
1

Operating System Scheduling for Efficient

Online Self-Test in Robust Systems

Yanjing Li
Stanford University

Onur Mutlu
Carnegie Mellon University

Subhasish Mitra
Stanford University

2

Why Online Self-Test & Diagnostics?

Wearout Early-life failures
(ELF)

Lifetime Time

Failure
rate

Burn-in difficult
Iddq
ineffective

Transistor aging
Guardbands
expensive

Online Self-Test + Diagnostics

Soft errors
Built-In Soft Error

Resilience (BISER)

  Application: Failure prediction & detection

  Global optimization  software-orchestrated

3

Key Message

Efficiency

Test
coverage

Higher coverage
Lower cost

CASP-aware
OS scheduling

Minimize
system performance

 impact
Hardware-only

CASP

Logic BIST

4

Results from Actual Xeon System





PARSEC performance impact

CASP-aware
OS scheduling

Hardware-only
CASP

28%

0.5%

Text editor “vi” response time

100%

No visible
delay

15%
(perceptible

delay)

CASP runs for 1 sec every 10 sec.

Hardware-only CASP

CASP-aware OS scheduling

E
xe

c.
 t

im
e

ov
er

he
ad

5

  [Li DATE 08]

  Concurrent with normal operation

% No system downtime

  Autonomous: on-chip test controller

  Stored Patterns: off-chip FLASH

  Comparable or better than production tests

  Test compression: X-Compact

CASP Idea

Major Technology Trends Favor CASP

6

CASP Study: SUN OpenSPARC T1

  Test coverage

  Stuck-at: 99.5%

  Transition: 96%

  True-time: 93.5%

  Test power

  ≈ normal operation

  0.01% area impact

8 cores

with
CASP

support

cross-
bar

switch

with
CASP

support

L2

Jbus
Interface

on-chip
buffer

(7.5KB)

CASP control

off-chip
Flash

48 MB
compressed

test
patterns

(6MB/core)

~ 8K Verilog LOC modified (out of 100K+)

7

Hardware-only CASP Limitations

  Hardware-only

 No software interaction (e.g., OS)

 Visible performance impact

  Core unavailable during CASP  task stalled

  Scan chains for high test coverage

 Comprehensive diagnostics

 Required for acceptable reliability

Pick next highest priority task

8

CASP-Aware OS Scheduling
  Key idea: make OS aware of CASP

 Tasks scheduled / migrated around CASP
Migrate all Migrate smart

core i under test?

yes
migrate core i tasks to

core tested latest

 pick top priority task in core i & core-in-test

in core i?
yes

run task

no

migrate?
cost analysis

migrate and
run task

no

yes

  Scheduling for interactive / real-time tasks: see paper

9

  Platform

  2.5GHz dual quad-core Xeon

  Linux 2.6.25.9 (scheduler modified)

