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Why Online Self-Test & Diagnostics?
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e Application: Failure prediction & detection

e Global optimization - software-orchestrated
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Results from Actual Xeon System
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CASP runs for 1 sec every 10 sec.




CASP ldea
e [Li DATE 08]

e Concurrent with normal operation

© No system downtime

e Autonomous: on-chip test controller
e Stored Patterns: off-chip FLASH
© Comparable or better than production tests

© Test compression: X-Compact

Major Technology Trends Favor CASP




CASP Study: SUN OpenSPARC T1
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Hardware-only CASP Limitations

e Hardware-only
< No software interaction (e.g., OS)
® Visible performance impact
e Core unavailable during CASP - task stalled
< Scan chains for high test coverage
» Comprehensive diagnostics

» Required for acceptable reliability




CASP-Aware OS Scheduling
e Key idea: make OS aware of CASP
< Tasks scheduled / migrated around CASP

Migrate all Migrate smart

pick top priority task in core i & core-in-test

migrate core i tasks to

cost analysis run task

core tested latest migrate? ei[migrate and}_)

Pick next highest priority task

e Scheduling for interactive / real-time tasks: see paper
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Evaluation Setup

e Platform

< 2.5GHz dual quad-core Xeon

< Linux 2.6.25.9 (scheduler modified)
e CASP test program: idle test thread

< Sufficient for performance studies
® CASP configuration

< Runs 1 sec every 10 sec

< More parameters in paper




Results: Computation-Intensive Applications
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Workload: 4-threaded PARSEC




Results: Interactive Applications

CASP-aware OS scheduling
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Results: Soft Real-Time Applications
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Conclusions

e CASP: efficient, effective, practical
e Hardware-only CASP inadequate
“* Visible performance impact

» Shown in real system

e CASP-aware OS scheduling

“* Minimal performance impact
» Wide variety of workloads

» Shown in real system
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Hardware-only CASP Test Flow
Test Scheduling
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Test Flow with CASP-Aware OS Scheduling

Test Scheduling > CASP-Aware OS Scheduling Starts

ﬁ 1. Informs OS 2. OS performs

CASP-Aware OS test begins by => scheduling
Scheduling Ends interrupted around tests

Informs OS test @

completes by
interrupt Pre-processing

o U

Post-processing - Test Application




Algorithms for Tasks in Run Queues

e Migrate all

“* Migrate all tasks from test core to be tested
e Load balance with self test

“* Workload balancing considering self-test
e Migrate smart

“* Migrate tasks based on cost-benefit analysis




Scheduling for Run Queues: Scheme 1

e Migrate all
e Migrate all tasks from core-under-test
“ Except for non-migratable tasks
» e.g., certain kernel threads

e Destination

+» core that will be tested furthest in the future




Scheduling for Run Queues: Scheme 2

e Load balance with self test
e Online self-test modeled as highest priority task
“* weight of workload ~90X of normal tasks
e Load balancer automatically migrates other tasks
e Bound load balance interval
< smaller than interval between two consecutive tests

*» Adapt to the abrupt change in workload with test




Scheduling for Run Queues: Scheme 3

e Migrate smart: migrate based on cost-benefit analysis
*» Cost: wait time remaining + cache effects
e \When test beings
“ Migrate all tasks to idle core (if exists)
e During context switch for cores not under test
“* Worthwhile to “pull” task from core(s) under test?
» Yes: migrate and run task from core under test

» No: don’t migrate




Sched

e [ask

uling for Wait Queues

woken up: moved from wait queue to run queue

** Run queue selection required

e Follow original run queue selection

o If
e O/W

e Quic

gueue selected is not on a core under test
pick a core tested furthest in the future

K response for interactive applications

e Used

with all three run queue scheduling schemes




Scheduling for Soft Real-Time Applications

e Separate scheduling class for real-time applications
** Higher priority than all non real-time apps
“* More likely to meet real-time deadlines
e Migrate real-time tasks from core to be tested to
» core that has lower-priority tasks
and
» core that will be tested furthest in the future

e Used with all three run queue scheduling schemes




CASP-Aware OS Scheduling Summary
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Workloads Evaluated

e Computation-intensive (PARSEC)
*» Tasks in run queues
e Interactive (vi, evince, firefox)

*» Tasks in wait queues

e Soft real-time (h.264 encoder)

*» x264 from PARSEC with RT scheduling policy




Results: 4-threaded PARSEC Applications

7l:(l)t;/arglware_only ® migrate_all ®|oad balance with self test ®migrate _smart
o

50%
30%

TP=10 sec, TL= 1 sec, 4 threads

@ Hardware_only: significant performance impact

e Migrate smart: best approach
“* 0.48% overhead on average; ~5% max

e Migrate all: comparable results




Results: 8-threaded PARSEC Applications
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Results: Interactive Applications
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Results: Interactive Applications (2)

Workload: evince
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Results: Soft Real-Time Applications

e 8 single-threaded h.264 encoder

¢ 7 high priority: real-time priority level 99

** 1 low priority: real-time priority level 98
TP=10 sec, TL= 1 sec

Configuration

hardware-only

Our schemes

Not fully loaded

11% for 7 apps.

No penalty for 7 apps.

Fully loaded

11% for all 8 apps.

0% 7 higher-priority apps.
87% for low-priority app.

@ hardware-only: deadlines missed

e Our schemes: Deadlines met




