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This paper makes two observations that lead to a new
heterogeneous core design. First, we observe that most serial code
exhibits fine-grained heterogeneity: at the scale of tens or hundreds
of instructions, regions of code fit different microarchitectures
better (at the same point or at different points in time). Second,
we observe that by grouping contiguous regions of instructions
into blocks that are executed atomically, a core can exploit this
fine-grained heterogeneity: atomicity allows each block to be
executed independently on its own execution backend that fits
its characteristics best.

Based on these observations, we propose a fine-grained hetero-
geneous core design, called the heterogeneous block architecture
(HBA), that combines heterogeneous execution backends into one
core. HBA breaks the program into blocks of code, determines
the best backend for each block, and specializes the block for
that backend. As an example HBA design, we combine out-of-
order, VLIW, and in-order backends, using simple heuristics
to choose backends for different dynamic instruction blocks.
Our extensive evaluations compare this example HBA design
to multiple baseline core designs (including monolithic out-
of-order, clustered out-of-order, in-order and a state-of-the-art
heterogeneous core design) and show that it provides significantly
better energy efficiency than all designs at similar performance.

I. INTRODUCTION
General-purpose processor core design faces two competing

goals. First, a core should provide high single-thread (serial) perfor-
mance. This is important for many algorithms and for any application
with serialized code sections [1, 2, 15, 28, 29, 59]. Second, a core
should provide high energy efficiency. Energy/power consumption is
a primary limiter of system performance and scalability, both in large-
scale data centers [17] and in consumer devices [22, 41].

Unfortunately, it is difficult to achieve both high performance
and high energy efficiency at the same time: no single core microar-
chitecture is the best design for both metrics for all programs or
program phases. Any particular design spends energy on some set
of features (e.g., out-of-order instruction scheduling, sophisticated
branch prediction, or wide pipeline width), but these features do not
always yield improved performance. As a result, a general-purpose
core is usually a compromise: it is designed to meet some performance
objectives while remaining within a power envelope, but for any given
program, it is frequently not the most efficient design.

Designing a good general-purpose core is difficult because code
is heterogeneous at multiple levels: each program has different
characteristics, and a single program has different characteristics in
different regions of its code. To exploit this diversity, past works have
proposed core-level heterogeneity. These heterogeneous designs either
combine multiple separate cores (e.g., [2, 3, 6, 10, 20, 23, 28, 33,
59, 61]), or combine an in-order and an out-of-order pipeline with a
shared frontend in a single core [37]. Past works demonstrate energy-
efficiency improvements with usually small impact to performance.

This paper makes two key observations that motivate a new
way of building a heterogeneous core. Our first observation is that
applications have fine-grained heterogeneity. Prior work exploited
heterogeneity at the coarser granularity of thousands of instructions:
e.g., programs have memory and compute phases, and such phases
can be exploited by migrating a thread to “big” cores for compute-
intensive phases and “little” cores for memory-intensive phases [37,
61]. As we will show, at a much finer granularity (of tens of
instructions), adjacent blocks of code often have different properties.
For example, one block of code might have a consistent instruction
schedule across its dynamic execution instances in an OoO machine,

whereas a neighboring block might have different execution schedules
at different times depending on cache miss behavior of load instruc-
tions in the block. Such behavior suggests the use of both dynamic and
static schedulers within a single core, perhaps even simultaneously
for different instructions in flight, so that each instance of a block is
executed using the most efficient instruction scheduling mechanism.
Migration of execution between separate cores or pipelines cannot
easily exploit this fine-grained heterogeneity in code behavior.

Our second observation is that a core can exploit fine-grained
heterogeneity if it splits code into atomic blocks and executes each
block on a separate execution backend, including functional units,
local storage, and some form of instruction scheduling. To exploit
fine-grained heterogeneity, a core will need to (i) have execution
backends of multiple types, and (ii) specialize pieces of code for
each backend. By enforcing atomicity, or the property that a block
of code either executes as a whole or not at all, the core can freely
analyze and morph this block of code to fit a particular backend
(e.g., atomicity allows the core to reorder instructions freely within
the block). Atomic block-based design allows execution backends to
operate independently using a well-defined interface (liveins/liveouts)
between blocks.

Based on these two observations, we propose a fine-grained het-
erogeneous core that dynamically forms code into blocks, specializes
those blocks to execute on the most appropriate type of execution
backend, and executes blocks on the various backends. This core
design serves as a general substrate for fine-grained heterogeneity
that can combine many different types of execution backends. As
an initial example design, this paper describes and evaluates a core
which includes out-of-order, VLIW, and in-order execution backends,
and logic to assign each block to a backend. Our concrete design
initially executes each block on the out-of-order execution backend,
but monitors schedule stability of the block over time. When a
block of code has an unchanging instruction schedule, indicating that
instruction latencies are likely not variable, it is converted to a VLIW
or in-order block (depending on instruction-level parallelism, ILP),
using the instruction schedule recorded during out-of-order execution.
When the block again requires dynamic scheduling (determined based
on a simple stall-cycle statistic), it is converted to an out-of-order
block. At any given time, multiple backend types can be active for
different blocks in flight.

This paper makes four major contributions:
1. It introduces the concept and design of the heterogeneous

block architecture (HBA). HBA exploits the notions of fine-grained
heterogeneity, atomic blocks, and block-based instruction schedul-
ing/execution in a synergistic manner to adapt each piece of code to
the execution backend it is best fit to execute on. (§II and §III)

2. It introduces the implementation of a new fine-grained hetero-
geneous core, an example HBA design, that forms atomic blocks of
code and executes these blocks on out-of-order, VLIW, and in-order
backends, depending on the observed instruction schedule stability
and ILP of each block, with the goal of maximizing energy efficiency
while maintaining high performance. (§III-C3 and §III-D)

3. It provides simple mechanisms that enable a block of code
to be switched between VLIW/in-order and out-of-order execution
backends. These mechanisms do not require any support at compile
time; they use dynamic heuristics and instruction schedules, and form
blocks dynamically. (§III-D)

4. It extensively evaluates an example HBA design in comparison
to four baselines (out-of-order, clustered [18], coarse-grained hetero-
geneous [37], and clustered coarse-grained), showing higher energy
efficiency than all previous designs across a wide variety of workloads
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(§V). Our design reduces average core power by 36.4% with 1%
performance loss over the baseline. We show that HBA provides
a flexible substrate for future heterogeneous designs, enabling new
power-performance tradeoff points in core design (§V-C).

