Improving the Performance of Object-Oriented Languages with Dynamic Predication of Indirect Jumps

José A. Joao**
Onur Mutlu**
Hyesoon Kim
Rishi Agarwal**
Yale N. Patt*

* HPS Research Group University of Texas at Austin

‡ Computer Architecture Group Microsoft Research

§ College of Computing Georgia Institute of Technology

† Dept. of Computer Science and Eng. IIT Kanpur

Motivation

- Polymorphism is a key feature of Object-Oriented Languages
 - Allows modular, extensible, and flexible software design
- Object-Oriented Languages include virtual functions to support polymorphism
 - Dynamically dispatched function calls based on object type
- Virtual functions are usually implemented using indirect jump/call instructions in the ISA
- Other programming constructs are also implemented with indirect jumps/calls: switch statements, jump tables, interface calls

Indirect jumps are becoming more frequent with modern languages

Example from DaCapo fop (Java)

```
Length.class:
Length
              protected void computeValue() {}
                                                    This indirect call is
              public int mvalue() {
                                                       hard to predict
                if (!blsComputed)
                   computeValue();
                return millipoints;
                                                     LinearCombinationLength.class:
                                                    protected void computeValue() {
          LinearCombinationLength
                                                       // ...
                                                       setComputedValue(result);
               PercentLength
                                                     PercentLength.class:
                                                    protected void computeValue() {
                                                       // ...
                                                       setComputedValue(result1);
                MixedLength
```

Predicting Direct Branches vs. Indirect Jumps

Conditional (Direct) Branch

Indirect Jump

Indirect jumps:

- Multiple target addresses → More difficult to predict than conditional (direct) branches
- Can degrade performance

The Problem

- Most processors predict using the BTB: target of indirect jump = target in previous execution
 - Stores only one target per jump (already done for conditional branches)
 - □ Inaccurate
 - Indirect jumps usually switch between multiple targets
 - ~50% of indirect jumps are mispredicted
- Most history-based indirect jump target predictors add large hardware resources for multiple targets

Indirect Jump Mispredictions

Dynamic Indirect Jump Predication (DIP)

Dynamic Indirect Jump Predication (DIP)

Dynamic Predication of Indirect Jumps

- The compiler uses control-flow analysis and profiling to identify
 - □ DIP-jumps: highly-mispredicted indirect jumps
 - □ Control-flow merge (CFM) points
- The microarchitecture decides when and what to predicate dynamically
 - Dynamic target selection

Dynamic Target Selection

Dynamic Target Selection

Additional DIP Entry/Exit Policies

- Single predominant target in the TST
 - ☐ TST has more accurate information
 - → Override the target prediction
- Nested low confidence DIP-jumps
 - → Exit dynamic predication for the earlier jump and re-enter for the later one
- Return instructions inside switch statements
 - Merging address varies with calling site
 - → Return CFM points

Methodology

- Dynamic profiling tool for DIP-jump and CFM point selection
- Cycle-accurate x86 simulator:
 - Processor configuration
 - 64KB perceptron predictor
 - 4K-entry, 4-way BTB (baseline indirect jump predictor)
 - Minimum 30-cycle branch misprediction penalty
 - 8-wide, 512-entry instruction window
 - 300-cycle minimum memory latency
 - 2KB 12-bit history enhanced JRS confidence estimator
 - 32 predicate registers, 1 CFM register
 - Also less aggressive processor (in paper)
- Benchmarks: DaCapo suite (Java), matlab, m5, perl
 - Also evaluated SPEC CPU 2000 and 2006

Indirect Jump Predictors

- Tagged Target Cache Predictor (TTC) [P. Chang et al., ISCA 97]
 - ☐ 4-way set associative fully-tagged target table
 - Our version does not store easy-to-predict indirect jumps
- Cascaded Predictor [Driesen and Hölzle, MICRO 98, Euro-Par 99]
 - Hybrid predictor with tables of increasing complexity
 - □ 3-stage predictor performs best
- Virtual Program Counter (VPC) Predictor [Kim et al., ISCA 07]
 - Predicts indirect jumps using the conditional branch predictor
 - Stores multiple targets on the BTB, as our target selection logic does

Performance, Power, and Energy

DIP vs. Indirect Jump Predictors

Outcome of Executed Indirect Jumps

Additional Evaluation (in paper)

- Static vs. dynamic target selection policies
- DIP with more than 2 targets \rightarrow 2 dynamic targets is best
- DIP on top of a baseline with TTC, VPC or Cascaded predictors
- Sensitivity to:
 - Processor configuration
 - BTB size
 - ☐ TST size and structure
- More benchmarks (SPEC CPU 2000 and 2006)

Conclusion

- Object-oriented languages use more indirect jumps
 - Indirect jumps are hard to predict and have already become an important performance limiter
- We propose DIP, a cooperative hardware-software technique
 - Improves performance by 37.8%
 - □ Reduces energy by 24.8%
 - Provides better performance and energy-efficiency than three indirect jump predictors
 - □ Incurs low hardware cost (3.6KB) if dynamic predication is already used for conditional branches
 - Can be an enabler encouraging developers to use object-oriented programming

Thank You!

Questions?