesses are assured to find
their data in main memory due to its large capacity – albeit at high latency.
Therefore, as a net result of using both caches and main memory, the memory
system’s effective latency (i.e., average latency) becomes lower than that of
main memory, while still retaining the large capacity of main memory.

Within a memory system, caches and main memory are said to be part
of a memory hierarchy. More formally, a memory hierarchy refers to how
multiple components (e.g., cache and main memory) with different perfor-
mance/capacity properties are combined together to form the memory system.
As shown in Figure 1.3, at the “top-level” of the memory hierarchy lies the
fastest (but the smallest) component, whereas at the “bottom-level” of the
memory hierarchy lies the slowest (but the largest) component. Going from
top to bottom, the memory hierarchy typically consists of multiple levels of
caches (e.g., L1, L2, L3 caches in Figure 1.3, standing for respectively level-1,
level-2, level-3) – each of whose capacity is larger than the one above it – and a
single level of main memory at the bottom whose capacity is the largest. The
bottom-most cache (e.g., the L3 cache in Figure 1.3 which lies immediately
above main memory) is also referred to as the last-level cache.

When the processor accesses the memory system, it typically does so in
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FIGURE 1.3: Example of a memory hierarchy with three levels of caches

a sequential fashion by first searching the top component to see whether it
contains the necessary data. If the data is found, then the access is said to have
“hit” in the top component and the access is served there on-the-spot without
having to search the lower components of the memory hierarchy. Otherwise,
the access is said to have “missed” in the top component and it is passed
down to the immediately lower component in the memory hierarchy, where
the access may again experience either a hit or a miss. As an access goes
lower into the hierarchy, the probability of a hit becomes greater due to the
increasing capacity of the lower components, until it reaches the bottom-level
of the hierarchy where it is guaranteed to always hit (assuming the data is in
main memory).

Assuming a two-level memory hierarchy with a single cache and main
memory, the effective latency of the memory system can be expressed by the
following equation. In the equation, Phit

cache denotes the probability that an
access would hit in the cache, also know as the cache hit-rate.

Latencyeffective = Phit
cache × Latencycache + (1− Phit

cache)× Latencymain memory

• 0 ≤ Phit
cache ≤ 1

• Latencycache � Latencymain memory

Similarly, for a three-level memory hierarchy with two caches and main
memory, the effective latency of the memory system can be expressed by the
following equation.

Latencyeffective = Phit
cache1 × Latencycache1+

(1− Phit
cache1 )× {Phit

cache2 × Latencycache2 + (1− Phit
cache2 )× Latencymain memory}

• 0 ≤ Phit
cache1 ,P

hit
cache1 ≤ 1

• Latencycache1 < Latencycache2 � Latencymain memory
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As both equations show, a high hit-rate in the cache implies a lower effec-
tive latency. In the best case, when all accesses hit in the cache (Phit

cache = 1),
then the memory hierarchy has the lowest effective latency, equal to that of
the cache. While having a high hit-rate is always desirable, the actual value
of the hit-rate is determined primarily by (i) the cache’s size and (ii) the
processor’s memory access behavior. First, compared to a small cache, a large
cache is able to store more data and has a better chance that a given access
will hit in the cache. Second, if the processor tends to access a small set of
data over and over again, the cache can store those data so that subsequent
accesses will hit in the cache. In this case, a small cache would be sufficient
to achieve a high hit-rate.

Fortunately, many computer programs – that the processor executes –
access the memory system in this manner. In other words, many computer
programs exhibit locality in their memory access behavior. Locality exists in
two forms: temporal locality and spatial locality. First, given a piece of data that
has been accessed, temporal locality refers to the phenomenon (or memory
access behavior) in which the same piece of data is likely to be accessed again
in the near future. Second, given a piece of data that has been accessed,
spatial locality refers to the phenomenon (or memory access behavior) in
which neighboring pieces of data (i.e., data at nearby addresses) are likely
to be accessed in the near future. Thanks to both temporal/spatial locality,
the cache – and, more generally, the memory hierarchy – is able to reduce the
effective latency of the memory system.

1.3 Managing the Memory Hierarchy

As mentioned earlier, every piece of data within a memory system is as-
sociated with a unique address. The set of all possible addresses for a mem-
ory system is called the address space and it ranges from 0 to capacity − 1,
where capacity is the size of the memory system. Naturally, when software
programmers compose computer programs, they rely on the memory system
and assume that specific pieces of the program’s data can be stored at specific
addresses without any restriction, as long as the addresses are valid – i.e., the
addresses do not overflow the address space provided by the memory system.
In practice, however, the memory system does not expose its address space
directly to computer programs. This is due to two reasons.

First, when a computer program is being composed, the modern software
programmer has no way of knowing the capacity of the memory system on
which the program will run. For example, the program may run on a computer
that has a very small large memory system (e.g., 1 TB capacity) or a very
small memory system (e.g., 1 MB capacity). While an address of 1 GB is
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perfectly valid for the first memory system, the same address is invalid for
the second memory system, since it exceeds the maximum bound (1 MB) of
the address space. As a result, if the address space of the memory system is
directly exposed to the program, the software programmer can never be sure
which addresses are valid and can be used to store data for the program she
is composing.

Second, when a computer program is being composed, the software pro-
grammer has no way of knowing which other programs will run simultaneously
with the program. For example, when the user runs the program, it may run
on the same computer as many other different programs, all of which may hap-
pen to utilize the same address (e.g., address 0) to store a particular piece of
their data. In this case, when one program modifies the data at that address, it
overwrites another program’s data that was stored at the same address, even
though it should not be allowed to. As a result, if the address space of the
memory system is directly exposed to the program, then multiple programs
may overwrite and corrupt each other’s data, leading to incorrect execution
for all of the programs.

