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Why Online Self-Test & Diagnostics? 

Wearout Early-life failures 
(ELF) 

Lifetime Time 
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rate 



Burn-in difficult        
Iddq      
ineffective 

Transistor aging 
Guardbands 
expensive 

Online Self-Test + Diagnostics 

Soft errors 
Built-In Soft Error 

Resilience (BISER) 



  Application: Failure prediction & detection 

  Global optimization  software-orchestrated 
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Key Message 
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Results from Actual Xeon System 
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PARSEC performance impact 
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Text editor “vi” response time 
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  [Li DATE 08] 

  Concurrent with normal operation 

% No system downtime 

  Autonomous: on-chip test controller  

  Stored Patterns: off-chip FLASH 

  Comparable or better than production tests 

  Test compression: X-Compact  

CASP Idea 

Major Technology Trends Favor CASP 
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CASP Study: SUN OpenSPARC T1 

  Test coverage 

  Stuck-at: 99.5% 

  Transition: 96% 

  True-time: 93.5% 

  Test power 

  ≈ normal operation 

  0.01% area impact 

8 cores 

with  
CASP 

support 

cross- 
bar 

switch 

with 
CASP 

support 

L2 

Jbus 
Interface 

on-chip 
buffer 

(7.5KB) 

CASP control 

off-chip  
Flash           

48 MB 
compressed  

test  
patterns 

(6MB/core) 

~ 8K Verilog LOC modified (out of  100K+) 
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Hardware-only CASP Limitations 

  Hardware-only 

 No software interaction (e.g., OS)   

 Visible performance impact 

  Core unavailable during CASP  task stalled 

  Scan chains for high test coverage 

 Comprehensive diagnostics 

 Required for acceptable reliability 



Pick next highest priority task 
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CASP-Aware OS Scheduling 
  Key idea: make OS aware of CASP 

 Tasks scheduled / migrated around CASP 
Migrate all Migrate smart  

core i under test? 

yes 
migrate core i tasks to  

core tested latest 

 pick top priority task in core i & core-in-test 

in core i? 
yes 

run task 

no 

migrate? 
cost analysis 

migrate and 
run task 

no 

yes 

  Scheduling for interactive / real-time tasks: see paper  
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  Platform 

  2.5GHz dual quad-core Xeon  

  Linux 2.6.25.9 (scheduler modified) 

  CASP test program: idle test thread 

  Sufficient for performance studies 

 CASP configuration 

  Runs 1 sec every 10 sec 

  More parameters in paper 

Evaluation Setup 
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Results: Computation-Intensive Applications 

Workload: 4-threaded PARSEC 

Hardware-only CASP:  > 50% 
CASP-aware  

OS scheduling: 
0.48% 

Hardware-only CASP Migrate all 

Load balance with self-test Migrate smart 
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Results: Interactive Applications 

> 200ms, <500ms < 200ms > 500ms 

Hardware-only 
CASP 

 No Effect  UNACCEPTABLE 

Response time 
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CASP-aware OS scheduling 
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Results: Soft Real-Time Applications 

Workload: h.265 encoder  

Hardware-only 
CASP 

CASP-aware  
OS scheduling 

core 1 

core 1 

core 2 

Deadline 

task stalled 

Migration  
Deadline 
missed 

 
Deadline 

met 

time 

time 

1 sec 11% 
overhead 

Task  CASP  



Conclusions 

  CASP: efficient, effective, practical 

  Hardware-only CASP inadequate 

  Visible performance impact 

  Shown in real system 

  CASP-aware OS scheduling 

  Minimal performance impact 

  Wide variety of workloads 

  Shown in real system 
13 
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Hardware-only CASP Test Flow 
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self-test to 

normal 
operation 



16 

Test Scheduling 

Test Flow with CASP-Aware OS Scheduling 

Pre-processing 

Test Application  Post-processing 

1. Informs OS 
test begins by 
interrupted 

2. OS performs 
scheduling 
around tests 

Informs OS test 
completes by 
interrupt 

CASP-Aware OS Scheduling Starts 

CASP-Aware OS  
Scheduling Ends 
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  Migrate_all 