II. MOTIVATION: FINE-GRAINED HETEROGENEITY
Our first major observation is that applications have fine-grained

heterogeneity, i.e., heterogeneity across regions of tens or hundreds
of instructions. This heterogeneity is distinct from larger program
phases [13, 56] that occur because a program switches between
wholly different tasks or modes. Fine-grained heterogeneity occurs
when small chunks of code have different characteristics due to
particular instructions or dataflow within a single task or operation.

Fig. 1 pictorially represents this distinction. The left half depicts
an application that has at least two phases: a regular floating-point
phase and a memory-bound pointer-chasing phase. These phases
occur at a scale of thousands to millions of instructions. If we focus on
one small portion of the first phase, we see fine-grained heterogeneity.
The right half of Fig. 1 depicts three regions of instructions within
the coarse-grained phase. In the first region of instructions, three of
the four operations are independent and can issue in parallel, and
all instructions have constant, statically-known latencies. Hence, this
region has high ILP and a stable (unchanging) dynamic instruction
schedule. The second region also has high ILP, but has a variable
schedule due to intermittent cache misses. Finally, the third region
has low ILP due to a dependence chain. Overall, each small code
region within this single “regular floating point” phase has different
properties, arising solely from variations in instruction dependences
and latencies. Each such region thus benefits from different core
features.
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Fig. 1: Coarse-grained vs. fine-grained heterogeneity.

To motivate that adjacent regions of code may have different
properties that can be exploited, we show the existence of one such
property, instruction schedule stability: some regions of code always
(or frequently) schedule in the same order in the dynamic out-of-
order scheduling logic. We also show that this property varies greatly
between different nearby regions of code (hence, is fine-grained).
To do this, we analyze the behavior of 268 workloads on a 4-wide
superscalar out-of-order core.1 We observe the retired instruction
stream and group retired instructions into chunks of up to 16 µops.
Chunks are broken at certain boundaries according to the heuristics in
§III-C1. For each chunk, we compare the actual dynamic instruction
schedule of that chunk to the schedule of the previous instance of the
same (static) code. We record whether the schedule was the same as
before. These annotations, called “chunk types,” indicate the extent
to which each chunk has a stable schedule.

Fig. 2 shows the fraction of the “same” and “different” chunk
types, per benchmark, as a sorted curve. Two observations are in order.
First, many chunks repeat instruction schedules in their previous
execution (especially in workloads to the left of the graph). Hence,
there is significant opportunity to reuse past instruction scheduling
order (as also noted by past work [44]). Second, there are many
applications (in the center of the plot) that exhibit a mix of behavior:

1See §IV for our methodology. Later results use a representative subset of
184 of these 268 workloads.

between 20% and 80% of retired chunks exhibit stable schedules.
Hence, individual applications often have heterogeneous instruction
schedule stability across different regions of code. This observation
motivates a core design that can reuse instruction schedules for some
code and dynamically schedule other code.
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Fig. 2: Fraction of chunks in the instruction stream that have a different
schedule than their previous instance.

Moreover, we observe that this heterogeneity exists between
nearby chunks in the dynamic instruction stream, i.e., there is fine-
grained heterogeneity. We observe the sequence of chunk types in
retire order and group chunks into runs. One run is a consecutive
series of chunks with the same instruction schedule stability. We
then accumulate the length of all runs. The length of these runs
indicates whether the heterogeneity is coarse- or fine-grained. We
find that almost 60% of runs are of length 1, and the histogram falls
off rapidly thereafter. In other words, the schedule stability of chunks
is often different even between temporally-adjacent static regions of
code, indicating fine-grained heterogeneity. Fine-grained heterogene-
ity exists within program phases, and is thus distinct from coarse-
grained (inter-program/inter-phase) heterogeneity exploited by past
works in heterogeneous core/multicore design. Instead, it motivates
a new approach: a single core that can execute nearby chunks of
instructions with different mechanisms best suited for each dynamic
chunk. Our goal in this paper is to provide such a framework for
general-purpose core design.

III. HBA: PRINCIPLES AND EXAMPLE DESIGN
Based on our observations, we introduce our new design, HBA.

A. High-Level Overview
Key Idea #1: Build a core that executes fine-grained blocks of
code on heterogeneous backends. As shown in §II, application code
is heterogeneous at a fine granularity. To exploit this, we build a
core that contains multiple different execution backends within a
single core. The core groups the application’s instructions into chunks
(called blocks) and determines the best type of execution backend for
each block. Multiple execution backends (including multiple of the
same type) can be active simultaneously, executing different blocks
of code, and these backends communicate with each other directly.
Key Idea #2: Leverage block atomicity to allow block specializa-
tion. In order to allow for a block of code to be adapted properly to
a particular backend, the block must be considered as a unit, isolated
from the rest of the program. Our second key idea is to require
atomicity of each block: the core commits all results of the block at
once or not at all. Atomicity guarantees the core will always handle an
entire block at once, allowing the use of backends that leverage code
properties extracted once over the entire block (e.g., by reordering
or rewriting instructions) to adapt the block to a particular backend.
Atomicity thus enables the core to exploit fine-grained heterogeneous
backends.
Key Idea #3: Combine out-of-order and VLIW/in-order execution
backends by using out-of-order execution to form stable VLIW
schedules. Our final idea leverages dynamically-scheduled (out-of-
order) execution in order to enable statically-scheduled (VLIW/in-
order) execution with runtime-informed instruction schedules. The
out-of-order backend observes the dynamic schedule and, when it is
stable (unchanging) over multiple instances of the same code, records
the schedule and uses it for VLIW or in-order execution. If the core
later determines that this schedule leads to unnecessary stalls, the
schedule is thrown away and the block is again executed by the out-
of-order backend. Most of the performance of out-of-order execution
is retained at much lower energy (as shown in §V).
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B. Atomicity, Liveins, Liveouts
We briefly describe terms that are important to understanding our

