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Motivation: Garbage Collection

2

 Garbage Collection (GC) is a key feature of Managed Languages

 Automatically frees memory blocks that are not used anymore

 Eliminates bugs and improves security

 GC identifies dead (unreachable) objects, 

and makes their blocks available to the memory allocator

 Significant overheads

 Processor cycles

 Cache pollution

 Pauses/delays on the application



Software Garbage Collectors
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 Tracing collectors

 Recursively follow every pointer starting with global, stack and

register variables, scanning each object for pointers

 Explicit collections that visit all live objects

 Reference counting

 Tracks the number of references to each object

 Immediate reclamation

 Expensive and cannot collect cyclic data structures

 State-of-the-art: generational collectors

 Young objects are more likely to die than old objects

 Generations: nursery (new) and mature (older) regions



Overhead of Garbage Collection
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Hardware Garbage Collectors
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 Hardware GC in general-purpose processors?

 Ties one GC algorithm into the ISA and the microarchitecture

 High cost due to major changes to processor and/or memory system

 Miss opportunities at the software level, e.g. locality improvement

 Rigid trade-off: reduced flexibility for higher performance 

on specific applications

 Transistors are available

 Build accelerators for commonly used functionality

 How much hardware and how much software for GC?



Our Goal
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 Architectural and hardware acceleration support for GC

 Reduce the overhead of software GC

 Keep the flexibility of software GC

 Work with any existing software GC algorithm



Basic Idea
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 Simple but incomplete hardware garbage collection 

until the heap is full

 Software GC runs and collects 

the remaining dead objects

 Overhead of GC is reduced



Hardware-assisted Automatic
Memory Management (HAMM)
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 Hardware-software cooperative acceleration for GC

 Reference count tracking

 To find dead objects without software GC

 Memory block reuse handling

 To provide available blocks to the software allocator

 Reduce frequency and overhead of software GC

 Key characteristics

 Software memory allocator is in control

 Software GC still runs and makes high-level decisions

 HAMM can simplify: does not have to track all objects



ISA Extensions for HAMM
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 Memory allocation

 REALLOCMEM, ALLOCMEM

 Pointer tracking (store pointer)

 MOVPTR, MOVPTROVR

 PUSHPTR, POPPTR, POPPTROVR

 Garbage collection



Overview of HAMM
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addr ← REALLOCMEM size

if (addr == 0) then

// ABT does not have a free block → regular software allocator

addr ← bump_pointer

bump_pointer ← bump_pointer + size

…

else

// use address provided by ABT

end if

// Initialize block starting at addr

ALLOCMEM object_addr, size

Modified Allocator
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Example of HAMM
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Example of HAMM
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Example of HAMM
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ISA Extensions for HAMM
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 Memory allocation

 REALLOCMEM, ALLOCMEM

 Pointer tracking (store pointer)

 MOVPTR, MOVPTROVR

 PUSHPTR, POPPTR, POPPTROVR

 Garbage collection

 FLUSHRC



Methodology

 Benchmarks: DaCapo suite on Jikes Research Virtual Machine 
with its best GC, GenMS

 Simics + cycle-accurate x86 simulator

 64 KB, 2-way, 2-cycle I-cache

 16 KB perceptron predictor

 Minimum 20-cycle branch misprediction penalty

 4-wide, 128-entry instruction window

 64 KB, 4-way, 2-cycle, 64B-line, L1 D-cache

 4 MB, 8-way, 16-cycle, 64B-line, unified L2 cache

 150-cycle minimum memory latency

 Different methodologies for two components:

 GC time estimated based on actual garbage collection work 
over the whole benchmark

 Application: cycle-accurate simulation with microarchitectural 
modifications on 200M-instruction slices

16



GC Time Reduction

17



Application Performance
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Since GC time is reduced by 29%, 
HAMM is a win



Why does HAMM work?
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 HAMM reduces GC time because

 Eliminates collections: 52%/50% of nursery/full-heap

 Enables memory block reuse for 69% of all new objects in 
nursery and 38% of allocations into older generation

 Reduces GC work: 21%/49% for nursery/full-heap

 HAMM does not slow down the application significantly

 Maximum L1 cache miss increase: 4%
Maximum L2 cache miss increase: 3.5%

 HAMM itself is responsible for only 1.4% of all L2 misses



Conclusion

20

 Garbage collection is very useful, 
but it is also a significant source of overhead

 Improvements on pure software GC or hardware GC are limited

 We propose HAMM, a cooperative hardware-software technique

 Simplified hardware-assisted reference counting and block reuse

 Reduces GC time by 29%

 Does not significantly affect application performance

 Reasonable cost (67KB on a 4-core chip) 
for an architectural accelerator of an important functionality

 HAMM can be an enabler encouraging developers 
to use managed languages



Thank You!

Questions?


