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Executive Summary

• Problem: Reliable memory hardware increases cost

•Our Goal: Reduce datacenter cost; meet availability target

•Observation: Data-intensive applications’ data exhibit a 
diverse spectrum of tolerance to memory errors
‐ Across applications and within an application

‐ We characterized 3 modern data-intensive applications

•Our Proposal: Heterogeneous-reliability memory (HRM)
‐ Store error-tolerant data in less-reliable lower-cost memory

‐ Store error-vulnerable data in more-reliable memory

•Major results:
‐ Reduce server hardware cost by 4.7 %

‐ Achieve single server availability target of 99.90 %
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Outline

•Motivation

•Characterizing application memory error tolerance

•Key observations
‐ Observation 1:  Memory error tolerance varies 

across applications and within an application
‐ Observation 2: Data can be recovered by software

•Heterogeneous-Reliability Memory (HRM)

•Evaluation
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Server Memory Cost is High

•Server hardware cost dominates datacenter Total 
Cost of Ownership (TCO) [Barroso ‘09]

•As server memory capacity grows, memory cost 
becomes the most important component of server 
hardware costs [Kozyrakis ‘10]
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128GB Memory cost
~$140(per 16GB)×8
= ~$1120 *

2 CPUs cost
~$500(per CPU)×2
= ~$1000 *

* Numbers in the year of 2014



Memory Reliability is Important
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System/app crash
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Existing Error Mitigation Techniques (I)

•Quality assurance tests increase manufacturing cost
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Stronger error protection techniques have higher cost
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Existing Error Mitigation Techniques (II)

•Error detection and correction increases system cost
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Technique Detection Correction
Added

capacity
Added 
logic

NoECC N/A N/A 0.00% No

Parity 1 bit N/A 1.56% Low

SEC-DED 2 bit 1 bit 12.5% Low

Chipkill 2 chip 1 chip 12.5% High

Parity 1 bit N/A 1.56%

SEC-DED 2 bit 1 bit 12.5%SEC-DED 2 bit 1 bit 12.5% Low

Chipkill 2 chip 1 chip 12.5% High



Goal: Design a new cost-efficient memory system
that flexibly matches memory reliability 
with application memory error tolerance

Shortcomings of Existing Approaches

•Uniformly improve memory reliability
‐ Observation 1: Memory error tolerance varies 
across applications and with an application

•Rely only on hardware-level techniques
‐ Observation 2: Once a memory error is detected, 
most corrupted data can be recovered by software
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Memory Error Outcomes

Characterization Goal
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Memory Error

System/App 
Crash

Incorrect 
Response

Masked by 
Logic

Masked by 
Overwrite

Consumed by 
Application

Correct Result Incorrect Result

x = …010…x = …110…

Store

x = …000…

Load

if (x != 0) 
…

return x;
or 
*x;

Quantify application memory error tolerance
corrupted



Characterization Methodology

•3 modern data-intensive applications

•3 dominant memory regions
‐ Heap – dynamically allocated data
‐ Stack – function parameters and local variables
‐ Private – private heap managed by user

• Injected a total of 23,718 memory errors using 
software debuggers (WinDbg and GDB)

•Examined correctness for over 4 billion queries
12

Application WebSearch Memcached GraphLab

Memory footprint 46 GB 35 GB 4 GB
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Observation 1: Memory Error Tolerance Varies

Across Applications

Showing results for single-bit soft errors
Results for other memory error types can be found in the paper with similar conclusion 14
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Showing results for single-bit soft errors
Results for other memory error types can be found in the paper 15
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All averaged at a very low rate

Observation 1: Memory Error Tolerance Varies

and Within an ApplicationAcross Applications
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• Implicitly recoverable – application intrinsically has a clean 
copy of the data on disk

• Explicitly recoverable – application can create a copy of the 
data at a low cost (if it has very low write frequency)
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Observation 2: Data Can be Recovered by Software

Implicitly and Explicitly
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Private Heap Stack Overall

WebSearch Recoverability
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recoverable
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Par+R: Parity Detection + Software Recovery
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Heterogeneous-Reliability Memory

App 1 
data A

App 1 
data B

App 2 
data A

App 2 
data B

App 3 
data A

App 3 
data B

Step 2: Map application data to the HRM system 
enabled by SW/HW cooperative solutions

Step 1: Characterize and classify
application memory error tolerance

Reliable 
memory

Parity memory 
+ software recovery (Par+R)

Low-cost memory

UnreliableReliable

Vulnerable Tolerant

App 1 
data A

App 2 
data A

App 2 
data B

App 3 
data A

App 3 
data B

App 1 
data B
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Evaluated Systems
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Configuration