design. First, atomicity of a block means that a block either completes
execution and commits all its results, or none at all. This is in contrast
to a conventional core, in which the atomic unit of execution is a
single instruction, and each instruction commits its results separately.
Second, liveins and liveouts are the inputs and outputs, respectively,
to and from a block. A livein is any register that an instruction in
a block reads that is not written (produced) by an earlier instruction
in the block. A liveout is any register that an instruction in a block
writes that is not overwritten by a later instruction in the block.

C. HBA Design
Fig. 3 illustrates the basic HBA design. The core consists of three

major parts: (i) block fetch, (ii) block sequencing and communication,
and (iii) block execution. We discuss each in turn.

Fig. 3: HBA (Heterogeneous Block Architecture) overview.

1) Block Formation and Fetch: HBA core forms blocks
dynamically. These blocks are microarchitectural: the block-level
interface is not software-visible. In order to avoid storing every block
in full, the HBA core uses an instruction cache (as in the baseline),
and stores only block metadata in a block info cache. This cache
is indexed with the start PC of a block and its branch path, just
as in a conventional trace cache [45, 52]. The block info cache
stores information that the core has discovered about the block.2 This
information depends on the block type: for example, for a block that
executes on a VLIW backend, the information includes the instruction
schedule.

At fetch, the block frontend fetches instructions from the I-
cache, using a conventional branch predictor. In parallel, it looks up
information in the block info cache. As instructions are fetched, they
are not sent to the backend right away, but are kept in a block buffer.
These instructions become a block and are sent to the backend either
when the block name (PC and branch path) hits in the block info
cache, and no longer matches exist, or else when the PC and branch
path miss in the block info cache. If there is a miss, the block takes on
default characteristics: it executes on an OoO backend, which requires
no pre-computed information about the block. In this case, the block
is terminated whenever any block termination condition holds: when
it (i) reaches a maximum length (16 instructions by default), (ii) ends
at an indirect branch, or (iii) ends at a difficult-to-predict conditional
branch, as determined by a small (1K-entry) table of 2-bit saturating
counters incremented whenever a branch is mispredicted [46].

2) Block Sequencing and Communication: The central por-
tion of the core depicted in Fig. 3 handles sequencing and commu-
nication: that is, managing block program order and repairing it on
branch mispredicts, sending blocks to the appropriate execution units,
and communicating program values between those execution units.
Block Dispatch and Sequencing: Once a block is fetched, the block
dispatch logic sends it to an appropriate execution backend. Each
execution backend executes one block at a time until all operations
within the block are complete. The block dispatch logic maintains

2The use of a block info cache in parallel with an instruction cache, rather
than a full trace cache [45, 52], allows the HBA core to approximate the best
of both worlds: it achieves the space efficiency of the instruction cache while
retaining the learned information about code blocks.

one free-list of block execution backends per type, and allocates the
appropriate type for each block. In the concrete design point that we
evaluate, there are 16 backends, each of which can execute in OoO
or VLIW/in-order mode, so there is only one such free-list.

The block sequencing logic maintains program order among
blocks in flight and handles branch misprediction recovery. The logic
contains a block-level ROB (reorder buffer), analogous to the ROB
in a conventional out-of-order design. There are two types of branch
mispredicts: intra-block, due to a conditional branch in the middle of
a block, and inter-block, due to a branch that is the last instruction
in a block. Inter-block misprediction recoveries squash the blocks
that follow the mispredicted branch in program order, roll back state
using the ROB, and restart the frontend on the proper path. Intra-
block mispredicts additionally squash the block that contains the
mispredicted branch (due to block-level atomicity) and restart the
frontend from the block at the same fetch PC but with a different
internal branch-path. Finally, the block sequencing logic handles
exceptions by squashing the excepting block and executing in a
special single-instruction block mode to reach the exception point.
Global Registers and Liveout-Livein Communication: Blocks
executing on different backends communicate via global registers
that receive liveouts from producer blocks as they execute and provide
liveins to consumer blocks. The global register file is centrally located
between the block execution backends. In addition to data values, this
logic contains subscription bits and a livein wakeup unit, described
in more detail below.

When a block is dispatched, its liveins are renamed by looking up
global register pointers in a liveout register alias table (RAT), which
contains an entry for each architectural register. Its liveouts are then
allocated global registers and the liveout RAT is updated. Liveout-
to-livein communication between blocks occurs as soon as a given
liveout is produced within a backend. The liveout is first written to
the global register file. The livein wakeup unit then sends the value to
any blocks that consume it as a livein. Thus, values are communicated
from producers to consumers as soon as the values become available,
and blocks begin executing as soon as any of their instructions has
the necessary liveins (avoiding performance loss that would occur if
a block were to wait for all liveins first).

To support this fine-grained livein wakeup, each global register
has a corresponding set of subscription bits indicating waiting back-
ends. When a block is dispatched, it subscribes to its livein registers.
At each global writeback, the subscription bits allow wakeups to
be sent efficiently to only the consuming backends. This structure
is similar to a bit-matrix scheduler [21]. Note that values produced
and consumed internally within a block are never communicated nor
written to the global register file.

3) Block Execution: When a block is sent to a block execution
backend, the backend executes the block in its specialized resources.
Each backend receives (i) a block specialized for that backend, and
(ii) a stream of liveins for that block, as they become available. The
backend performs the specified computation and produces (i) a stream
of liveouts for its block, (ii) any branch misprediction results, and (iii)
a completion signal. When a block completes execution, the backend
clears out the block and becomes ready to receive another one.

