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Motivation

� Polymorphism is a key feature of Object-Oriented Languages

� Allows modular, extensible, and flexible software design

� Object-Oriented Languages include virtual functions

to support polymorphism

� Dynamically dispatched function calls based on object type
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� Dynamically dispatched function calls based on object type

� Virtual functions are usually implemented using

indirect jump/call instructions in the ISA

� Other programming constructs are also implemented with indirect 

jumps/calls: switch statements, jump tables, interface calls

Indirect jumps are becoming more frequent with modern languages



Example from DaCapo fop (Java)

public int mvalue() {

if (!bIsComputed)

computeValue();

return millipoints;

}

Length.class:

Length

LinearCombinationLength.class:

This indirect call is
hard to predict

protected void computeValue() {}

LinearCombinationLength

PercentLength

MixedLength

protected void computeValue() {

// …

setComputedValue(result);

}

LinearCombinationLength.class:

protected void computeValue() {

// …

setComputedValue(result1);

}

PercentLength.class:

LinearCombinationLength

PercentLength

LinearCombinationLength

PercentLength

LinearCombinationLength

PercentLength
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LinearCombinationLength

PercentLength



Predicting Direct Branches vs. Indirect Jumps

TARG A+1

A
T N

α β

A

δ

?

ρ

br.cond TARGET R1 = MEM[R2]

branch R1
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Conditional (Direct) Branch Indirect Jump

Indirect jumps:

� Multiple target addresses � More difficult to predict
than conditional (direct) branches

� Can degrade performance



The Problem

� Most processors predict using the BTB:                                                     
target of indirect jump = target in previous execution 

� Stores only one target per jump
(already done for conditional branches)

� Inaccurate
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� Inaccurate

� Indirect jumps usually switch between multiple targets

� ~50% of indirect jumps are mispredicted

� Most history-based indirect jump target predictors
add large hardware resources for multiple targets



Indirect Jump Mispredictions
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Dynamic Indirect Jump Predication (DIP)
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Dynamic Predication of Indirect Jumps

� The compiler uses control-flow analysis

and profiling to identify

� DIP-jumps: highly-mispredicted indirect jumps

� Control-flow merge (CFM) points

� The microarchitecture decides when and

what to predicate dynamically

� Dynamic target selection       
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Dynamic Target Selection

Most-freq target

Target 
Selection 
Table

BTB
Branch Target Buffer

Most-freq target

• Three frequency counters per entry
• Associated targets in the BTB
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Dynamic Target Selection

Target 
Selection 
Table

BTB
Branch Target Buffer

3.6KB
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Additional DIP Entry/Exit Policies

� Single predominant target in the TST

� TST has more accurate information

� Override the target prediction

� Nested low confidence DIP-jumps
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� Nested low confidence DIP-jumps

� Exit dynamic predication for the earlier jump

and re-enter for the later one

� Return instructions inside switch statements

� Merging address varies with calling site

� Return CFM points



Methodology

� Dynamic profiling tool for DIP-jump and CFM point selection

� Cycle-accurate x86 simulator:

� Processor configuration
� 64KB perceptron predictor 

� 4K-entry, 4-way BTB (baseline indirect jump predictor)�

� Minimum 30-cycle branch misprediction penalty

� 8-wide, 512-entry instruction window

� 300-cycle minimum memory latency

� 2KB 12-bit history enhanced JRS confidence estimator

� 32 predicate registers, 1 CFM register

� Also less aggressive processor (in paper)

� Benchmarks: DaCapo suite (Java), matlab, m5, perl

� Also evaluated SPEC CPU 2000 and 2006
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Indirect Jump Predictors

� Tagged Target Cache Predictor (TTC) [P. Chang et al., ISCA 97]

� 4-way set associative fully-tagged target table

� Our version does not store easy-to-predict indirect jumps

� Cascaded Predictor [Driesen and Hölzle, MICRO 98, Euro-Par 99]� Cascaded Predictor [Driesen and Hölzle, MICRO 98, Euro-Par 99]

� Hybrid predictor with tables of increasing complexity

� 3-stage predictor performs best

� Virtual Program Counter (VPC) Predictor [Kim et al., ISCA 07]

� Predicts indirect jumps using the conditional branch predictor

� Stores multiple targets on the BTB, as our target selection logic does
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DIP vs. Indirect Jump Predictors
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Outcome of Executed Indirect Jumps
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Additional Evaluation (in paper)

� Static vs. dynamic target selection policies

� DIP with more than 2 targets � 2 dynamic targets is best

� DIP on top of a baseline with TTC, VPC or Cascaded predictors
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� Sensitivity to:
� Processor configuration

� BTB size

� TST size and structure

� More benchmarks (SPEC CPU 2000 and 2006)



Conclusion

� Object-oriented languages use more indirect jumps

� Indirect jumps are hard to predict and have already become
an important performance limiter

� We propose DIP, a cooperative hardware-software technique

Improves performance by 37.8%
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� Improves performance by 37.8%

� Reduces energy by 24.8%

� Provides better performance and energy-efficiency than
three indirect jump predictors

� Incurs low hardware cost (3.6KB) if dynamic predication
is already used for conditional branches

� Can be an enabler encouraging developers to use 
object-oriented programming
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