  Migrate all tasks from test core to be tested 

   Load_balance_with_self_test 

  Workload balancing considering self-test 

  Migrate_smart 

  Migrate tasks based on cost-benefit analysis 

Algorithms for Tasks in Run Queues 
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  Migrate_all 

  Migrate all tasks from core-under-test 

  Except for non-migratable tasks 

  e.g., certain kernel threads 

  Destination 

  core that will be tested furthest in the future 

Scheduling for Run Queues: Scheme 1 



19 

  Load_balance_with_self_test 

  Online self-test modeled as highest priority task 

  weight of workload ~90X of normal tasks 

  Load balancer automatically migrates other tasks 

  Bound load balance interval 

  smaller than interval between two consecutive tests  

  Adapt to the abrupt change in workload with test 

Scheduling for Run Queues: Scheme 2 
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  Migrate_smart: migrate based on cost-benefit analysis 

  Cost: wait time remaining + cache effects 

  When test beings 

  Migrate all tasks to idle core (if exists) 

   During context switch for cores not under test 

  Worthwhile to “pull” task from core(s) under test? 

  Yes: migrate and run task from core under test 

  No: don’t migrate 

Scheduling for Run Queues: Scheme 3 
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  Task woken up: moved from wait queue to run queue 

  Run queue selection required 

  Follow original run queue selection 

  If queue selected is not on a core under test 

  O/W pick a core tested furthest in the future 

  Quick response for interactive applications 

  Used with all three run queue scheduling schemes 

Scheduling for Wait Queues 
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  Separate scheduling class for real-time applications 

  Higher priority than all non real-time apps 

  More likely to meet real-time deadlines 

  Migrate real-time tasks from core to be tested to 

  core that has lower-priority tasks 

    and 

  core that will be tested furthest in the future 

  Used with all three run queue scheduling schemes 

Scheduling for Soft Real-Time Applications 
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CASP-Aware OS Scheduling Summary 

core i 

core tested 
furthest in 
time 

All tasks migrated 

core i 

core with 
fewest 
workloads 

Tasks migrated for 
load balance 

core i 
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by cost 
analysis 

Migrate tasks based 
on cost analysis 

Migrate all 

Load balance with self-test  

Migrate smart  
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Interactive Tasks 

Soft Real-Time (RT) Tasks 
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time 
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  Computation-intensive (PARSEC) 

  Tasks in run queues 

  Interactive (vi, evince, firefox) 

  Tasks in wait queues 

   Soft real-time (h.264 encoder) 

  x264 from PARSEC with RT scheduling policy  

Workloads Evaluated 
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Results: 4-threaded PARSEC Applications 

TP=10 sec, TL= 1 sec, 4 threads 

 Hardware_only: significant performance impact  

  Migrate_smart: best approach 

  0.48% overhead on average; ~5% max 

  Migrate_all: comparable results 

-10% 
10% 
30% 
50% 
70% hardware_only migrate_all load_balance_with_self_test migrate_smart 
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Results: 8-threaded PARSEC Applications 

TP=10 sec, TL= 1 sec, 8 threads 

 hardware-only: significant performance impact  

  Our schemes 

  ~ 11% (i.e. TL/(TP-TL)) 

  Inevitable due to constraints in resources 
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Results: Interactive Applications 
Workload: vi  

0% 

20% 

40% 

60% 

80% 

100% 

> 200ms, <500ms < 200ms > 500ms 
 No Effect  UNACCEPTABLE %
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Workload: evince 

Results: Interactive Applications (2) 

0% 

20% 

40% 

60% 

80% 

100% 

> 200ms, <500ms < 200ms > 500ms 
 No Effect  UNACCEPTABLE %
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Results: Soft Real-Time Applications 

TP=10 sec, TL= 1 sec 
Configuration hardware-only Our schemes 

Not fully loaded 11% for 7 apps. No penalty for 7 apps. 
Fully loaded 11% for all 8 apps. 0% 7 higher-priority apps. 

87% for low-priority app. 

  8 single-threaded h.264 encoder 

  7 high priority: real-time priority level 99 

  1 low priority: real-time priority level 98 

 hardware-only: deadlines missed 

  Our schemes: Deadlines met 


