Improving the Performance of
Object-Oriented Languages with
Dynamic Predication of Indirect Jumps

José A. Joao™*
Onur Mutlu¥*

Hyesoon Kims$

Rishi Agarwal™
Yale N. Patt™

* HPS Research Group + Computer Architecture Group
University of Texas at Austin Microsoft Research

§ College of Computing 1 Dept. of Computer Science and Eng.
Georgia Institute of Technology lIT Kanpur

Motivation

B Polymorphism is a key feature of Object-Oriented Languages
[0 Allows modular, extensible, and flexible software design
B Object-Oriented Languages include virtual functions
to support polymorphism
[0 Dynamically dispatched function calls based on object type
® \Virtual functions are usually implemented using
indirect jump/call instructions in the ISA

B Other programming constructs are also implemented with indirect
jumps/calls: switch statements, jump tables, interface calls

Indirect jumps are becoming more frequent with modern languages

Example from DaCapo fop (Java)

Length.class:

Length protected void computeValue() {}

oublic int mvalue() { This indirect call is

if (IolsComputed) hard to DFEdiCt
computeValue();

return millipoints;

LinearCombinationLength.class:

}
- protected void computeValue() {
/...

setComputedValue(result);

}

PercentLength.class:

protected void computeValue() {
...
setComputedValue(result1);

> MixedLength }

Predicting Direct Branches vs. Indirect Jumps

A

N

TARG

br.cond TARGET

A+1

Conditional (Direct) Branch

Indirect jumps:

B Multiple target addresses - More difficult to predict
than conditional (direct) branches

B Can degrade performance

- _
~
~

=~

g

Indirect Jump

R1 = MEM[R2]
branch R1

The Problem

B Most processors predict using the BTB:
target of indirect jump = target in previous execution

[0 Stores only one target per jump
(already done for conditional branches)

O Inaccurate
m Indirect jumps usually switch between multiple targets
m ~50% of indirect jumps are mispredicted

B Most history-based indirect jump target predictors
add large hardware resources for multiple targets

Mispredictions per Kilo Instructions

(MPKI)

Indirect Jump Mispredictions

16

14

12

10 -

(0]

(o)

mdirect
I I I mindirect =

1—i41% of mispredictions due to Indirect Jumps | ;t
‘@Q

Data from Intel Core2 Duo processor

Dynamic Indirect Jump Predication (DIP)

A
Hard to predict
TARGET 1 TARGET 2 TARGET 3 -
p1 | B (‘OQ
p2
ot [B | e°°

--

return
Insert select-Lops

CFM point
(p-nodes in SSA)

——p Frequently executed path
-— Not frequently executed path

7

Dynamic Indirect Jump Predication (DIP)

A Hard to predict
p1 | B (‘OQ
p2
ot [F | o®

Insert select-Lops
(p-nodes in SSA)

—p Frequently executed path
-—p Not frequently executed path

8

Dynamic Predication of Indirect Jumps

B The compiler uses control-flow analysis
and profiling to identify
0 DIP-jumps: highly-mispredicted indirect jumps
0 Control-flow merge (CFM) points

B The microarchitecture decides when and
what to predicate dynamically

[0 Dynamic target selection

Dynamic Target Selection

BTB

« Three frequency counters per entry
Branch Target Buffer

« Associated targets in the BTB

TST

Target
Selection +

PC xor GHR

0 3 1 "
(©) position ———
Control R
| Target
—
A hash_value ,
BTB_hit
-

10

To Fetch

Dynamic Target Selection

PC xor GHR

BTB
Branch Target Buffer

TST
Target
Selection +
Table i
position L
Target
| I
hash_value _
BTB_hit
-

11

To Fetch

Additional DIP Entry/Exit Policies

B Single predominant target in the TST
1 TST has more accurate information

—> Override the target prediction

B Nested low confidence DIP-jumps

- Exit dynamic predication for the earlier jump
and re-enter for the later one

B Return instructions inside switch statements

[1 Merging address varies with calling site
- Return CFM points

12

Methodology

B Dynamic profiling tool for DIP-jump and CFM point selection

B Cycle-accurate x86 simulator:

[0 Processor configuration

64KB perceptron predictor

4K-entry, 4-way BTB (baseline indirect jump predictor)
Minimum 30-cycle branch misprediction penalty
8-wide, 512-entry instruction window

300-cycle minimum memory latency

2KB 12-bit history enhanced JRS confidence estimator
32 predicate registers, 1 CFM register

[0 Also less aggressive processor (in paper)

B Benchmarks: DaCapo suite (Java), matlab, m5, perl
[0 Also evaluated SPEC CPU 2000 and 2006

13

Indirect Jump Predictors

Tagged Target Cache Predictor (TTC) [P. Chang et al., ISCA 97]
[0 4-way set associative fully-tagged target table
[0 Our version does not store easy-to-predict indirect jumps

Cascaded Predictor [Driesen and Holzle, MICRO 98, Euro-Par 99]
[0 Hybrid predictor with tables of increasing complexity
[0 3-stage predictor performs best

Virtual Program Counter (VPC) Predictor [Kim et al., ISCA 07]
[0 Predicts indirect jumps using the conditional branch predictor
[0 Stores multiple targets on the BTB, as our target selection logic does

14

Performance, Power, and Energy

50
37.8% m DIP (3.6KB)
40 B TTC (12.4KB)
30 - VPC ——
50 m CASC (11.3KB)
0
X 10 -
L=
2 0
£
Q-
g-10
-20
-30 24.8%
-40
- 45.5%
IPC Max power Energy EDP
delta (%) delta (%) delta (%) delta (%)
15

DIP vs. Indirect Jump Predictors

mTTC (24.8KB)
m CASC (22.6KB)

= DIP (3.6KB)
m VPC

16

—
o
o

O
o

Percent of Executed Indirect Jumps (%)

o

70 -

60 -

50 -

40 -

30 -

20 -

10 -

Outcome of Executed Indir

Il

(D
@)
—t
| G

1

80 -

= Mispredicted, no DIP action

m Harmful (Correct Prediction, Incorrect DIP Target)
®m Neutral (Mispredicted, Incorrect DIP Target)

Mod. Harmful (Correct Prediction, Correct DIP Target)

m Useful (Mispredicted, Correct DIP Target)
m Correctly predicted

l_- | - | - | - | | - | - | - | - | - | - | -l |
" T WO Q& 4 X QO Q& 55 X Q
) < Q
~0\° c‘S"b &Qe O e&b. ®o < % g 7§c, Q@ +,§<> & ’5&0 N @@ ((\@’o
¢ AN '$ 3 \\)6 & QQ’ Q@((o)

. BTB
‘correct

Additional Evaluation (in paper)

Static vs. dynamic target selection policies

DIP with more than 2 targets - 2 dynamic targets is best

DIP on top of a baseline with TTC, VPC or Cascaded predictors
Sensitivity to:

[0 Processor configuration

[1 BTB size
[1 TST size and structure

More benchmarks (SPEC CPU 2000 and 2006)

18

Conclusion

B Object-oriented languages use more indirect jumps

O

Indirect jumps are hard to predict and have already become
an important performance limiter

B We propose DIP, a cooperative hardware-software technique

O
O
O

Improves performance by 37.8%
Reduces energy by 24.8%

Provides better performance and energy-efficiency than
three indirect jump predictors

Incurs low hardware cost (3.6KB) if dynamic predication
is already used for conditional branches

Can be an enabler encouraging developers to use
object-oriented programming

19

Thank You!

Questions?