In our example HBA design, we implement two types of block
execution backend: an out-of-order backend and a VLIW/in-order
backend. Both types share a common datapath design, and differ
only in the instruction issue logic and pipeline width. Note that these
backends represent only two points in a wide design spectrum; more
specialized backends are possible and are left for future work. The
core will have several such backends (i.e., not simply one of each
type); in general, an HBA core could contain an arbitrary pool of
backends of many different types.
Local execution cluster: Both the out-of-order and VLIW/in-order
execution backends in our design are built around a local execution
cluster that contains simple ALUs, a local register file, and a
bypass/writeback bus connecting them. When a block is formed, each
instruction in the block is allocated a destination register in the local
register file. An instruction that produces block live-outs additionally
sends its result to the global register file.
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Shared execution units: In addition to the simple ALUs in each
execution backend, the HBA core shares its more expensive execution
units (such as floating-point units and load/store pipelines). Execution
backends arbitrate for access to these units when instructions are
issued (and arbitration conflicts are handled oldest-block-first, with
conflicting instructions waiting in skid buffers to retry). Sharing these
units between all execution backends amortizes these units’ cost [34].
Memory operations: Execution backends share the L1 cache, the
load/store queue (LSQ), and the load/store pipelines. The use of
blocks is orthogonal to both the correctness and performance aspects
of the memory subsystem: a block preserves memory operation
ordering within itself, and allocates loads/stores into the LSQ in
original program order. Because our core design achieves similar
performance to the baseline core, as we show later, the same memory
pipeline throughput as baseline is sufficient. Memory disambiguation
does not interact with block atomicity; if a load requires replay, it is
sent back to its execution unit as in the baseline.
Out-of-order execution backend (Fig. 4a): This backend imple-
ments dataflow-order instruction scheduling within a block. The
instruction scheduler is bit matrix-based [21, 54]. When a livein is
received at the backend, it wakes up dependents as any other value
writeback would. Note that because the block execution backend does
not need to maintain program order within the block (because blocks
are atomic), the backend has no equivalent to a ROB. Rather, it has a
simple counter that counts completed instructions and signals block
completion when all instructions have executed.

In order to specialize a block for the out-of-order backend, the
block specialization logic (i) pre-renames all instructions in the block,
and (ii) pre-computes the scheduling matrix. This information is
stored in the block info cache and provided with the block if present.
Because the out-of-order backend also executes new blocks which
have no information in the block info cache, this logic also performs
the renaming and computes this information for the first dynamic
instance of each new block. Because of this block specialization, the
out-of-order backend does not need any renaming logic and does not
need any dynamic matrix allocation/setup logic (e.g., the producer
tables in Goshima et al. [21]). These simplifications save energy
relative to a baseline out-of-order core.

(a) Out-of-order backend (b) VLIW backend
Fig. 4: Block execution backend designs.

VLIW execution backend (Fig. 4b): Unlike the out-of-order back-
end, the VLIW backend has no out-of-order scheduler. Instead,
it contains an issue queue populated with pre-formed instruction
bundles, and a scoreboard stage that stalls the head of the issue queue
until the sources for all of its instructions are ready. The scoreboard
implements a stall-on-use policy for long-latency operations such as
cache-missing loads and operations on the shared FPU.

Specialization of blocks for the VLIW backend is more involved
than for the out-of-order backend because VLIW execution requires
pre-formed bundles of instructions. Rather than require the compiler
to form these bundles (which requires a new ISA), the HBA core
leverages the existing instruction-scheduling logic in the OoO back-
end to form bundles dynamically at runtime, as we now describe.

D. Combining Out-of-Order and VLIW Execution
To combine out-of-order and VLIW block execution backends,

we propose memoized scheduling. Memoized scheduling exploits the
observation (seen in §II) that blocks often exhibit schedule stability.
The key idea is to first use an out-of-order execution backend to
execute a block and observe its schedule stability. Each time the block
executes on this backend, its instruction schedule (as executed) is
recorded. If the instruction schedule of the block remains stable (i.e.,
changes very little or not at all) over multiple executions of that
block, the block of code is converted to use a VLIW backend. (Our

evaluations use a threshold of four consecutive executions that use
exactly the same schedule.) The recorded instruction schedule is taken
as the set of instruction bundles for a VLIW backend. The VLIW
backends are designed to have the same issue width and functional
units as the out-of-order backends so that the recorded schedule can be
used as-is. Thus, the schedule is recorded and replayed, or memoized.

If the block’s schedule remains stable, subsequent executions of
the block on the VLIW backend will obtain the same performance
as if the out-of-order backend were used, while saving the energy
that instruction scheduling would have consumed. However, if the
schedule becomes unstable (e.g., due to changing cache-miss behavior
or livein timing), subsequent executions may experience false stalls,
or cycles in which a VLIW bundle stalls because some of its
instructions are not ready to execute, but at least one of the contained
instructions is ready and could have executed if it were not bundled.
These stalls result in performance loss compared to execution on
an out-of-order backend. To minimize this potential loss, the VLIW
backend monitors false stall cycles. If the number of such cycles for
each block (as a ratio of all execution cycles for that block) exceeds a
threshold (5% in our evaluations), the memoized schedule is discarded
and the block executes on an out-of-order backend next time it is
dispatched.

Unified OoO/VLIW Backend: We observe that a VLIW back-
end’s hardware is almost a subset of the out-of-order backend’s
hardware. The pipeline configurations are identical and only the
scheduler is different. Thus, we use a single unified backend that
simply turns off its out-of-order scheduling logic (bit-matrix) when
it is executing in VLIW mode. (MorphCore [30] exploits a similar
observation to combine in-order and out-of-order scheduling.)