1.3.1 Virtual vs. Physical Address Spaces

As a solution to these two problems, a memory system does not directly
expose its address space, but instead provides the illusion of an extremely large
address space that is separate for each individual program. While the illusion
of a large address space solves the first problem of different capacities across
different memory systems, the illusion of a separate large address space for each
individual program solves the second problem of multiple programs modifying
data at the same address. Since such large and separate address spaces are only
an illusion provided to the programmer to make her life easier in composing
programs, they are referred to as virtual address spaces. In contrast, the actual
underlying address space of the memory system is called the physical address
space. To use concrete numbers from today’s systems (circa 2013), the physical
address space of a typical 8 GB memory system ranges from 0 to 8 GB − 1,
whereas the virtual address space for a program typically ranges from 0 to
256 TB − 1.1

A virtual address, just by itself, does not represent any real storage location
unless it is actually backed up by a physical address. It is the job of the
operating system – a program that manages all other programs as well as
resources in the computing system – to substantiate a virtual address by
mapping it to a physical address. For example, at the very beginning of when
a program is executed, none of its virtual addresses are mapped to physical
addresses. At this point, if the program attempts to store a piece of data to a
particular virtual address, the operating system must first intervene on behalf

1For example, the current generation of mainstream x86-64 processors manufactured by
Intel uses 48-bit virtual addresses – i.e., a 256 TB virtual address space (248 = 256 T ) [13].
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of the program: the operating system maps the virtual address to a physical
address that is free – i.e., a physical address that is not yet mapped to another
virtual address. Once this mapping has been established, it is memorized by
the operating system and used later for “translating” any subsequent access
to that virtual addresses to its corresponding physical address (where the data
is stored).

1.3.2 Virtual Memory System

The entire mechanism, described so far, in which the operating system
maps and translates between virtual and physical addresses is called virtual
memory. There are three considerations when designing a virtual memory
system as part of an operating system: (i) when to map a virtual address to
a physical address, (ii) the mapping granularity, and (iii) what to do when
physical addresses are exhausted.

0

···

virtual address space 1

4KB 8KB 12KB 256TB

virtual page

0

···

virtual address space 2

4KB 8KB 12KB 256TB

virtual page

0

···

physical address space

4KB 8KB 12KB 8GB

physical page

FIGURE 1.4: Virtual memory system

First, most virtual memory systems map a virtual address when it is ac-
cessed for the very first time – i.e., on-demand. In other words, if a virtual
address is never accessed, it is never mapped to a physical address. Although
the virtual address space is extremely large (e.g., 256 TB), in practice, only
a very small fraction of it is actually utilized by most programs. Therefore,
mapping the entirety of virtual address space to the physical address space
is wasteful, because the overwhelming majority of the virtual addresses will
never be accessed. Not to mention the fact that the virtual address space is
much larger than the physical address space such that it is not possible to
map all virtual addresses to begin with.

Second, a virtual memory system must adopt a granularity at which it
maps addresses from the virtual address space to the physical address space.
For example, if the granularity is set equal to 1 byte, then the virtual memory
system evenly divides the virtual/physical address into 1-byte virtual/physical
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“chunks,” respectively. Then, the virtual memory system can arbitrarily map
a 1-byte virtual chunk to any 1-byte physical chunk, as long as the physical
chunk is free. However, such a fine division of the address spaces into large
numbers of small chunks has a major disadvantage: it increases the complex-
ity of the virtual memory system. As we recall, once a mapping between a
pair of virtual/physical chunks is established, it must be memorized by the
virtual memory system. Hence, large numbers of virtual/physical chunks im-
ply a large number of possible mappings between the two, which increases the
bookkeeping overhead of memorizing the mappings. To reduce such an over-
head, most virtual memory systems coarsely divide the address spaces into
smaller numbers of chunks, where a chunk is called a page and whose typical
size is 4 KB. As shown in Figure 1.4, a 4 KB chunk of the virtual address
space is referred to as a virtual page, whereas a 4 KB chunk of the physical
address is referred to as a physical page (alternatively, a frame). Every time a
virtual page is mapped to a physical page, the operating system keeps track
of the mapping by storing it in a data structure called the page table.

Third, as a program accesses a new virtual page for the very first time,
the virtual memory system maps the virtual page to a free physical page.
However, if this happens over and over, the physical address space may become
exhausted – i.e., none of the physical pages are free since all of them have
been mapped to virtual pages. At this point, the virtual memory system must
“create” a free physical page by reclaiming one of the mapped physical pages.
The virtual memory system does so by evicting a physical page’s data from
main memory and “un-mapping” the physical page from its virtual page.
Once a free physical page is created in such a manner, the virtual memory
system can map it to a new virtual page. More specifically, the virtual memory
system takes the following three steps in order to reclaim a physical page and
map it to a new virtual page. First, the virtual memory system selects the
physical page that will be reclaimed, i.e., the victim. The selection process of
determining the victim is referred to as the page replacement policy [5]. While
the simplest policy is randomly selecting any physical page, such a policy may
significantly degrade the performance of the computing system. For example,
if a very frequently accessed physical page is selected as the victim, then a
future access to that physical page would be served by the hard disk. However,
since a hard disk is extremely slow compared to main memory, the access
would incur a very large latency. Instead, virtual memory systems employ
more sophisticated page replacement policies that try to select a physical
page that is unlikely to be accessed in the near future, in order to minimize
the performance degradation. Second, after a physical page has been selected
as the victim, the virtual memory system decides whether the page’s data
should be migrated out of main memory and into the hard disk. If the page’s
data had been modified by the program while it was in main memory, then the
page must be written back into the hard disk – otherwise, the modifications
that were made to the page’s data would be lost. On the other hand, if the
page’s data had not been modified, then the page can simply be evicted from
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main memory (without being written into the hard disk) since the program
can always retrieve the page’s original data from the hard disk. Third, the
operating system updates the page table so that the virtual page (that had
previously mapped to the victim) is now mapped to the hard disk instead of
a physical page in main memory. Finally, now that a physical page had been
reclaimed, the virtual memory system maps the free physical page to a new
virtual page and updates the page table accordingly.

