Managing GPU Concurrency in
Heterogeneous Architectures

Onur Kayiran, Nachiappan CN, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T. Kandemir, Gabriel H. Loh,
Onur Mutly, Chita R. Das

PENNSTAT
i Carnegie Mellon a

w AMD




ra of Heterogeneous Architectures

Intel Haswell

 Processor =
Graphics

NVIDIA
| Dener

NVIDIA

AMD Echelon

Fusion

T

g0
11108

4" I(ervlcu
AMD Fusion ; g’fm-,““'

FRULY OF g




Executive Summary

s When sharing the memory hierarchy, CPU and GPU
applications interfere with each other

0 GPU applications significantly affect CPU applications due to
multi-threading

s Existing GPU Thread-level Parallelism (TLP) management
techniques (MICRO12, PACT13)

a Unaware of CPUs
o_Not effective in heterogeneous systems

Our Proposal:
Warp scheduling strategies to

Adjust GPU TLP to improve CPU and/or GPU
performance




Executive Summary

CPU-centric Strategy

Memory Congestion @
CPU Performance




Executive Summary

CPU-centric Strategy

Memory Congestion @
CPU Performance

IF Memory Congestion @
$-GPU TLP




Executive Summary

CPU-centric Strategy

Memory Congestion @
CPU Performance

IF Memory Congestion @
$-GPU TLP

Results Summary:
+24% CPU & -11% GPU




Executive Summary

CPU-GPU Balanced
CPU-centric Strategy Strategy

Memory Congestion @ GPU TLP @@
CPU Performance = ¥  GPU Latency Tolerance @

IF Memory Congestion @
$-GPU TLP

Results Summary:
+24% CPU & -11% GPU




Executive Summary

CPU-GPU Balanced
CPU-centric Strategy Strategy

Memory Congestion @ GPU TLP @@
CPU Performance = ¥  GPU Latency Tolerance @

IF Memory Congestion @ 1F Latency Tolerance ¥
$-GPU TLP 4 GPU TLP

Results Summary:
+24% CPU & -11% GPU




Executive Summary

CPU-GPU Balanced
CPU-centric Strategy Strategy

Memory Congestion @ GPU TLP @@
CPU Performance = ¥  GPU Latency Tolerance @

IF Memory Congestion @ 1F Latency Tolerance ¥
$-GPU TLP 4 GPU TLP

Results Summary: Results Summary:
+24% CPU & -11% GPU  +7% both CPU & GPU




Outline

o
= Background

= Motivation

= Analysis of TLP
= Our Proposal

= Evaluation

s Conclusions




Many-core Architecture_ _ _ _

CPU Cores ~ SIMT Cores \
. P — ¥ \
/
L1 o en. \
L2 e ©
Caches Q. .“:’ Warp Scheduler § Thrqughput
ROB 1 Q optimized
-l s
| Caches N (l‘ores
| — !

LLC cache Latm.lcyd
opiimize
R, DRAM opa

~ ’/ cores
~ e o -



Outline

o
o

= Motivation

= Analysis of TLP
= Our Proposal

= Evaluation

s Conclusions




Application Interference

Up to 20% Up to 85%

OnoCPU Bmcf Bomnetpp ®perlbénch

DnoGPU/lKM EMM BEPVR
1.2

O 1.2 ©
Sg QT —
© 08 + © 11 | -
£ gos | ED o6l -
2 Ooast 6O g4l ]
02 < 024 .

0 0
KM MM PVR mcf omnetpp perlbench
* GPU applications are * CPU applications are

affected moderately due affected significantly
to CPU interference due to GPU interference




Latency Tolerance in CPUs vs. GPUs

<9-GPU IPC =CPUIPC

& = High GPU TLP ->
S memory system
s congestion
©

Problem:

TLP management strategies for GPUs are not
aware of the latency tolerance disparity
between CPU and GPU applications

Higher performance DYNCTA
potential at low TLP (PACT 2013)