  CASP test program: idle test thread

  Sufficient for performance studies

 CASP configuration

  Runs 1 sec every 10 sec

  More parameters in paper

Evaluation Setup

10

Results: Computation-Intensive Applications

Workload: 4-threaded PARSEC

Hardware-only CASP: > 50%
CASP-aware

OS scheduling:
0.48%

Hardware-only CASP Migrate all

Load balance with self-test Migrate smart

E
xe

c.
 t

im
e

ov
er

he
ad

20%

40%

60%

11

Results: Interactive Applications

> 200ms, <500ms < 200ms > 500ms

Hardware-only
CASP

 No Effect  UNACCEPTABLE

Response time

%

CASP-aware OS scheduling

Workload: firefox

HCI literature classification

C
um

ul
at

iv
e

 d
is

tri
bu

tio
n

12

Results: Soft Real-Time Applications

Workload: h.265 encoder

Hardware-only
CASP

CASP-aware
OS scheduling

core 1

core 1

core 2

Deadline

task stalled

Migration 
Deadline
missed


Deadline

met

time

time

1 sec 11%
overhead

Task CASP

Conclusions

  CASP: efficient, effective, practical

  Hardware-only CASP inadequate

  Visible performance impact

  Shown in real system

  CASP-aware OS scheduling

  Minimal performance impact

  Wide variety of workloads

  Shown in real system
13

Backup Slides

14

15

Hardware-only CASP Test Flow

Core N
normal

operation

Select a
core for

online self-
test

Core 4
resume

operation

Core N
normal

operation

Core 4
temporarily

isolated

Core N
normal

operation

Prepare
core for

online self-
test

Core 4
selected
for test

Core 4

under test

Core N
normal

operation

Thorough
testing &

diagnostics

Test Scheduling Pre-processing

Test Application Post-processing

Bring core
from online
self-test to

normal
operation

16

Test Scheduling

Test Flow with CASP-Aware OS Scheduling

Pre-processing

Test Application Post-processing

1. Informs OS
test begins by
interrupted

2. OS performs
scheduling
around tests

Informs OS test
completes by
interrupt

CASP-Aware OS Scheduling Starts

CASP-Aware OS
Scheduling Ends

17

  Migrate_all

  Migrate all tasks from test core to be tested

  Load_balance_with_self_test

  Workload balancing considering self-test

  Migrate_smart

  Migrate tasks based on cost-benefit analysis

Algorithms for Tasks in Run Queues

18

  Migrate_all

  Migrate all tasks from core-under-test

  Except for non-migratable tasks

  e.g., certain kernel threads

  Destination

  core that will be tested furthest in the future

Scheduling for Run Queues: Scheme 1

19

  Load_balance_with_self_test

  Online self-test modeled as highest priority task

  weight of workload ~90X of normal tasks

  Load balancer automatically migrates other tasks

  Bound load balance interval

  smaller than interval between two consecutive tests

  Adapt to the abrupt change in workload with test

Scheduling for Run Queues: Scheme 2

20

  Migrate_smart: migrate based on cost-benefit analysis

  Cost: wait time remaining + cache effects

  When test beings

  Migrate all tasks to idle core (if exists)

  During context switch for cores not under test

  Worthwhile to “pull” task from core(s) under test?

  Yes: migrate and run task from core under test

  No: don’t migrate

Scheduling for Run Queues: Scheme 3

21

  Task woken up: moved from wait queue to run queue

  Run queue selection required

  Follow original run queue selection

  If queue selected is not on a core under test

  O/W pick a core tested furthest in the future

  Quick response for interactive applications

  Used with all three run queue scheduling schemes

Scheduling for Wait Queues

22

  Separate scheduling class for real-time applications

  Higher priority than all non real-time apps

  More likely to meet real-time deadlines

  Migrate real-time tasks from core to be tested to

  core that has lower-priority tasks

 and

  core that will be tested furthest in the future

  Used with all three run queue scheduling schemes

Scheduling for Soft Real-Time Applications

23

CASP-Aware OS Scheduling Summary

core i

core tested
furthest in
time

All tasks migrated

core i

core with
fewest
workloads

Tasks migrated for
load balance

core i

core picked
by cost
analysis

Migrate tasks based
on cost analysis

Migrate all

Load balance with self-test

Migrate smart

Computation-Intensive Tasks
Interactive Tasks

Soft Real-Time (RT) Tasks

core tested
furthest in
time with no
RT tasks of
higher priority

Migrate

core i

time

CASP

core not
being
tested

Wake up

wait queue

24

  Computation-intensive (PARSEC)

  Tasks in run queues

  Interactive (vi, evince, firefox)

  Tasks in wait queues

  Soft real-time (h.264 encoder)

  x264 from PARSEC with RT scheduling policy

Workloads Evaluated

25

Results: 4-threaded PARSEC Applications

TP=10 sec, TL= 1 sec, 4 threads

 Hardware_only: significant performance impact

  Migrate_smart: best approach

  0.48% overhead on average; ~5% max

  Migrate_all: comparable results

-10%
10%
30%
50%
70% hardware_only migrate_all load_balance_with_self_test migrate_smart

26

Results: 8-threaded PARSEC Applications

TP=10 sec, TL= 1 sec, 8 threads

 hardware-only: significant performance impact

  Our schemes

  ~ 11% (i.e. TL/(TP-TL))

  Inevitable due to constraints in resources

-50%
0%

50%
100%
150%

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

fa
ce

si
m

fe
rr

et

flu
id

an
im

at
e

fre
qm

in
e

sw
ap

tio
ns

vi
ps

x2
64

ca
nn

ea
l

de
du

p

st
re

am
cl

us
te

r av
g

hardware_only migrate_all load_balance_with_self_test migrate_smart

27

Results: Interactive Applications
Workload: vi

0%

20%

40%

60%

80%

100%

> 200ms, <500ms < 200ms > 500ms
 No Effect  UNACCEPTABLE %

28

Workload: evince

Results: Interactive Applications (2)

0%

20%

40%

60%

80%

100%

> 200ms, <500ms < 200ms > 500ms
 No Effect  UNACCEPTABLE %

29

Results: Soft Real-Time Applications

TP=10 sec, TL= 1 sec
Configuration hardware-only Our schemes

Not fully loaded 11% for 7 apps. No penalty for 7 apps.
Fully loaded 11% for all 8 apps. 0% 7 higher-priority apps.

87% for low-priority app.

  8 single-threaded h.264 encoder

  7 high priority: real-time priority level 99

  1 low priority: real-time priority level 98

 hardware-only: deadlines missed

  Our schemes: Deadlines met