After the victim has been evicted from main memory, it would be best
if the program does not access the victim’s data ever again. This is because
accessing the victim’s data incurs the large latency of the hard disk where
it is stored. However, if the victim is eventually accessed, then the virtual
memory system brings the victim’s data back from the hard disk and places
it into a free physical page in main memory. Unfortunately, if main memory
has no free physical pages remaining at this point, then another physical page
must be chosen as a victim and be evicted from main memory. If this happens
repeatedly, different physical pages are forced to ping-pong back and forth
between main memory and hard disk. This phenomenon, referred to as swap-
ping or thrashing, typically occurs when the capacity of the main memory is
not large enough to accommodate all of the data that a program is actively
accessing (i.e., its working set). When a computing system experiences swap-
ping, its performance degrades detrimentally since it must constantly access
the extremely slow hard disk instead of the faster main memory.

1.4 Caches

Generally, a cache is any structure that stores data that is likely to be
accessed again (e.g., frequently accessed data or recently accessed data) in
order to avoid the long latency operation required to access the data from
a much slower structure. For example, web servers on the internet typically
employ caches that store the most popular photographs or news articles so
that they can be retrieved quickly and sent to the end user. In the context
of the memory system, a cache refers to a small but fast component of the
memory hierarchy that stores the most recently (or most frequently) accessed
data among all data in the memory system [44, 26]. Since a cache is designed
to be faster than main memory, data stored in the cache can be accessed
quickly by the processor. The effectiveness of a cache depends on whether a
large fraction of the memory accesses “hits” in the cache and, as a result,
are able to avoid being served by the much slower main memory. Despite its
small capacity, a cache can still achieve a high hit-rate thanks to the fact that
many computer programs exhibit locality (Section 1.2) in their memory access
behavior: data that have been accessed in the past are likely to be accessed
again in the future. That is why a small cache, whose capacity is much less
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than that of main memory, is able to serve most of the memory accesses as
long as the cache stores the most recently (or most frequently) accessed data.

1.4.1 Basic Design Considerations

There are three basic design considerations when implementing a cache:
(i) physical substrate, (ii) capacity, and (iii) granularity of managing data.
Below, we discuss each of them in that order.

First, the physical substrate used to implement the cache must be able
to deliver much lower latencies than that used to implement main memory.
That is why SRAM (static random-access-memory, pronounced “es-ram”) has
been – and continues to be – by far the most dominant physical substrate for
caches. The primary advantage of SRAM is that it can operate at very high
speeds that are on par with the processor itself. In addition, SRAM consists of
the same type of semiconductor-based transistors that make up the processor.
(This is not the case with DRAM, which is used to implement main memory, as
we will see in Section 1.5.) So an SRAM-based cache can be placed – at low cost
– side-by-side with the processor on the same semiconductor chip, allowing
it to achieve even lower latencies. The smallest unit of SRAM is an SRAM
cell which typically consists of six transistors. The six transistors collectively
store a single bit of data (0 or 1) in the form of electrical voltage (“low” or
“high”). When the processor reads from an SRAM cell, the transistors feed
the processor with the data value that corresponds to their voltage levels. On
the other hand, when the processor writes into an SRAM cell, the voltage of
the transistors are appropriately adjusted to reflect the updated data value
that is being written.

Second, when determining the capacity of a cache, one must be careful to
balance the need for high hit-rate, low cost, and low latency. While a large
cache is more likely to provide a high hit-rate, it also has two shortcomings.
First, a large cache has high cost due to the increased number of transistors
that are required to implement it. Second, a large cache is likely to have a
higher latency. This is because orchestrating the operation of many transistors
is a complex task that introduces extra overhead delays (e.g., it may take a
longer time to determine the location of an address). In practice, a cache is
made large enough to achieve a sufficiently high hit-rate, but not large enough
to incur significantly high cost and latency.

Third, a cache is divided into many small pieces, called cache blocks, as
shown in Figure 1.5. A cache block is the granularity in which the cache
manages data. The typical size of a cache block is 64 bytes in modern memory
systems. For example, a 64 KB cache consists of 1024 separate cache blocks.
Each of these cache blocks can store data that corresponds to an arbitrary
64 byte “chunk” of the address space – i.e., any given 64-byte cache block can
contain data from address 0, or address 64, or address 128, address 192, and
so on. Therefore, a cache block requires some sort of a “label” that conveys
the address of the data stored in the cache block. For exactly this purpose,
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every cache block has its own tag where the address of the data (not the data
itself) is stored. When the processor accesses the cache for a piece of data at a
particular address, it searches the cache for the cache block whose tag matches
the address. If such a cache block exists, then the processor accesses the data
contained in the cache block – as explained earlier, this is called a cache hit.
In addition to its address, a cache block’s tag may also store other types of
information about the cache block. For example, whether the cache block is
empty, whether the cache block has been written to, or how recently the cache
block has been accessed. These topics and more will soon be discussed in this
section.

·
·
·
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1.4.2 Logical Organization

In addition to the basic considerations discussed above, the computer ar-
chitect must decide how a cache is logically organized – i.e., how it maps
64 byte chunks of the address space onto its 64 byte cache blocks. Since the
memory system’s address space is much larger than the cache’s capacity, there
are many more chunks than there are cache blocks. As a result, the mapping
between chunks and cache blocks is necessarily “many-to-few.” However, for
each individual chunk of the address space, the computer architect can design
a cache that has the ability to map the chunk to (i) any of its cache blocks or
(ii) only a specific cache block. These two different logical organizations rep-
resent two opposite extremes in the degree of freedom when mapping a chunk
to a cache block. This freedom, in fact, presents a crucial trade-off between
the complexity and utilization of the cache, as described below.

