Microsoft:
Research

Operating System Scheduling for Efficient
Online Self-Test in Robust Systems

Yanjing Ll
Stanford University

Onur Mutlu
Carnegie Mellon University

Subhasish Mitra
Stanford University

Why Online Self-Test & Diagnostics?

A

Failure
rate

D

lddg
ineffective

Burn-in difficult

Online Self-Test + Diagnostics

\

4

v

Soft errors
Built-In Soft Error
Resilience (BISER)

Transistor aging
Guardbands
expensive

Early-life failures

(ELF)

4l

Lifetime

>
Wearout Time

e Application: Failure prediction & detection

e Global optimization - software-orchestrated

Key Message

Minimize
system performance

imp act
Hardware- only CASP-aware
CASP OS scheduling

Test
coverage

' Higher coverage
Lower cost

Logic BIST
Efficiency

Results from Actual Xeon System

6y =)

PARSEC performance impact Text editor “vi” response time

0 28% Hardware-only CASP

15%
(perceptible
delay)

CASP-aware OS scheduling

©
®©
)
L
—
)
>
@
)
£
——
O
)
>
LLI

0.5%
_
Hardware-only CASP-aware

CASP OS scheduling No visible
delay

CASP runs for 1 sec every 10 sec.

CASP ldea
e [Li DATE 08]

e Concurrent with normal operation

© No system downtime

e Autonomous: on-chip test controller
e Stored Patterns: off-chip FLASH
© Comparable or better than production tests

© Test compression: X-Compact

Major Technology Trends Favor CASP

CASP Study: SUN OpenSPARC T1

| CASP control |

|

Cross-
8 cores bar
switch

with with
CASP CASP
support | support

e [est coverage
< Stuck-at: 99.5%
< Transition: 96%

% True-time: 93.5%

off-chip
Flash

48 MB
compressed
test

patterns
(6MB/core)

L2

Test power

= normal operation

e 0.01% area impact

on-chip
buffer Jbus
_ Interface |

~ 8K Verilog LOC modified (out of 100K+)

Hardware-only CASP Limitations

e Hardware-only
< No software interaction (e.g., OS)
® Visible performance impact
e Core unavailable during CASP - task stalled
< Scan chains for high test coverage
» Comprehensive diagnostics

» Required for acceptable reliability

CASP-Aware OS Scheduling
e Key idea: make OS aware of CASP
< Tasks scheduled / migrated around CASP

Migrate all Migrate smart

pick top priority task in core i & core-in-test

migrate core i tasks to

cost analysis run task

core tested latest migrate? ei[migrate and}_)

Pick next highest priority task

e Scheduling for interactive / real-time tasks: see paper

8

Evaluation Setup

e Platform

< 2.5GHz dual quad-core Xeon

< Linux 2.6.25.9 (scheduler modified)
e CASP test program: idle test thread

< Sufficient for performance studies
® CASP configuration

< Runs 1 sec every 10 sec

< More parameters in paper

Results: Computation-Intensive Applications

Hardware-only CASP: > 50%
l l l CASP-aware

_ OS scheduling:
0.48%

O
©
()

L
[
()
>
O
)

E

e
@)
)
X

LLI

Hardware-only CASP B Migrate all

Load balance with self-test [] Migrate smart

Workload: 4-threaded PARSEC

Results: Interactive Applications

CASP-aware OS scheduling

S 100% 4 \

80%
60% -
40% -
20% -
0%

N

Hardware-only
CASP

Response time

Cumulative distributio

< 200ms
© No Effect

> 200ms, <500ms > 500ms

© ' ® UNACCEPTABLE
|

HCI literature classification

Workload: firefox

>

Results: Soft Real-Time Applications

mmp Task [JCASP --->Migration

Hardware-only
CASP

Deadline @
| .
Deadline
task stalled missed

core 1 ‘b:/;:‘:_r/—)
e

— time
1%

1 sec
overhead

CASP-aware
OS scheduling

©

core 1
! met

eooo !
core 2 —Yemmp—rr{ | >

time

Workload: h.265 encoder

Conclusions

e CASP: efficient, effective, practical
e Hardware-only CASP inadequate
“* Visible performance impact

» Shown in real system

e CASP-aware OS scheduling

“* Minimal performance impact
» Wide variety of workloads

» Shown in real system

Backup Slides

Hardware-only CASP Test Flow
Test Scheduling

Core 4
selected
for test

Core N
normal
operation

Select a
core for
online self-
test

ﬁ Post-processing

Core 4
resume
operation

\

Core N
normal
operation

Bring core
from online
self-test to
normal
operation

-

Pre-processing

temporarily
Isolated

normal
operation

Prepare
core for
online self-
test

Test Application

<

normal
operation

Thorough
testing &
diagnostics

Test Flow with CASP-Aware OS Scheduling

Test Scheduling > CASP-Aware OS Scheduling Starts

ﬁ 1. Informs OS 2. OS performs

CASP-Aware OS test begins by => scheduling
Scheduling Ends interrupted around tests

