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Motivation

B Polymorphism is a key feature of Object-Oriented Languages
[0 Allows modular, extensible, and flexible software design
B Object-Oriented Languages include virtual functions
to support polymorphism
[0 Dynamically dispatched function calls based on object type
® \Virtual functions are usually implemented using
indirect jump/call instructions in the ISA

B Other programming constructs are also implemented with indirect
jumps/calls: switch statements, jump tables, interface calls

Indirect jumps are becoming more frequent with modern languages




Example from DaCapo fop (Java)

Length.class:

Length protected void computeValue() {}

oublic int mvalue() { This indirect call is

if (IolsComputed) hard to DFEdiCt
computeValue();

return millipoints;

LinearCombinationLength.class:

}
- protected void computeValue() {
/...

setComputedValue(result);

}

PercentLength.class:

protected void computeValue() {
...
setComputedValue(result1);

> MixedLength }




Predicting Direct Branches vs. Indirect Jumps
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Conditional (Direct) Branch

Indirect jumps:

B Multiple target addresses - More difficult to predict
than conditional (direct) branches

B Can degrade performance
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Indirect Jump

R1 = MEM[R2]
branch R1




The Problem

B Most processors predict using the BTB:
target of indirect jump = target in previous execution

[0 Stores only one target per jump
(already done for conditional branches)

O Inaccurate
m Indirect jumps usually switch between multiple targets
m ~50% of indirect jumps are mispredicted

B Most history-based indirect jump target predictors
add large hardware resources for multiple targets




Mispredictions per Kilo Instructions

(MPKI)

Indirect Jump Mispredictions
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Data from Intel Core2 Duo processor




Dynamic Indirect Jump Predication (DIP)
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------------------------------------------------------------------------------------

return
Insert select-Lops

CFM point
(p-nodes in SSA)

——p Frequently executed path
-— Not frequently executed path
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Dynamic Indirect Jump Predication (DIP)

A Hard to predict
p1 | B (‘OQ
p2
ot [ F | o®

Insert select-Lops
(p-nodes in SSA)

—p  Frequently executed path
-—p Not frequently executed path
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Dynamic Predication of Indirect Jumps

B The compiler uses control-flow analysis
and profiling to identify
0 DIP-jumps: highly-mispredicted indirect jumps
0 Control-flow merge (CFM) points

B The microarchitecture decides when and
what to predicate dynamically

[0 Dynamic target selection




Dynamic Target Selection

BTB

« Three frequency counters per entry
Branch Target Buffer

« Associated targets in the BTB

TST
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Dynamic Target Selection
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Additional DIP Entry/Exit Policies

B Single predominant target in the TST
1 TST has more accurate information

—> Override the target prediction

B Nested low confidence DIP-jumps

- Exit dynamic predication for the earlier jump
and re-enter for the later one

B Return instructions inside switch statements

[1 Merging address varies with calling site
- Return CFM points
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Methodology

B Dynamic profiling tool for DIP-jump and CFM point selection

B Cycle-accurate x86 simulator:

[0 Processor configuration

64KB perceptron predictor

4K-entry, 4-way BTB (baseline indirect jump predictor)
Minimum 30-cycle branch misprediction penalty
8-wide, 512-entry instruction window

300-cycle minimum memory latency

2KB 12-bit history enhanced JRS confidence estimator
32 predicate registers, 1 CFM register

[0 Also less aggressive processor (in paper)

B Benchmarks: DaCapo suite (Java), matlab, m5, perl
[0 Also evaluated SPEC CPU 2000 and 2006

13



Indirect Jump Predictors

Tagged Target Cache Predictor (TTC) [P. Chang et al., ISCA 97]
[0 4-way set associative fully-tagged target table
[0 Our version does not store easy-to-predict indirect jumps

Cascaded Predictor [Driesen and Holzle, MICRO 98, Euro-Par 99]
[0 Hybrid predictor with tables of increasing complexity
[0 3-stage predictor performs best

Virtual Program Counter (VPC) Predictor [Kim et al., ISCA 07]
[0 Predicts indirect jumps using the conditional branch predictor
[0 Stores multiple targets on the BTB, as our target selection logic does
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Performance, Power, and Energy
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DIP vs. Indirect Jump Predictors

mTTC (24.8KB)
m CASC (22.6KB)

= DIP (3.6KB)
m VPC
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Additional Evaluation (in paper)

Static vs. dynamic target selection policies

DIP with more than 2 targets - 2 dynamic targets is best

DIP on top of a baseline with TTC, VPC or Cascaded predictors
Sensitivity to:

[0 Processor configuration

[1 BTB size
[1 TST size and structure

More benchmarks (SPEC CPU 2000 and 2006)
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Conclusion

B Object-oriented languages use more indirect jumps

O

Indirect jumps are hard to predict and have already become
an important performance limiter

B We propose DIP, a cooperative hardware-software technique

O
O
O

Improves performance by 37.8%
Reduces energy by 24.8%

Provides better performance and energy-efficiency than
three indirect jump predictors

Incurs low hardware cost (3.6KB) if dynamic predication
is already used for conditional branches

Can be an enabler encouraging developers to use
object-oriented programming
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Thank You!

Questions?