On the one hand, a cache that provides the greatest freedom in mapping
a chunk to a cache block is said to have a fully-associative organization (Fig-
ure 1.6, lower-left). When a new chunk is brought in from main memory, a
fully-associative cache does not impose any restriction on where the chunk can
be placed – i.e., the chunk can be stored in any of the cache blocks. There-
fore, as long as the cache has at least one empty cache block, the chunk is
guaranteed to be stored in the cache without having to make room for it by
evicting an already occupied (i.e., non-empty) cache block. In this regard, a
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fully-associative cache is the best at efficiently utilizing all the cache blocks
in the cache. However, the downside of a fully-associative cache is that the
processor must exhaustively search all cache blocks whenever it accesses the
cache, since any one of the cache blocks may contain the data that the pro-
cessor wants. Unfortunately, searching through all cache blocks not only takes
a long time (leading to high access latency), but also wastes energy.
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FIGURE 1.6: Logical organization

On the other hand, a cache that provides the least freedom in mapping a
chunk to a cache block is said to have a direct-mapped organization (Figure 1.6,
lower-middle). When a new chunk is brought in from main memory, a direct-
mapped cache allows the chunk to be placed in only a specific cache block.
For example, let us assume a 64 KB cache consisting of 1024 cache blocks
(64 bytes). A simple implementation of a direct-mapped cache would map
every 1024th chunk (64 bytes) of the address space to the same cache block
– e.g., chunks at address 0, address 64K, address 128K, etc. would all map to
the 0th cache block in the cache. But if the cache block is already occupied
with a different chunk, then the old chunk must first be evicted before a new
chunk can be stored in the cache block. This is referred to as a conflict – i.e.,
when two different chunks (corresponding to two different addresses) contend
with each other for the same cache block. In a direct-mapped cache, conflicts
can occur at one cache block even when all other cache blocks are empty. In
this regard, a direct-mapped cache is the worst at efficiently utilizing all the
cache blocks in the cache. However, the upside of a direct-mapped cache is
that the processor can simply search only one cache block to quickly determine
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whether the cache contains the data it wants. Hence, the access latency of a
direct-mapped cache is low.

As a middle ground between the two organizations (fully-associative vs.
direct-mapped), there is a third alternative called the set-associative organi-
zation [12] (Figure 1.6, lower-right), which allows a chunk to map to one of
multiple (but not all) cache blocks within a cache. If a cache has a total of
N cache blocks, then a fully-associative organization would map a chunk to
any of the N cache blocks, while a direct-mapped organization would map a
chunk to only 1 specific cache block. A set-associative organization, in con-
trast, is based on the concept of sets, which are small non-overlapping groups
of cache blocks. A set-associative cache is similar to a direct-mapped cache
in that a chunk is mapped to only one specific set. However, a set-associative
cache is also similar to a fully-associative cache in that the chunk can map to
any cache block that belongs to the specific set. For example, let us assume
a set-associative cache in which each set consists of 2 cache blocks, which is
called a 2-way set-associative cache. Initially, such a cache maps a chunk to
one specific set out of all N

2 sets. Then, within the set, the chunk can map to
either of the 2 cache blocks that belong to the set. More generally, a W -way
set-associative cache (1 < W < N) directly maps a chunk to one specific set,
while fully-associatively mapping a chunk to any of the W cache block within
the set. For a set-associative cache, the value of W is fixed when the cache is
designed and cannot be changed afterwards. However, depending on the value
of W , a set-associative cache can behave similarly to a fully-associative cache
(for large values of W ) or a direct-mapped cache (for small values of W ). In
fact, an N -way set-associative cache degenerates into a fully-associative cache,
whereas a 1-way set-associative cache degenerates into a direct-mapped cache.

1.4.3 Management Policies

If a cache has unlimited capacity, it would have the highest hit-rate since it
can store all of the processor’s data that is in memory. Realistically, however,
a cache has only a limited capacity. Therefore, it needs to be selective about
which data it should store – i.e., the cache should store only the data that is
the most likely to be accessed by the processor in the near future. In order to
achieve that goal, a cache employs various management policies that enable
it to make the best use of its small capacity: (i) allocation policy and (ii)
replacement policy. Below, we discuss each of them respectively.

First, the cache’s allocation policy determines how its cache blocks become
populated with data. Initially, before the execution of any program, all of the
cache blocks are empty. As a program starts to execute, it accesses new chunks
from the memory system that are not yet stored in the cache. Whenever this
happens (i.e., a cache miss), the cache’s allocation policy decides whether the
new chunk should be stored in one of the empty cache blocks. Since most
programs exhibit locality in their memory accesses, a chunk that is accessed
(even for the first time) is likely to be accessed again in the future. That is
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why always-allocate is one of the most popular allocation policies: for every
cache miss, the always-allocate policy populates an empty cache block with
the new chunk. (On the other hand, a different allocation policy may be more
discriminative and prevent certain chunks from being allocated in the cache.)
However, when the cache has no empty cache blocks left, a new chunk cannot
be stored in the cache unless the cache “creates” an empty cache block by
reclaiming one of the occupied cache blocks. The cache does so by evicting the
data stored in an occupied cache block and replacing it with the new chunk,
as described next.

Second, when the cache does not have an empty cache block where it can
store a new chunk, the cache’s replacement policy selects one of the occupied
cache blocks to evict, i.e., the victim cache block. The replacement policy
is invoked when a new chunk is brought into the cache. Depending on the
cache’s logical organization, the chunk may map to one or more cache blocks.
However, if all such cache blocks are already occupied, the replacement policy
must select one of the occupied cache blocks to evict from the cache. For a
direct-mapped cache, the replacement policy is trivial: since a chunk can be
mapped to only one specific cache block, then there is no choice but to evict
that specific cache block if it is occupied. Therefore, a replacement policy
applies only to set-associative or fully-associative caches, where a chunk can
potentially be mapped to one of multiple cache blocks – any one of which may
become the victim if all of those cache blocks are occupied. Ideally, the re-
placement policy should select the cache block that is expected to be accessed
the farthest away in the future, such that evicting the cache block has the
least impact on the cache’s hit-rate [3]. That is why one of the most common
replacement policy is the LRU (least-recently-used) policy, in which the cache
block that has been the least recently accessed is selected as the victim. Due
to the principle of locality, such a cache block is less likely to be accessed in the
future. Under the LRU policy, the victim is the least recently accessed cache
block among (i) all cache blocks within a set (for a set-associative cache) or
(ii) among all cache blocks within the cache (for a fully-associative cache).
To implement the LRU policy, the cache must keep track of each block in
terms of the last time when it was accessed. A similar replacement policy is
the LFU (least-frequently-used) policy, in which the cache block that has been
the least frequently accessed is selected as the victim. We refer the reader to
the following works for more details on cache replacement policies: Liptay [26]
and Qureshi et al. [36, 39].