E. Reducing Execution Power
We reduce execution power on the VLIW backend in two ways.

Dynamic Pipeline Narrowing: We observe many blocks cannot
utilize the full width of a VLIW backend. To exploit this, the VLIW
block formation process records the maximum bundle width across all
VLIW bundles of a block. When a VLIW backend executes a block,
it dynamically narrows its issue width to this maximum, saving static
and dynamic energy, similar to [27]. (An “in-order” backend is simply
a VLIW backend that has reduced its width to one.) These savings
occur via clock and power gating to unused execution units.
Dead Write Elision: In a block executing on a VLIW backend, any
values that are used only while on the bypass network need not be
written to their local destination register [49]. Similarly, any values
that are never used while on the bypass network need not be written
to the bypass network, but only to the register file. The VLIW block
formation process detects values with such unnecessary writes and
marks them as such, saving energy during execution.

IV. METHODOLOGY
System Configuration: We evaluate our example HBA design against
several baseline core designs, modeling each core and memory
faithfully. Table I shows the main system parameters we model.
Simulator: We employ an in-house cycle-accurate simulator that
is execution-driven. We faithfully model all major structures and
algorithms within the HBA core and baseline cores, carry values
through the model, and check against a functional model to ensure
correctness. The model implements the user-mode x86-64 ISA by
cracking instructions into µops (using a modified version of the
PTLsim [64] decoder).
Power Model: To model core power/energy, we use a modified
version of McPAT [36]. To model HBA’s energy, we use McPAT’s
component models to construct a faithful model. We assume 2GHz
operation for all core designs. We replaced McPAT’s ALU model with
a custom, more accurate, Verilog model we developed and synthesized
for a commercial process with Synopsys tools. We provide all
numbers and formulas of our model in a technical report [16].

One parameter of our model is the sensitivity of design to static
power. The parameters in our model are based on a 28nm FDSOI
(fully depleted silicon on insulator) process technology as described
in [19]. Depending on operating conditions and the choice of low
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Parameter Setting
Baseline Core:

Fetch Unit ISL-TAGE [55]; 64-entry return stack; 64K-entry BTB;
8-cycle restart latency; 4-wide fetch

Instruction Cache 32KB, 4-way, 64-byte blocks
Window Size 256-µop ROB, 320-entry physical register file (PRF),

96-entry matrix scheduler
Execution Units 4-wide; 4 ALUs, 1 MUL, 3 FPUs, 2 branch units, 2

load pipes, 1 store address and data pipe each
Memory Unit 96-entry load queue (LQ), 48-entry store queue (SQ)
L1/L2 Caches 64KB, 4-way, 5-cycle L1; 1MB, 16-way, 15-cycle L2;

64-byte blocks
DRAM 200-cycle latency; stream prefetcher, 16 streams

Heterogeneous Block Architecture (HBA):
Block Size 16 µops, 16 liveins, 16 liveouts max
Fetch Unit Baseline + 256-block info cache, 64 bytes/block
Global RF 256 entry; 16 rd/8 wr ports; 2-cyc. inter-backend comm.
Instruction Window 16-entry Block ROB
Backends 16 unified backends (OoO- or VLIW-mode)
OoO backend 4-wide, 4 ALUs, 16-entry local RF, 16-entry scheduler
VLIW backend 4-wide, 4 ALUs, 16-entry local RF, scoreboard sched.
Shared Execution Units 3 FPUs, 1 MUL, 2 load, 1 store address/1 store data;

2-cycle roundtrip penalty for use
LQ/SQ/L1D/DRAM Same as baseline

TABLE I: Major system parameters used in evaluation.

Vt (fast, leaky) or regular Vt (slow, less leaky) devices, the relative
contribution of static and dynamic power may vary. For example,
leakage can be 15% of total power for a processor implemented with
fast, low Vt devices operating at nominal voltage (0.9V) [19]. The
use of regular leakage devices will reduce leakage power by about an
order of magnitude but will reduce performance by about 10–15%.
Results will change depending on the characteristics of the underlying
process technology and choice of operating voltage. We focus on two
evaluation points: worst-case leakage (all fast low-Vt devices at 0.9V),
resulting in 15% of total power, and more realistic leakage with a
50%/50% mix of low-Vt and high-Vt devices, resulting in 10% of
total power. A real design [12] might use both types by optimizing
critical path logic with fast transistors while reducing power in non-
critical logic with less leaky transistors. Our main analysis assumes
10% leakage but we summarize key results for 15% leakage in §V-A.

Our power gating mechanism gates (i) scheduling logic in back-
ends when they are in VLIW mode, (ii) superscalar ways when
backends execute narrow VLIW blocks, and (iii) shared execution
units (FPUs and the multiplier) in both HBA and in the baseline.
Workloads: We evaluate 184 distinct checkpoints, collected from
the SPEC CPU2006, Olden [50], MediaBench [35] suites, and many
real workloads: Firefox, FFmpeg, Adobe Flash player, V8 Javascript
engine, GraphChi graph-analysis framework, MySQL, the lighttpd
web server, LATEX, Octave (a MATLAB replacement), and an x86
simulator. Many of these workloads have multiple checkpoints at
multiple representative regions as provided by PinPoints [48]. All
checkpoints are listed in [16], along with their individual performance
and energy consumption on each of the evaluated core models.
Baselines: We compare HBA to four core designs. First, we compare
to two variants of a high-performance out-of-order core: (i) one with
a monolithic backend (scheduler, register file, and execution units),
(ii) one with a clustered microarchitecture that splits these structures
into separate clusters and copies values between them as necessary
(e.g., [18]). The clusters have equivalent scheduler size and issue
width as the block execution backends in the HBA core. Second, we
compare to two variants of a coarse-grained heterogeneous design
that combines an out-of-order and an in-order core [37] (iii) without
clustering and (iv) with clustering. We model an ideal controller
for this coarse-grained design, thus providing an upper bound on
efficiency and performance relative to the real controller-based mech-
anism of [37].

