
Flexible Reference-Counting-Based
Hardware Acceleration for
Garbage Collection

José A. Joao*

Onur Mutlu‡

Yale N. Patt*

* HPS Research Group

University of Texas at Austin

‡ Computer Architecture Laboratory

Carnegie Mellon University

Motivation: Garbage Collection

2

 Garbage Collection (GC) is a key feature of Managed Languages

 Automatically frees memory blocks that are not used anymore

 Eliminates bugs and improves security

 GC identifies dead (unreachable) objects,

and makes their blocks available to the memory allocator

 Significant overheads

 Processor cycles

 Cache pollution

 Pauses/delays on the application

Software Garbage Collectors

3

 Tracing collectors

 Recursively follow every pointer starting with global, stack and

register variables, scanning each object for pointers

 Explicit collections that visit all live objects

 Reference counting

 Tracks the number of references to each object

 Immediate reclamation

 Expensive and cannot collect cyclic data structures

 State-of-the-art: generational collectors

 Young objects are more likely to die than old objects

 Generations: nursery (new) and mature (older) regions

Overhead of Garbage Collection

4

Hardware Garbage Collectors

5

 Hardware GC in general-purpose processors?

 Ties one GC algorithm into the ISA and the microarchitecture

 High cost due to major changes to processor and/or memory system

 Miss opportunities at the software level, e.g. locality improvement

 Rigid trade-off: reduced flexibility for higher performance

on specific applications

 Transistors are available

 Build accelerators for commonly used functionality

 How much hardware and how much software for GC?

Our Goal

6

 Architectural and hardware acceleration support for GC

 Reduce the overhead of software GC

 Keep the flexibility of software GC

 Work with any existing software GC algorithm

Basic Idea

7

 Simple but incomplete hardware garbage collection

until the heap is full

 Software GC runs and collects

the remaining dead objects

 Overhead of GC is reduced

Hardware-assisted Automatic
Memory Management (HAMM)

8

 Hardware-software cooperative acceleration for GC

 Reference count tracking

 To find dead objects without software GC

 Memory block reuse handling

 To provide available blocks to the software allocator

 Reduce frequency and overhead of software GC

 Key characteristics

 Software memory allocator is in control

 Software GC still runs and makes high-level decisions

 HAMM can simplify: does not have to track all objects

ISA Extensions for HAMM

9

 Memory allocation

 REALLOCMEM, ALLOCMEM

 Pointer tracking (store pointer)

 MOVPTR, MOVPTROVR

 PUSHPTR, POPPTR, POPPTROVR

 Garbage collection

Overview of HAMM

10

LD/ST
Unit

L1 RCCB
RC updates

Core 0
L1 ABT

Block address

Core 1 Core N…

L2 RCCBL2 ABT

CPU Chip 0

CPU Chip 1

CPU Chip M

…

Main memory

RC

RC

RC

Live objectsAvailable Block Table

(ABT)

Reusable blocks

addr ← REALLOCMEM size

if (addr == 0) then

// ABT does not have a free block → regular software allocator

addr ← bump_pointer

bump_pointer ← bump_pointer + size

…

else

// use address provided by ABT

end if

// Initialize block starting at addr

ALLOCMEM object_addr, size

Modified Allocator

11

A

Example of HAMM

12

LD/ST
Unit

L1 Reference Count Coalescing Buffer (RCCB)

RC updates

Core
L1 ABT

Block address

L2 RCCBL2 ABT

CPU Chip

Main memory

RC

RC

Available Block Table

(ABT)

Reusable blocks

0

ALLOCMEM A, size

incRC A

A: 1

incRC AincRC A

A

A

Example of HAMM

13

LD/ST
Unit

L1 Reference Count Coalescing Buffer (RCCB)

RC updates

Core
L1 ABT

Block address

L2 RCCBL2 ABT

CPU Chip

Main memory

RC

RC

Available Block Table

(ABT)

Reusable blocks

010A dead

A

Example of HAMM

14

LD/ST
Unit

L1 Reference Count Coalescing Buffer (RCCB)

RC updates

Core
L1 ABT

Block address

L2 RCCBL2 ABT

CPU Chip

Main memory

RC

RC

Available Block Table

(ABT)

Reusable blocks

010

AA

A

prefetch

prefetch

dead

ISA Extensions for HAMM

15

 Memory allocation

 REALLOCMEM, ALLOCMEM

 Pointer tracking (store pointer)

 MOVPTR, MOVPTROVR

 PUSHPTR, POPPTR, POPPTROVR

 Garbage collection

 FLUSHRC

Methodology

 Benchmarks: DaCapo suite on Jikes Research Virtual Machine
with its best GC, GenMS

 Simics + cycle-accurate x86 simulator

 64 KB, 2-way, 2-cycle I-cache

 16 KB perceptron predictor

 Minimum 20-cycle branch misprediction penalty

 4-wide, 128-entry instruction window

 64 KB, 4-way, 2-cycle, 64B-line, L1 D-cache

 4 MB, 8-way, 16-cycle, 64B-line, unified L2 cache

 150-cycle minimum memory latency

 Different methodologies for two components:

 GC time estimated based on actual garbage collection work
over the whole benchmark

 Application: cycle-accurate simulation with microarchitectural
modifications on 200M-instruction slices

16

GC Time Reduction

17

Application Performance

18

Since GC time is reduced by 29%,
HAMM is a win

Why does HAMM work?

19

 HAMM reduces GC time because

 Eliminates collections: 52%/50% of nursery/full-heap

 Enables memory block reuse for 69% of all new objects in
nursery and 38% of allocations into older generation

 Reduces GC work: 21%/49% for nursery/full-heap

 HAMM does not slow down the application significantly

 Maximum L1 cache miss increase: 4%
Maximum L2 cache miss increase: 3.5%

 HAMM itself is responsible for only 1.4% of all L2 misses

Conclusion

20

 Garbage collection is very useful,
but it is also a significant source of overhead

 Improvements on pure software GC or hardware GC are limited

 We propose HAMM, a cooperative hardware-software technique

 Simplified hardware-assisted reference counting and block reuse

 Reduces GC time by 29%

 Does not significantly affect application performance

 Reasonable cost (67KB on a 4-core chip)
for an architectural accelerator of an important functionality

 HAMM can be an enabler encouraging developers
to use managed languages

Thank You!

Questions?