1.4.4 Managing Multiple Caches

Until now, we have discussed the design issues and management policies for
a single cache. However, as described previously, a memory hierarchy typically
consists of more than just one cache. In the following, we discuss the policies
that govern how multiple caches within the memory hierarchy interact with
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each other: (i) inclusion policy, (ii) write handling policy, and (ii) partitioning
policy.

First, the memory hierarchy may consist of multiple levels of caches in
addition to main memory. As the lowest level, main memory always contains
the superset of all data stored in any of the caches. In other words, main
memory is inclusive of the caches. However, the same relationship may not
hold between one cache and another cache depending on the inclusion pol-
icy employed by the memory system [2]. There are three different inclusion
policies: (i) inclusive, (ii) exclusive, and (iii) non-inclusive. First, in the in-
clusive policy, a piece of data in one cache is guaranteed to be also found in
all higher levels of caches. Second, in the exclusive policy, a piece of data in
one cache is guaranteed not to be found in all higher levels of caches. Third,
in the non-inclusive policy, a piece of data in one cache may or may not be
found in higher levels of caches. Among the three policies, the inclusive and
exclusive policies are opposites of each other, while all other policies between
the two are categorized as non-inclusive. On the one hand, the advantage of
the exclusive policy is that it does not waste cache capacity since it does not
store multiple copies of the same data in all of the caches. On the other hand,
the advantage of the inclusive policy is that it is simplifies searching for data
when there are multiple processors in the computing system. For example, if
one processor wants to know whether another processor has the data it needs,
it does not need to search all levels of caches of that other processor, but
instead search only the largest cache. (This is related to the concept of cache
coherence which is not covered in this chapter.) Lastly, the advantage of the
non-inclusive policy is that it does not require the effort to maintain a strict
inclusive/exclusive relationship between caches. For example, when a piece of
data is inserted into one cache, inclusive or exclusive policies require that the
same piece of data be inserted into or evicted from other levels of caches. In
contrast, the non-inclusive policy does not have this requirement.

Second, when the processor writes new data into a cache block, the data
stored in the cache block is modified and becomes different from the data
that was originally brought into the cache. While the cache contains the newest
copy of the data, all lower levels of the memory hierarchy (i.e., caches and main
memory) still contain an old copy of the data. In other words, when a write
access hits in a cache, a discrepancy arises between the modified cache block
and the lower levels of the memory hierarchy. The memory system resolves
this discrepancy by employing a write handling policy. There are two types
of write handling policies: (i) write-through and (ii) write-back. First, in a
write-through policy, every write access that hits in the cache is propagated
down to the lowest levels of the memory hierarchy. In other words, when a
cache at a particular level is modified, the same modification is made for
all lower levels of caches and for main memory. The advantage of the write-
through policy is that it prevents any data discrepancy from arising in the first
place. But, its disadvantage is that every write access is propagated through
the entire memory hierarchy (wasting energy and bandwidth), even when
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the write access hits in the cache. Second, in a write-back policy, a write
access that hits in the cache modifies the cache block at only that cache,
without being propagated down the rest of the memory hierarchy. In this
case, however, the cache block contains the only modified copy of the data,
which is different from the copies contained in lower levels of caches and main
memory. To signify that the cache block contains modified data, a write-back
cache must have a dirty flag in the tag of each cache block: when set to
‘1’, the dirty flag denotes that the cache block contains modified data. Later
on, when the cache block is evicted from the cache, it must be written into
the immediately lower level in the memory hierarchy, where the dirty flag is
again set to ‘1’. Eventually, through a cascading series of evictions at multiple
levels of caches, the modified data is propagated all the way down to main
memory. The advantage of the write-back policy is that it can prevent write
accesses from always being written into all levels of the memory hierarchy –
thereby conserving energy and bandwidth. Its disadvantage is that it slightly
complicates the cache design since it requires additional dirty flags and special
handling when modified cache blocks are evicted.

Third, a cache at one particular level may be partitioned into two smaller
caches, each of which is dedicated to two different types of data: (i) instruction
and (ii) data. Instructions are a special type of data that tells the computer
how to manipulate (e.g., add, subtract, move) other data. Having two separate
caches (i.e., an instruction cache and a data cache) has two advantages. First,
it prevents one type of data from monopolizing the cache. While the processor
needs both types of data to execute a program, if the cache is filled with only
one type of data, the processor may need to access the other type of data from
lower levels of the memory hierarchy, thereby incurring a large latency. Second,
it allows each of the caches to be placed closer to the processor – lowering
the latency to supply instructions and data to the processor. Typically, one
part of the processor (i.e., the instruction fetch engine) accesses instructions,
while another part of the processor (i.e., the data fetch engine) accesses non-
instruction data. In this case, the two caches can each be co-located with
the part of the processor that accesses its data – resulting in lower latencies
and potentially higher operating frequency for the processor. For this reason,
only the highest level of the cache in the memory hierarchy, which is directly
accessed by the processor, is partitioned into an instruction cache and a data
cache.

1.4.5 Specialized Caches for Virtual Memory

Specialized caches have been used to accelerate address translation in vir-
tual memory systems (discussed in Section 1.3). The most commonly used
such cache is referred to as a TLB (translation lookaside buffer). The role of
a TLB is to cache the recently used virtual to physical address translations
by the processor such that the translation is quick for the virtual addresses
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that hit in the TLB. Essentially, a TLB is a cache that caches the parts of the
page table that are recently used by the processor.

1.5 Main Memory

While caches are predominantly optimized for high speed, in contrast, the
foremost purpose of main memory is to provide as large capacity as possible
at low cost and at reasonably low latency. That is why the preferred physical
substrate for implementing main memory is DRAM (dynamic random-access-
memory, pronounced “dee-ram”) [6]. The smallest unit of DRAM is a DRAM
cell, consisting of one transistor (1T) and one capacitor (1C). A DRAM cell
stores a single bit of data (0 or 1) in the form of electrical charge in its capacitor
(“discharged” or “charged”). DRAM’s primary advantage over SRAM lies in
its small cell size: a DRAM cell requires fewer electrical components (1T and
1C) than an SRAM cell (6T). Therefore, many more DRAM cells can be
placed in the same amount of area on a semiconductor chip, enabling DRAM-
based main memory to achieve a much larger capacity for approximately the
same amount of cost.