V. EVALUATION
Summary: We will show that three main conclusions hold: (i)

HBA has nearly the same performance as a baseline 4-wide out-
of-order core, with only 1% performance degradation on average;
(ii) HBA saves 36% of average core power relative to this baseline;
(iii) HBA is the most energy-efficient design among a large set of
evaluated core designs (§V-C summarizes this result by evaluating

a variety of core designs that fall into different power-performance
tradeoff points).

We analyzed HBA and other baselines extensively but can report
only some analyses below due to space constraints. Our technical
report [16] provides additional results, including sensitivity studies,
power model details, individual benchmark results and more analyses.

A. Power
The main benefit of HBA is that it saves significant core energy

(i.e., average core power). Table II shows average core power and
Energy Per Instruction (EPI) for six core designs: baseline out-of-
order, clustered out-of-order [18], coarse-grained heterogeneous [37],
coarse-grained heterogeneous combined with clustered out-of-order,
HBA with only out-of-order backends, and HBA with heterogeneous
backends. HBA (row 6) reduces core power by 36.4% and EPI by
31.9% over a baseline out-of-order core (row 1). HBA is also the
most energy-efficient core design in both core power and EPI.

Row Configuration ∆ Power ∆ EPI ∆ IPC
1 4-wide OoO (Baseline) — — —
2 4-wide Clustered OoO [18] -11.5% -8.3% -1.4%
3 Coarse-grained [37] -5.4% -8.9% -1.2%
4 Coarse-grained, Clustered -16.9% -17.3% -2.8%
5 HBA, OoO Backends Only -28.7% -25.5% +0.4%
6 HBA, OoO/VLIW -36.4% -31.9% -1.0%

TABLE II: Power, EPI, and performance vs. baseline out-of-order
execution core.

To provide insight into these numbers, Fig. 5 shows a breakdown
of the EPI. We make several major observations:
1. Energy reductions in HBA occur for three major reasons: (i)
decoupled execution backends, (ii) block atomicity and (iii) hetero-
geneity. The clustered out-of-order core, which has execution clusters
configured equivalently to HBA (item (i)), saves 8.3% in EPI over
the baseline monolithic core (first to second bar). Leveraging block
atomicity (item (ii)), the HBA design that uses only out-of-order
execution backends reduces energy by a further 17.2% (second to
fifth bar). Making use of all heterogeneous execution backends (item
(iii)) reduces energy by an additional 6.4% (fifth to sixth bar).
2. Decoupled execution backends: the clustered core saves instruction
scheduling energy because each cluster has its own scheduling
logic operating independently of the other clusters. Thus, the RS
(scheduler) power reduces by 71% from the first to second bar in
Fig. 5.
3. Block atomicity: Even without heterogeneous backends, HBA saves
energy in renaming (RAT), program-order sequencing/retire (ROB),
and global register file as it tracks blocks rather than instructions.
Savings are because: (i) the block core renames only liveouts, rather
than all written values, so RAT accesses reduce by 62%; (ii) the block
core dispatches/retires whole blocks at a time and stores information
about only liveouts in the ROB, reducing ROB accesses by 74%; and
(iii) only 60% of register file accesses go to the global register file.
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4. Heterogeneity: the HBA design with all mechanisms enabled saves
energy in (i) instruction scheduling, due to the use of VLIW backends
for 61% of blocks, (ii) the register file and the bypass network:
dynamic pipeline narrowing for narrow blocks causes 21% of all µops
to execute on a narrow pipe, and dead write elision eliminates 44%
of local RF writes and 19% of local bypass network writes.
5. The state-of-the-art coarse-grained heterogeneous core [37] saves
energy in both the out-of-order logic (RAT, ROB, and RS) and
execution resources (bypass buses and register file) as it can use the
in-order backend a portion of the time. However, when using the
out-of-order backend, it cannot improve energy-efficiency. HBA saves
additional energy because it can exploit finer-grained heterogeneity.
6. Using a clustered out-of-order backend in the coarse-grained
heterogeneous core (Coarse, Clustered) reduces EPI/power more than
either the clustered core or coarse-grained core alone. However, this
comes with higher performance degradation than any of the designs
(2.8%, row 4 of Table II). HBA outperforms this coarse-grained,
clustered design in IPC, power and EPI, as Table II and Fig. 5 show.

Overall, these results show that HBA reduces core energy signif-
icantly compared to all baseline designs, including the non-clustered
and clustered versions of a state-of-the-art heterogeneous core [37],
by leveraging block atomicity and heterogeneity synergistically.

Sensitivity: These savings are robust to power modeling assump-
tions. The above evaluation assumes leakage comprises 10% of total
power (see §IV). If we assume 15% leakage power, worst case in our
process, HBA still reduces average core power by 21.9% and EPI by
21.1% over the baseline out-of-order core.

B. Performance
1) Performance of HBA vs. Baselines: Table II shows nor-

malized average (geometric mean) performance for our baseline and
HBA evaluation points. Several major conclusions are in order:
1. The HBA design (row 6) reduces average performance by only
1.0% over the out-of-order core. This is a result of (i) equivalent
instruction window size, yielding similar MLP for memory-bound
programs, and (ii) performance gain due to higher available issue
width that balances performance loss due to inter-block communica-
tion latency, as explained in §V-B2.
2. When all blocks are executed on out-of-order backends only (row
5), the HBA design improves average performance by 0.4% over
baseline, and 1.4% over nominal HBA (row 6). Thus, memoized
scheduling has some performance penalty (as it sometimes sends
a block to VLIW backends although dynamic scheduling would be
better), but this penalty is modest (1.0%) for the energy reduction it
obtains.
3. HBA provides similar performance to the coarse-grained heteroge-
neous core (row 3), but has much lower power/EPI. HBA saves more
energy as it uses VLIW backends for fine-grained blocks, exposing
more opportunity, and uses memoized scheduling to enable more
blocks to use these backends. The coarse-grained design executes
a longer chunk of the program on only one core at a time, and with
strict in-order (as opposed to memoized) scheduling, so it must limit
its use of the efficient in-order core to maintain performance.
4. Using a clustered out-of-order backend in the coarse-grained
heterogeneous core (row 4) degrades performance over either the
clustered or coarse-grained core alone (rows 2,3) due to the additive
overheads of clustering [18] and coarse-grained heterogeneity [37].
HBA (rows 5,6) has higher performance and efficiency than this
design.