Informs OS test @

completes by
interrupt Pre-processing

o U

Post-processing - Test Application

Algorithms for Tasks in Run Queues

e Migrate all

“* Migrate all tasks from test core to be tested
e Load balance with self test

“* Workload balancing considering self-test
e Migrate smart

“* Migrate tasks based on cost-benefit analysis

Scheduling for Run Queues: Scheme 1

e Migrate all
e Migrate all tasks from core-under-test
“ Except for non-migratable tasks
» e.g., certain kernel threads

e Destination

+» core that will be tested furthest in the future

Scheduling for Run Queues: Scheme 2

e Load balance with self test
e Online self-test modeled as highest priority task
“* weight of workload ~90X of normal tasks
e Load balancer automatically migrates other tasks
e Bound load balance interval
< smaller than interval between two consecutive tests

*» Adapt to the abrupt change in workload with test

Scheduling for Run Queues: Scheme 3

e Migrate smart: migrate based on cost-benefit analysis
*» Cost: wait time remaining + cache effects
e \When test beings
“ Migrate all tasks to idle core (if exists)
e During context switch for cores not under test
“* Worthwhile to “pull” task from core(s) under test?
» Yes: migrate and run task from core under test

» No: don’t migrate

Sched

e [ask

uling for Wait Queues

woken up: moved from wait queue to run queue

** Run queue selection required

e Follow original run queue selection

o If
e O/W

e Quic

gueue selected is not on a core under test
pick a core tested furthest in the future

K response for interactive applications

e Used

with all three run queue scheduling schemes

Scheduling for Soft Real-Time Applications

e Separate scheduling class for real-time applications
** Higher priority than all non real-time apps
“* More likely to meet real-time deadlines
e Migrate real-time tasks from core to be tested to
» core that has lower-priority tasks
and
» core that will be tested furthest in the future

e Used with all three run queue scheduling schemes

CASP-Aware OS Scheduling Summary

Computation-Intensive Tasks

Migrate all CASE

core | time

e e e All tasks migrated

furthest in
time
Load balance with self-test
core |
Tasks migrated for
core with load balance
fewest

workloads
Migrate smart

—p —

Migrate tasks based

on cost analysis

core |

core picked
by cost
analysis

Interactive Tasks

wait queue =) >
core not WELGHT]o)
being
tested

Soft Real-Time (RT) Tasks

core |

core tested Migrate

furthest in

time with no —h—>
RT tasks of

higher priority

Workloads Evaluated

e Computation-intensive (PARSEC)
*» Tasks in run queues
e Interactive (vi, evince, firefox)

*» Tasks in wait queues

e Soft real-time (h.264 encoder)

*» x264 from PARSEC with RT scheduling policy

Results: 4-threaded PARSEC Applications

7l:(l)t;/arglware_only ® migrate_all ®|oad balance with self test ®migrate _smart
o

50%
30%

TP=10 sec, TL= 1 sec, 4 threads

@ Hardware_only: significant performance impact

e Migrate smart: best approach
“* 0.48% overhead on average; ~5% max

e Migrate all: comparable results

Results: 8-threaded PARSEC Applications

Ohardware _only ®Emigrate_all ®load_balance_with_self test ®migrate _smart
150%

100% 1
50% h
0%

-50%

-

J
5 —

dedup
avy

facesim
ferret
luidanimat
e
fregmine
waptions
VIPp$S
X264
canneadl
ter

— V2
_g O
50 &
Y O >
O ©
© @)
= o

(7))

TP=10 sec, TL= 1 sec, 8 threads
@ hardware-only: significant performance impact

streamclus

e Our schemes
“ ~11% (i.e. TL/(TP-TL))

¢+ |Inevitable due to constraints in resources

Results: Interactive Applications

Workload: vi

|
100% .
80%
60%
40%
A

0%
<200ms ' > 200ms, <500ms > 500ms
© No Effect @ ® UNACCEPTABLE

Results: Interactive Applications (2)

Workload: evince

100%

80%

60%

40%

20%

0%

<200ms > 200ms, <500ms > 500ms
© No Effect @ ® UNACCEPTABLE

Results: Soft Real-Time Applications

e 8 single-threaded h.264 encoder

¢ 7 high priority: real-time priority level 99

** 1 low priority: real-time priority level 98
TP=10 sec, TL= 1 sec

Configuration

hardware-only

Our schemes

Not fully loaded

11% for 7 apps.

No penalty for 7 apps.

Fully loaded

11% for all 8 apps.

0% 7 higher-priority apps.
87% for low-priority app.

@ hardware-only: deadlines missed

e Our schemes: Deadlines met