Typically, SRAM-based caches are integrated on the same semiconductor
chip as the processor. In contrast, DRAM-based main memory is implemented
using one or more dedicated DRAM chips that are separate from the processor
chip. This is due to two reasons. First, a large capacity main memory requires
such a large number of DRAM cells that they cannot all fit on the same
chip as the processor. Second, the process technology needed to manufacture
DRAM cells (with their capacitors) is not compatible at low cost with the
process technology needed to manufacture processor chips. Therefore, placing
DRAM and logic together would significantly increase cost in today’s systems.
Instead, main memory is implemented as one or more DRAM chips that are
dedicated for the large number of DRAM cells. From the perspective of the
processor, since DRAM-based main memory is not on the same chip as the
processor, it is sometimes referred to as “off-chip” main memory.

A set of electrical wires, called the memory bus, connects the processor
to the DRAM chips. Within a processor, there is a memory controller that
communicates with the DRAM chips using the memory bus. In order to access
a piece of data from the DRAM chips, the memory controller sends/receives
the appropriate electrical signals to/from the DRAM chips through the mem-
ory bus. There are three types of signals: (i) address, (ii) command, and (iii)
data. The address conveys the location of the data being accessed, the com-
mand conveys how the data is being accessed (e.g., read or write), and the
data is the actual value of the data itself. Correspondingly, a memory bus is
divided into three smaller sets of wires, each of which is dedicated to a specific
type of signal: (i) address bus, (ii) command bus, and (i) data bus. Among
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these three, only the data bus is bi-directional since the memory controller
can either send/receive data from the DRAM chips, whereas the address and
command buses are uni-directional since only the memory controller sends the
address and command to the DRAM chips.

1.5.1 DRAM Organization

As shown in Figure 1.7, a DRAM-based main memory system is logically
organized as a hierarchy of (i) channels, (ii) ranks, and (iii) banks. Banks are
the smallest memory structures that can be accessed in parallel with respect
to each other. This is referred to as bank-level parallelism [34]. Next, a rank
is a collection of DRAM chips (and their banks) that operates in lockstep. A
DRAM rank typically consists of eight DRAM chips, each of which has eight
banks. Since the chips operate in lockstep, the rank has only eight independent
banks, each of which is the set of the ith bank across all chips. Banks in
different ranks are fully decoupled with respect to their chip-level electrical
operation and, consequently, offer better bank-level parallelism than banks
in the same rank. Lastly, a channel is the collection of all banks that share
the same memory bus (address, command, data buses). While banks from the
same channel experience contention at the memory bus, banks from different
channels can be accessed completely independently of each other. Although
the DRAM system offers varying degrees of parallelism at different levels in its
organization, two memory requests that access the same bank must be served
one after another. To understand why, let us examine the logical organization
of a DRAM bank as seen by the memory controller.
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Figure 1.8 presents the logical organization of a DRAM bank. A DRAM
bank is a two-dimensional array of capacitor-based DRAM cells. It is viewed
as a collection of rows, each of which consists of multiple columns. Therefore,
every cell is identified by a pair of addresses: a row address and a column
address. Each bank contains a row-buffer which is an array of sense-amplifiers.
The purpose of a sense-amplifier is to read from a cell by reliably detecting
the very small amount of electrical charge stored in the cell. When writing to
a cell, on the other hand, the sense-amplifier acts as an electrical driver and
programs the cell by filling or depleting its stored charge. Spanning a bank
in the column-wise direction are wires called the bitlines, each of which can
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connect a sense-amplifier to any of the cells in the same column. A wire called
the wordline (one for each row) determines whether or not the corresponding
row of cells is connected to the bitlines.

1.5.2 Bank Operation

To serve a memory request that accesses data at a particular row and
column address, the memory controller issues three commands to a bank in
the order listed below. Each command triggers a specific sequence of events
within the bank to access the cell(s) associated with the address.

1. ACTIVATE (issued with a row address): Load the entire row into the
row-buffer.

2. READ/WRITE (issued with a column address): From the row-buffer,
access the data stored in a column. For a READ, transfer the data out
of the row-buffer to the processor. For a WRITE, modify the data in
the row-buffer according to the data received from the processor.

3. PRECHARGE: Clear the row-buffer.

Each DRAM command incurs a latency while it is processed by the DRAM
chip. Undefined behavior may arise if a command is issued before the previ-
ous command is fully processed. To prevent such occurrences, the memory
controller must obey a set of timing constraints while issuing commands to a
DRAM chip [16]. These constraints define when a command becomes ready
to be scheduled depending on all other commands issued before it to the same
channel, rank, or bank. The exact values of the timing constraints are speci-
fied by the DRAM chip’s datasheet and are different on a chip-by-chip basis.
However, a rule of thumb is that the three DRAM commands (ACTIVATE,
READ/WRITE, and PRECHARGE) each take about 15ns [16]. For more in-
formation on the organization and operation of a DRAM bank, we refer the
reader to Kim et al. [20]
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1.5.3 Memory Request Scheduling

When there are many memory requests waiting to access DRAM, the mem-
ory controller must choose one of the memory requests to schedule next. The
memory controller does so by employing a memory scheduling algorithm [40]
whose goal, in many current high-performance systems, is to select the most
favorable memory request for reducing the overall latency of the memory re-
quests. For example, let us assume there is a memory request waiting to access
a row that happens to be loaded in the row-buffer. In this case, since the row is
already in the row-buffer, the memory controller can skip the ACTIVATE and
PRECHARGE commands and directly proceed to issue the READ/WRITE
command. As a result, the memory controller can quickly serve that particular
memory request. Such a memory request – that accesses the row in the row-
buffer – is called a row-buffer hit. Many memory scheduling algorithms exploit
the low latency nature of row-buffer hits and prioritize such requests over oth-
ers [18, 19, 33, 34]. For more information on memory request scheduling, we
refer the reader to recent works that explored the topic [18, 19, 33, 34].