2) Additional Analysis: To understand HBA’s performance and
potential, we perform several limit and control studies. Table III
shows an out-of-order design as (i) its issue width is widened, and
(ii) its fetch/retire width bottlenecks are removed. It also shows
HBA (without heterogeneous backends) as inter-block communication
latency is removed and the fetch width bottleneck is alleviated. We
make several conclusions:
1. Inter-block communication latency penalizes performance. The
“instant inter-block communication” HBA design (row 5) has 6.2%
higher performance than the baseline (row 1).

Row Configuration IPC ∆

Baselines:
1 4-wide OoO (Baseline) —
2 64-wide OoO +2.1%
3 64-wide OoO, Wide Fetch/Retire +23.6%

HBA Variants:
4 HBA, OoO Only +0.4%
5 HBA, OoO Only, Instant Inter-block Communication +6.2%
6 HBA, OoO Only, Instant Inter-block Comm., Wide Fetch +23.1%

TABLE III: Limit studies and control experiments.

2. Higher aggregate issue rate increases HBA’s performance. This
arises because each block execution backend has its own scheduler
and ALUs that work independently, extracting higher ILP than in the
baseline. This effect is especially visible when inter-block latency
is removed, and is responsible for HBA’s 6.2% IPC increase above
baseline.
3. Higher issue rate alone cannot account for all of the idealized
HBA’s performance. To see this, we evaluate a 64-wide out-of-order
core with a monolithic scheduler (row 2). Such a design performs only
2.1% better than baseline (row 2), in contrast to 6.2% for idealized
HBA (row 5). Thus, other effects are present that make HBA better.
4. In particular, the remaining advantage of HBA is due to block-
wide dispatch and retire: as HBA tracks precise state only at block
boundaries, it achieves high instruction retire throughput when the
backend executes a region with high ILP. Allowing for block-wide
(16 µop-wide) fetch/dispatch/retire in both the out-of-order and HBA
designs, we observe 23.6% (OoO, row 3) and 23.1% (HBA, row 6)
performance above baseline, respectively. Hence, HBA is capable of
harnessing nearly all ILP discovered by an ideal out-of-order design,
subject only to inter-block communication latencies and fetch/retire
bottlenecks.

3) Per-Application Energy and Performance: Fig. 6 plots the
IPC and EPI of HBA across all 184 benchmarks, normalized to the
out-of-order baseline. In almost all workloads, HBA greatly reduces
EPI. The left two-thirds of the benchmarks lose some performance
mainly for the reasons described in §V-B2. The highest performance
degradation is 42% for one benchmark (ffmpeg) that has a high
block squash rate.3 All but four benchmarks achieve at least 80%
of the baseline performance. The rightmost one-third of benchmarks
achieve higher performance on HBA. In some cases (e.g., milc from
SPEC CPU2006), the performance gain is very large (79%), due to
additional ILP exploited by independent HBA backends.4
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C. Power-Performance Tradeoff Space
Fig. 7 shows multiple HBA and baseline core configurations in

the 2D power-performance tradeoff space. HBA variants are labeled
as “HBA(number of block backends, other options),” with options
including OoO (out-of-order backends only) and 2-wide (all block
backends are 2-wide). The plot compares HBA configurations against
several out-of-order baselines with various window sizes, 1-, 2-, and
4-wide in-order baselines, and several coarse-grained heterogeneous
cores. We conclude that (i) HBA is the most energy-efficient design
(closest to the bottom-right corner), (ii) HBA’s power-performance
tradeoff is widely configurable, and (iii) HBA enables new points in
the power-performance tradeoff space, not achievable by past designs.

3Two types of code perform poorly on HBA: code with hard-to-predict
branches, leading to block squashes, and code with long dependence chains,
leading to high inter-block communication.

4Workloads that perform best on HBA are largely those with regular code
that can execute independent chunks in each backend.

6



 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3

R
el

. 
A

v
g

. 
C

o
re

 P
o

w
er

 (
v

s.
 4

-w
id

e 
O

o
O

)

Rel. IPC (vs. 4-wide OoO)

HBA(16,OoO)

HBA(16)
HBA(8)

HBA(4)
HBA(16,2-wide)

1-wide in-order

2-wide in-order

256-ROB, 4-wide OoO, clustered

Coarse-grained (256-ROB)

HBA(64)

1024-ROB, 4-wide OoO, clustered

4-wide in-order

128-ROB, 4-wide OoO

256-ROB, 4-wide OoO

Coarse-grained (128-ROB)

More Efficient

In-Order
Out-of-Order
Coarse-grained Hetero
HBA

Fig. 7: Power-performance tradeoff space of core designs.

D. Symbiotic Out-of-Order and VLIW Execution
Fig. 8 shows a sorted curve of per-benchmark fraction of out-

of-order vs. VLIW blocks. Most benchmarks execute both types of
blocks often, with few having either all out-of-order or all VLIW
blocks. In a few benchmarks on the left, almost all blocks (greater
than 90%) execute as VLIW: for such benchmarks, learning one
instruction schedule per block is sufficient to capture most of the
benefit of out-of-order execution. Of the VLIW blocks, 32.7% are
2-wide, 3.3% are 1-wide. Thus, dynamic pipeline narrowing yields
significant energy savings.
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E. Core Area
Like past heterogeneous designs (e.g., [24, 33, 62]), HBA opti-

mizes for a future in which energy and power (and not core area)
are key performance limiters [14]. Similar to such designs, HBA’s
power reduction comes at the cost of chip area. We use McPAT, which
provides a rough area estimate by estimating growth in key structures
in the core. McPAT reports that our our initial HBA implementation
increases core area by 62.5% over the baseline out-of-order core. For
comparison, McPAT estimates 20% area overhead for [37]. Note that
we did not aim to optimize for area in our HBA implementation in
order to freely explore the power/performance tradeoff space.