Mapping

Pros and ConsPrivate
(36 GB)

Heap
(9 GB)

Stack
(60 MB)

Typical Server ECC ECC ECC Reliable but expensive

Consumer PC NoECC NoECC NoECC Low-cost but unreliable

HRM Par+R NoECC NoECC Parity only

Baseline systems HRM systems

Less-Tested (L) NoECC NoECC NoECC Least expensive and reliable

HRM/L ECC Par+R NoECC Low-cost and reliable HRM



Design Parameters
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DRAM/server HW cost [Kozyrakis ‘10] 30%

NoECC memory cost savings 11.1%

Parity memory cost savings 9.7%

Less-tested memory cost savings 18%±12%

Crash recovery time 10 mins

Par+R flush threshold 5 mins

Errors/server/month [Schroeder ‘09] 2000

Target single server availability 99.90%



Evaluation Metrics

•Cost
‐ Memory cost savings
‐ Server HW cost savings
(both compared with Typical Server)

•Reliability
‐ Crashes/server/month
‐ Single server availability
‐ # incorrect/million queries

27



Improving Server HW Cost Savings
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HRM systems are flexible to adjust 
and can achieve availability target
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Achieving Acceptable Correctness
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Evaluation Results
Typical Server
Consumer PC
HRM
Less-Tested (L)
HRM/L

Bigger area means better tradeoff 31

Outer is betterInner is worse

http://www.cs.cmu.edu/afs/cs/usr/yixinluo/www/bin-debug/RadarChart_Demo.swf
http://www.cs.cmu.edu/afs/cs/usr/yixinluo/www/bin-debug/RadarChart_Demo.swf


Other Results and Findings in the Paper

• Characterization of applications’ reactions to memory errors
‐ Finding: Quick-to-crash vs. periodically incorrect behavior

• Characterization of most common types of memory errors 
including single-bit soft/hard errors, multi-bit hard errors
‐ Finding: More severe errors mainly decrease correctness

• Characterization of how errors are masked
‐ Finding: Some memory regions are safer than others

• Discussion about heterogeneous reliability design dimensions, 
techniques, and their benefits and tradeoffs
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Conclusion

•Our Goal: Reduce datacenter cost; meet availability target

• Characterized application-level memory error tolerance of 
3 modern data-intensive workloads

• Proposed Heterogeneous-Reliability Memory (HRM)
‐ Store error-tolerant data in less-reliable lower-cost memory

‐ Store error-vulnerable data in more-reliable memory

• Evaluated example HRM systems
‐ Reduce server hardware cost by 4.7 %

‐ Achieve single-server availability target 99.90 %
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Why use a software debugger?

•Speed
‐ Our workloads are relatively long running
•WebSearch – 30 minutes
•Memcached – 10 minutes
•GraphLab – 10 minutes

‐ Our workloads have large memory footprint
•WebSearch – 46 GB
•Memcached – 35 GB
•GraphLab – 4 GB
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What are the workload properties?

•WebSearch
‐ Repeat a real-world trace of 200,000 queries, with 400 qps

‐ Correctness: Top 4 most relevant documents
• Document id

• Relevance and popularity

•Memcached
‐ 30 GB of twitter dataset

‐ Synthetic client workload, at 5,000 rps

‐ 90% read requests and 10% write requests

•GraphLab
‐ 11 million twitter users’ following relations, 1.3 GB dataset

‐ TunkRank algorithm 

‐ Correctness: 100 most influential users and their scores
36



How many errors are injected to each 
application and each memory region?

•WebSearch – 20,576

•Memcached – 983

•GraphLab – 2,159

• Errors injected to each memory region is proportional to 
their sizes

37

Application Private Heap Stack Total

WebSearch 36 GB 9 GB 60 MB 46 GB

Memcached N/A 35 GB 132 KB 35 GB

GraphLab N/A 4 GB 132 KB 4 GB



Does HRM require HW changes
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What is the injection/monitoring process?
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Comparison with previous works?

•Virtualized and flexible ECC [Yoon ‘10]
‐ Requires changes to the MMU in the processor

‐ Performance overhead ~10% over NoECC

•Our work: HRM
‐ Minimal changes to memory controller to enable different ECC on 

different channels

‐ Low performance overhead

‐ Enables the use of less-tested memory
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Other Results
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Variation within application
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Variation within application
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Other types of memory errors
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Other types of memory errors
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Explicit Recovery
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Quick to crash vs. periodic incorrect
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Safe ratio: masked by overwrite
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Potential to tolerate memory errors
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Design dimension
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Design dimension
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