1.5.4 Refresh

A DRAM cell stores data as charge on a capacitor. Over time, this charge
steadily leaks, causing the data to be lost. That is why DRAM is named
“dynamic” RAM, since its charge changes over time. In order to preserve
data integrity, the charge in each DRAM cell must be periodically restored or
refreshed. DRAM cells are refreshed at the granularity of a row by reading it
out and writing it back in – which is equivalent to issuing an ACTIVATE and
a PRECHARGE to the row in succession.

In modern DRAM chips, all DRAM rows must be refreshed once every
64ms [16], which is called the refresh interval. The memory controller inter-
nally keeps track of time to ensure that it refreshes all DRAM rows before their
refresh interval expires. When the memory controller decides to refresh the
DRAM chips, it issues a REFRESH command. Upon receiving a REFRESH
command, a DRAM chip internally refreshes a few of its rows by activating
and precharging them. A DRAM chip refreshes only a few rows at a time since
it has a very large number of rows and refreshing all of them would incur a very
large latency. Since a DRAM chip cannot serve any memory requests while it
is being refreshed, it is important that the refresh latency is kept short such
that no memory request is delayed for too long. So instead of refreshing all
rows at the end of each 64ms interval, throughout a given 64ms time interval,
the memory controller issues many REFRESH commands, each of which trig-
gers the DRAM chip to refresh only a subset of rows. However, the memory
controller ensures that REFRESH commands are issued frequently enough
such that all rows eventually do become refreshed before 64ms has passed.
For more information on DRAM refresh (and methods to reduce its effect on
performance and energy), we refer the reader to Liu et al. [27]
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1.6 Current and Future Research Issues

The memory system continues to be a major bottleneck in almost all com-
puting systems (especially in terms of performance and energy/power con-
sumption). It is becoming even more of a computing system bottleneck today
and looking into the future: more and increasingly diverse processing cores
and agents are sharing parts of the memory system; applications that run
on the cores are becoming increasingly data and memory intensive; memory
is consuming significant energy and power in modern systems; and, there is
increasing difficulty scaling the well-established memory technologies, such
as DRAM, to smaller technology nodes. As such, managing memory in sig-
nificantly better ways at all levels of the transformation hierarchy, including
both the software and hardware levels, is becoming even more important.
Techniques or combinations of techniques that integrate the best ideas co-
operatively at multiple levels together appear promising to solve the difficult
performance, energy efficiency, correctness, security and reliability problems
we face in designing and managing memory systems today. In this section,
we briefly discuss some of the major research problems (as we see them)
related to caches and main memory, and describe recent potential solution
directions. Note that a comprehensive treatment of all research issues is out
of the scope of this chapter, and neither is it our intent. For an illustra-
tive treatment of some of the major research issues in memory systems, we
refer the reader to Mutlu [32] (http://users.ece.cmu.edu/~omutlu/pub/
onur-ismm-mspc-keynote-june-5-2011-short.pptx).

1.6.1 Caches

Efficient Utilization. To better utilize the limited capacity of a cache, many
replacement policies have been proposed to improve upon the simple LRU
policy. The LRU policy is not always the most beneficial across all memory
access patterns that have different amounts of locality. For example, in the
LRU policy, the most-recently-accessed data is always allocated in the cache
even if the data has low-locality (i.e., unlikely to be ever accessed again). To
make matters even worse, the low-locality data is unnecessarily retained in
the cache for a long time. This is because the LRU policy always inserts data
into the cache as the most-recently-accessed and evicts the data only after
it becomes the least-recently-accessed. As a solution, researchers have been
working to develop sophisticated replacement policies using a combination of
three approaches. First, when a cache block is allocated in the cache, it should
not always be inserted as the most-recently-accessed. Instead, cache blocks
with low-locality should be inserted as the least-recently-accessed, so that
they are quickly evicted from the cache to make room for other cache blocks
that may have more locality (e.g., [15, 35, 41]). Second, when a cache block
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is evicted from the cache, it should not always be the least-recently-accessed
cache block. Ideally, “dead” cache blocks (which will never be accessed in
the future) should be evicted – regardless of whether they are least-recently-
accessed or not. Third, when choosing the cache block to evict, there should
also be consideration for how costly it is to refetch the cache block from main
memory. Between two cache blocks, all else being equal, the cache block that
is likely to incur the shorter latency to refetch from main memory should be
evicted [36].

Quality-of-Service. In a multi-core system, the processor consists of many
cores, each of which can independently execute a separate program. In such
a system, parts of the memory hierarchy may be shared by some or all of the
cores. For example, the last-level cache in a processor is typically shared by all
the cores. This is because the last-level cache has a large capacity and, hence,
it is expensive to have multiple last-level caches separately for each core. In
this case, however, it is important to ensure that the shared last-level cache is
utilized by all the cores in a fair manner. Otherwise, a program running on one
of the cores may fill up the last-level cache with only its data and evict the data
needed by programs running on the other cores. To prevent such occurrences,
researchers have proposed mechanisms to provide quality-of-service when a
cache is shared by multiple cores. One mechanism is to partition the shared
cache among the cores in such a way that each core has a dedicated partition
where only the core’s data is stored (e.g., [14, 17, 25, 37]). Ideally, the size of
a core’s partition should be just large enough to hold the data that the core
is actively accessing (the core’s working set) and not any larger. Furthermore,
as the size of a core’s working set changes over time, the size of the core’s
partition should also dynamically expand or shrink in an appropriate manner.

Low Power. Increasing the energy-efficiency of computing systems is one of
the key challenges faced by computer architects. Caches are one of the prime
targets for energy optimization since they require large numbers of transistors,
all of which dissipate power. For example, researchers have proposed to reduce
a cache’s power consumption by lowering the operating voltage of the cache’s
transistors [43]. However, this introduces new trade-offs in designing a cache
that must be balanced: while a low voltage cache consumes less power, it may
also be slower and more prone to errors. Researchers have been examining
solutions to enable low-voltage caches that provide acceptable reliability at
acceptable cost [43].

