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Executive Summary Challenges in Main Memory Compression

Virtual Page

2. Decreases bandwidth consumption (46%)

3. Improves overall performance (9.5%) Challenge 1: Address Computation

Linearly Compressed Pages (LCP): Key Idea LCP Overview

" Page Table entry extension

compression type, size, and extended physical base
address

= Operating System management support
4 memory pools (512B, 1kB, 2kB, 4kB)
" Changes to cache tagging logic
physical page base address + cache line index (within a page)
" Handling page overflows
" Compression algorithms: BDI [2], FPC [3]
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Key Results: Compression Ratio, Bandwidth, Performance

Challenge 2: Mapping and Fragmentation
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Challenge 3: Physically Tagged Caches

LCP Optimizations

" Metadata cache
Avoids additional requests to metadata
" Memory bandwidth reduction

64B | 64B | 64B | 64B

" Zero pages and zero cache lines
Handled separately in TLB (1-bit) and metadata (1-bit per line )

4 memory transfers needed

4 cache lines in 1 transfer
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