Flexible Reference-Counting-Based
Hardware Acceleration for
Garbage Collection

Jose A. Joao”®
Onur Mutlu®

*
Yale N. Patt
* HPS Research Group 1 Computer Architecture Laboratory
University of Texas at Austin Carnegie Mellon University

Carnegie Mellon

Motivation: Garbage Collection

B Garbage Collection (GC) is a key feature of Managed Languages
Automatically frees memory blocks that are not used anymore

Eliminates bugs and improves security

B GC identifies dead (unreachable) objects,
and makes their blocks available to the memory allocator

B Significant overheads
1 Processor cycles
J Cache pollution

1 Pauses/delays on the application

Software Garbage Collectors

Tracing collectors

1 Recursively follow every pointer starting with global, stack and
register variables, scanning each object for pointers

1 Explicit collections that visit all live objects

Reference counting
- Tracks the number of references to each object
[Immediate reclamation

1 Expensive and cannot collect cyclic data structures

State-of-the-art: generational collectors
J Young objects are more likely to die than old objects

1 Generations: nursery (new) and mature (older) regions

3

Overhead of Garbage Collection

60

U1
o

=Y
o

N
o

GC time
(% of total execution time)
w
o

(WY
o

B 1x minHeap
B 1.5x minHeap
2x minHeap
H 3x minHeap
5x minHeap
B 10x minHeap

-

Hardware Garbage Collectors

B Hardware GC in general-purpose processors?
1 Ties one GC algorithm into the ISA and the microarchitecture
) High cost due to major changes to processor and/or memory system

] Miss opportunities at the software level, e.g. locality improvement

® Rigid trade-off: reduced flexibility for higher performance
on specific applications

B Transistors are available
1 Build accelerators for commonly used functionality

J How much hardware and how much software for GC?

Our Goal

B Architectural and hardware acceleration support for GC

J Reduce the overhead of software GC
1 Keep the flexibility of software GC

J Work with any existing software GC algorithm

Basic Idea

B Simple but incomplete hardware garbage collection
until the heap is full

B Software GC runs and collects
the remaining dead objects

B Overhead of GC is reduced

Hardware-assisted Automatic
Memory Management (HAMM)

@ Hardware-software cooperative acceleration for GC
J Reference count tracking
= To find dead objects without software GC
- Memory block reuse handling
= To provide available blocks to the software allocator

Reduce frequency and overhead of software GC

m Key characteristics
1 Software memory allocator is in control
1 Software GC still runs and makes high-level decisions

- HAMM can simplify: does not have to track all objects

8

ISA Extensions for HAMM

Memory allocation
0 REALLOCMEM, ALLOCMEM

Pointer tracking (store pointer)

dJ MOVPTR, MOVPTROVR
dJ PUSHPTR, POPPTR, POPPTROVR

B Garbage collection

Overview of HAMM

. | | | |
S e I I I I
a1 I 1 C 11 tee 1 C N1
| LIRCCB | 7" R
! RC updates | 1T 4 T A
|
i | LD/ST |
¥ Unit l ¥
1 < Block address :
i : L
: :
| LT ABT | L2 ABT L2 RCCB
o : :
oIV 1o
S v
! CPUChipl €—— :
A Ip Reusable blocks RC

=—_ 13— 11 s

5—_ 1]

E""""""""""""E E RC
| CPUChip M % . Available Block Table Live objects

(ABT) Main memoryg

Modified Allocator

addr — REALLOCMEM size

If (addr == 0) then

ﬂABT does not have a free block — regular software allocator)

addr < bump_pointer

bump_pointer < bump_pointer + size

__ J

else

// use address provided by ABT
end if

// Initialize block starting at addr

ALLOCMEM object_addr, size

11

Example of HAMM

L1 Reference Count Coalc—:;scing Buffer (RCCB)

N |
|
i RC updates — — :
21 . —
1 | LossT o=
|l Unit :
i incRC A < Block address !
t i q M
ii ALLOCMEMA, size i
i L1 ABT] L2 ABT L2 RCCB
Lo e : :
o = IU o) Y
N U A
Reusable blocks RC
= [1—>1 [] RC
= []
A I 0

 Available Block Table
(ABT) Main memoryé

Example of HAMM

T L1 Reference Count _(faé_lczlkscing Buffer (RCCB)

: RC updates l

i LD/ST E

i Unit)

b Block address :

)l € .

) i - —

| LT ABT | L2 ABT L2 RCCB

O : :

CPULCRID. oottt
U 0 A

RC

Reusable blocks
- [[] RC

’—ﬁ’i A I dead

 Available Block Table
(ABT) Main memoryé

Example of HAMM

T L1 Reference Count Coaléscing Buffer (RCCB)

i RC updates l

i LD/ST i

3 Unit :

1l < Block address |:<|orefetch: T

L EBAEEgT

1 LTABT . T LZABT [2 RCCB

§| Core !

ST prefetch

o3 TU oS
N (. JSSSS

RC

Reusable blocks
- [[] RC

= Ao [dead

 Available Block Table
(ABT) Main memoryé

ISA Extensions for HAMM

B Memory allocation
v" REALLOCMEM, ALLOCMEM

B Pointer tracking (store pointer)

v" MOVPTR, MOVPTROVR
v" PUSHPTR, POPPTR, POPPTROVR

B Garbage collection
O FLUSHRC

15

Methodology

Benchmarks: DaCapo suite on Jikes Research Virtual Machine
with its best GC, GenMS

Simics + cycle-accurate x86 simulator

64 KB, 2-way, 2-cycle I-cache

16 KB perceptron predictor

Minimum 20-cycle branch misprediction penalty
4-wide, 128-entry instruction window

64 KB, 4-way, 2-cycle, 64B-line, L1 D-cache

4 MB, 8-way, 16-cycle, 64B-line, unified L2 cache
150-cycle minimum memory latency

OO0O0000a04

Different methodologies for two components:

[0 GC time estimated based on actual garbage collection work
over the whole benchmark

[0 Application: cycle-accurate simulation with microarchitectural
modifications on 200M-instruction slices

16

GC Time Reduction

70

GC time reduction (%)
N w = Ul o))
o o o o o

(WY
o

7™\ 7™\
\ M 1.5x minHeap / \
\ M 2X minHeap | \
2.5x minHeap /\
B 3x minHeap / \

Al
ﬂll‘ﬂ

IPC delta (%)

Application Performance

0.4 ~

b / |\\

-0.2 I I I
-0.4

-0.6
-0.8
=Ye acd D O Y%
-1 _
A @
R O 0 2
S N R K > N >
) 0 o(} é}' \0\0 \\{,0 A + ‘0(°

Why does HAMM work?

® HAMM reduces GC time because
- Eliminates collections: 52%/50% of nursery/full-heap

J Enables memory block reuse for 69% of all new objects in
nursery and 38% of allocations into older generation

d Reduces GC work: 21%/49% for nursery/full-heap

®m HAMM does not slow down the application significantly

1 Maximum L1 cache miss increase: 4%
Maximum L2 cache miss increase: 3.5%

d HAMM itself is responsible for only 1.4% of all L2 misses

19

Conclusion

B Garbage collection is very useful,
but it is also a significant source of overhead

O

Improvements on pure software GC or hardware GC are limited

We propose HAMM, a cooperative hardware-software technique

O

O
O
O

O

Simplified hardware-assisted reference counting and block reuse
Reduces GC time by 29%
Does not significantly affect application performance

Reasonable cost (67KB on a 4-core chip)
for an architectural accelerator of an important functionality

HAMM can be an enabler encouraging developers
to use managed languages

20

Thank You!

Questions?