1.6.2 Main Memory

Challenges in DRAM Scaling. Primarily due to its low cost-per-bit, DRAM
has long been the most popular physical substrate for implementing main
memory. In addition, DRAM’s cost-per-bit has continuously decreased as
DRAM process technology scaled to integrate more DRAM cells into the
same area on a semiconductor chip. However, improving DRAM cell den-
sity by reducing the cell size, as has been done traditionally, is becoming more
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difficult due to increased manufacturing complexity/cost and reduced cell re-
liability. As a result, researchers are examining alternative ways of enhancing
the performance and energy-efficiency of DRAM while still maintaining low
cost. For example, there have been recent proposals to reduce DRAM access
latency [24], to increase DRAM parallelism [20], and to reduce the number of
DRAM refreshes [27].

3D-Stacked Memory. A DRAM chip is connected to the processor chip
by a memory bus. In today’s systems, the memory bus is implemented us-
ing electrical wires on a motherboard. But, this has three disadvantages: high
power, low bandwidth, and high cost. First, since a motherboard wire is long
and thick, it takes a lot of power to transfer an electrical signal through it.
Second, since it takes even more power to transfer many electrical signals in
quick succession, there is a limit on the bandwidth that a motherboard wire
can provide. Third, the processor chip and the DRAM chip each have a stub
(called a pin) to which either end of a motherboard wire is connected. Unfor-
tunately, pins are expensive. Therefore, a memory bus that consists of many
motherboard wires (which requires just as many pins on the chips) increases
the cost of the memory system. As a solution, researchers have proposed to
stack one more DRAM chips directly on top a processor chip [4, 28] instead of
placing them side by side on the motherboard. In such a 3D-stacked configu-
ration, the processor chip can communicate directly with the DRAM chip(s),
thereby eliminating the need for motherboard wires and pins.

Emerging Technology. DRAM is by far the most dominant technology for
implementing main memory. However, there has been research to develop
alternative main memory technologies that may replace DRAM or be used
in conjunction with DRAM. For example, PCM (phase-change-memory, pro-
nounced “pee-cee-em”) is a technology in which data is stored as a resistance
value. A PCM cell consists of a small crystal whose resistance value can be
changed by applying heat to it at different rates. If heat is abruptly applied by
a short burst of high current, then the crystal is transformed into the amor-
phous state, which has high resistance. On the other hand, if heat is steadily
applied by a long burst of low current, then the crystal is transformed into
the crystalline state, which has low resistance. PCM has important advantages
that make it an attractive candidate for main memory [21, 38]: non-volatility
(i.e., data is not lost when the power is turned off and there is no need to
refresh PCM cells) and scalability (i.e., compared to DRAM, it may be easier
to make smaller PCM cells in the future). However, PCM also has the disad-
vantages of large latency (especially for writes) and limited write-endurance
(i.e., the PCM cell becomes unreliable beyond a certain number of writes),
the solution to which is the topic of on-going research. To overcome the short-
comings of different technologies, several recent works have examined the use
of multiple different technologies (e.g., PCM and DRAM together) as part
of main memory, an approach called hybrid memory or heterogeneous mem-
ory [7, 29, 38, 45]. The key challenge in hybrid memory systems is to devise
effective algorithms that place data in the appropriate technology such that
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the system can exploit the advantages of each technology while hiding the
disadvantages of each [29, 45].

Quality-of-Service. Similar to the last-level cache, main memory is also
shared by all the cores in a processor. When the cores contend to access main
memory, their accesses may interfere with each other and cause significant de-
lays. In the worst case, a memory-intensive core may continuously access main
memory in such a way that all the other cores are denied service from main
memory [30]. This would detrimentally degrade the performance of not only
those particular cores, but also of the entire computing system. To address
this problem, researchers have proposed mechanisms that provide quality-of-
service to each core when accessing shared main memory. For example, mem-
ory request scheduling algorithms can ensure that memory requests from all
the cores are served in a fair manner [18, 19, 33, 34]. Another approach is for
the user to explicitly specify memory service requirements of a program to the
memory controller so that the memory scheduling algorithm can subsequently
guarantee that those requirements are met [42]. Other approaches to quality-
of-service include mechanisms proposed to map the data of those applications
that significantly interfere with each other to different memory channels [31]
and mechanisms proposed to throttle down the request rate of the processors
that cause significant interference to other processors [8]. Request scheduling
mechanisms that prioritize bottleneck threads in parallel applications have
also been proposed [10]. The QoS problem gets exacerbated when the pro-
cessors that share the main memory are different, e.g., when main memory
is shared by a CPU consisting of multiple processors and a GPU, and recent
research has started to examine solutions to this [1]. Finally, providing QoS
and high performance in the presence of different types of memory requests
from multiple processing cores, such as speculative prefetch requests that aim
to fetch the data from memory before it is needed, is a challenging problem
that recent research has started providing solutions for [22, 23, 11, 9].

1.7 Summary

The memory system is a critical component of a computing system. It
serves as the repository of data from where the processor (or processors) can
access data. An ideal memory system would have both high performance and
large capacity. However, there exists a fundamental trade-off relationship be-
tween the two: it is possible to achieve either high performance or large capac-
ity, but not both at the same time in a cost-effective manner. As a result of
the trade-off, a memory system typically consists of two components: caches
(which are small but relatively fast-to-access) and main memory (which is
large but relatively slow-to-access). Multiple caches and a single main mem-
ory, all of which strike a different balance between performance and capacity,
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are combined to form a memory hierarchy. The goal of the memory hierarchy
is to provide the high performance of a cache at the large capacity of main
memory. The memory system is co-operatively managed by both the operating
system and the hardware.

This chapter provided an introductory level description of memory sys-
tems employed in modern computing systems, focusing especially on how the
memory hierarchy, consisting of caches and main memory, is organized and
managed. The memory system continues to be an even more critical bottleneck
going into the future, as described in Section 1.6. Many problems abound, yet
the authors of this chapter remain confident that promising solutions, some of
which are also described in Section 1.6, will also abound and hopefully prevail.
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