Although HBA comes with area overhead, cores actually occupy
a relatively small area in a modern mobile SoC (e.g., 17% in Apple’s
A7 [11]). Hence, the investment of additional core area to improve
system energy efficiency can be a good tradeoff. By trading off die
area for specialization, HBA: (i) achieves large energy savings that
were not attainable in a smaller core (§V-A), and (ii) enables new
power-performance tradeoff points not previously achievable (§V-C).

VI. RELATED WORK
HBA is the first heterogeneous core design that enables the

concurrent execution of very fine-grained code blocks (tens of in-
structions long) on the most efficient backend for each block. It
combines several concepts, including heterogeneity, atomic block-
based execution, and instruction schedule memoization, in a holistic
manner to provide a new heterogeneous core design framework for
energy-efficient execution. Though these concepts have been applied
individually or in some combination (as we discuss briefly below), no
past work applied them in the manner HBA does to dynamically find
the best execution backend for each fine-grained code block. Other
novel contributions were discussed at the end of §I.

Forming and Reusing Instruction Schedules: Several works
use one execution engine to schedule/format instructions within a
code block, cache the scheduled/formatted code block, and reuse
that schedule on a simpler execution engine when the same code
block is encountered later. An early example is DIF (Dynamic

Instruction Formation) [43], which uses a simple in-order engine and
a hardware-based instruction scheduler to schedule instructions in a
code block the first time it is encountered. Later instances of the
same code block are always executed on a primary VLIW engine.
DIF thus uses an in-order engine to format the code to be executed
on a VLIW engine. Similarly, Transmeta processors [32] use Code
Morphing software to translate code for execution on a VLIW engine.
Banerjia et al. [5] propose a similar high-level approach that pre-
schedules instructions and places them in a “schedule cache” for
later execution. A later example, ReLaSch [44], moves the out-of-
order instruction scheduler to the commit stage. The first time a code
block is encountered, its schedule is formed by this commit-stage
scheduler. Later instances of the same code block are always executed
in the primary in-order scheduler. ReLaSch thus uses an out-of-order
instruction scheduler to format the code to be executed on an in-
order scheduler. Several other works combine a “cold pipeline” and
“hot pipeline” that execute infrequent (cold) and frequent (hot) code
traces respectively [7, 24, 51], and use various mechanisms to form
the traces to be executed by the “hot pipeline”. None of the above
designs dynamically switch the backend the code block executes on:
once a code block is formatted/scheduled, it is always executed on the
primary backend/engine, regardless of whether or not the schedule is
effective. In contrast, HBA dynamically determines which backend is
likely the best for any given instance of a code block: e.g., a code
block may execute on the VLIW backend in one instance and in the
OoO backend in the next. In other words, there is no “primary” or
“hot” backend in HBA, but rather, the backends are truly equal and
the best one is chosen depending on code characteristics.

Yoga [63], developed concurrently with HBA, can switch its
backend between out-of-order and VLIW modes. HBA can exploit
heterogeneity, and therefore adapt to characteristics of code blocks,
at a finer granularity than Yoga as it can concurrently execute blocks
in different (VLIW and OoO) backends whereas Yoga uses only one
type of backend at a time. In addition, HBA’s heuristic for switching a
block from VLIW to OoO mode takes into account the “goodness” of
the VLIW schedule (hence, the potential performance loss of staying
in VLIW mode) whereas Yoga switches to OoO mode when an
optimized VLIW frame does not exist for the code block.

Coarse-grained Heterogeneous Cores: Several works propose
the use of statically heterogeneous cores [2, 3, 6, 10, 20, 23, 28,
33, 58, 59], dynamically heterogeneous cores [26, 30, 31, 60], one
core with heterogeneous backends [37], or a core with variable
parameters [4, 23] to adapt to the running application at a coarse
granularity for better efficiency. We quantitatively compared to a
coarse-grained heterogeneous approach [37] in §V and showed that
although coarse-grained designs can achieve good energy-efficiency,
HBA does better by exploiting much finer-grained heterogeneity.
However, combining these two levels of heterogeneity might lead to
further gains, which is a promising path for future work to explore.

Atomic Block-Based Execution: Many past works (e.g., [8, 9,
25, 38, 39, 42, 47, 53, 57]) exploited the notion of large atomic code
blocks to improve performance, efficiency and design simplicity. HBA
borrows the notion of block atomicity and uses it as a mechanism to
exploit fine-grained heterogeneity.

Other Related Works: [5, 40] propose pre-scheduling instruc-
tions to save complexity or improve parallelism. HBA takes advantage
of the benefits of prescheduling by reusing instruction schedules. We
adapt the ideas of dynamic pipeline narrowing and “software-based
dead write elision” respectively from [27] and [49] to HBA. Note that
none of these past works exploit heterogeneity as HBA does.

VII. CONCLUSION
This paper introduces the Heterogeneous Block Architecture

(HBA) to improve energy efficiency of modern cores while maintain-
ing performance. HBA combines fine-grained heterogeneity, atomic
code blocks, and block-based instruction scheduling to adapt each
fine-grained (tens of instructions long) code block to the execution
backend that best fits its characteristics. Our extensive evaluations
of an initial HBA design that can dynamically schedule atomic
code blocks to out-of-order and VLIW/in-order execution backends
using simple heuristics demonstrate that this HBA design (i) greatly
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improves energy efficiency compared to four state-of-the-art core
designs and (ii) enables new power-performance tradeoff points in
core design. We believe HBA provides a flexible execution substrate
for exploiting fine-grained heterogeneity in core design, and hope that
future work will investigate other, more aggressive, HBA designs with
more specialized backends (e.g., SIMD, fine-grained reconfigurable,
and coarse-grained reconfigurable logic), leading to new core designs
that are even more energy-efficient and higher-performance.
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