Outline

= Analysis of TLP
= Our Proposal
= Evaluation

s Conclusions




Effect of GPU Concurrency on GPU Performance

Reduction
in GPUTLP

GPU AN
performance 4 | |




Effect of GPU Concurrency on CPU Performance

Reduction
in GPUTLP

CPU
performance




Effect of GPU Concurrency on CPU Performance

Change in 2 metrics:
? CPU - Memory congestion
m performance | - Network congestion

CPU A\

congestionv *  performance




Outline

= Our Proposal
= Evaluation

s Conclusions




Our Approach

Improved GPU Improved CPU
performance performance
Existing works E X
CPU-centric
Strategy X M
CPU-GPU
Balanced
Strategy

+ control the trade-off




CM-CPU: CPU-centric Strategy

m Categorize congestion: low, medium, or high

network

GPU-unaware TLP management:
Insufficient GPU latency tolerance

LI,

lncrease Decrease H
change

# of
warps in # of warps
P warps P




CM-BAL: CPU-GPU Balanced Strategy

Latency tolerance of GPU cores:
stall;p;: scheduler stalls @ GPU cores

Overrides CM-CPU

can only increase TLP ~ SAMme strategy as CM-CPU

Low latency High memory
tolerance  congestion

stallgpy,

GPU TLP




CM-BAL: CPU-GPU Balanced Strategy

Latency tolerance of GPU cores:
stall;p;: scheduler stalls @ GPU cores

Overrides CM-CPU

can only increase TLP ~ SAMme strategy as CM-CPU

Low latency High memory
tolerance  congestion

stallgpy,

x GPUTLP




CM-BAL: CPU-GPU Balanced Strategy

Latency tolerance of GPU cores:
stall;p;: scheduler stalls @ GPU cores

Overrides CM-CPU

can only increase TLP ~ SAMme strategy as CM-CPU

Low latency High memory
tolerance  congestion

stallgpy,

GPU TLP




CM-BAL: CPU-GPU Balanced Strategy

Latency tolerance of GPU cores:
stall;p;: scheduler stalls @ GPU cores

Overrides CM-CPU

can only increase TLP ~ SAMme strategy as CM-CPU

Low latency High memory
tolerance  congestion

stallgpy,

Control the triggering of the condition

Control the trade-off between CPU or GPU benefits




Outline

|
|
|
|
|
= Evaluation

s Conclusions




Evaluated Architecture

Tile-based RCTITL
design




Evaluation Methodology

= Evaluated on an integrated platform with an in-house x86 CPU simulator and
GPGPU-SIim

= Baseline Architecture
o 28 GPU cores, 14 CPU cores, 8 memory controllers, 2D mesh
GPU: 1400MHz, SIMT Width = 16*2, Max. 1536 threads/core, GTO Sch.

CPU: 2000 MHz, O00, 128-entry instr. win., max. 3 inst./cycle
8MB, 128B Line, 16-way, 700MHz
GDDR5 800MHz

o O o O

= Workloads:
o 13 GPU applications
o 34 CPU applications, 6 CPU application mixes

o 36 diverse workloads
= 1 GPU application + 1 CPU mix




GPU Performance Results

N
-

JdI 1d) PIZI[EULION

0.8

All 36 workloads




CPU Performance Results

Normalized CPU WS

=
N

p=
N

o

0.8

2%

24%

19%

7%

3 4 5 6

All 36 workloads




System Performance

m OSS=(1-a)x WS, +axSU:p, (ISCA2012)
= «a is between O and 1
s Higher a -> higher GPU importance

—48 warps °°°°DYNCTA CM-CPU

CM-BAL

1.25

1.125

[y

Normalized OSS

.t
00
N
n

0.75
alpha 0.5

alpha (0 - 1)

1.0




More in the Paper

s Motivation
0 Analysis of the metrics used by our algorithm

s Scheme
0 Detailed hardware walkthrough of our scheme

s Results
o Analysis over time
o Change in GPU TLP
o Change in the metrics used by our algorithm
o Comparison against static approaches
a

Lower number of LL.C accesses




Outline

s Conclusions




Conclusions

s Sharing the memory hierarchy leads to CPU and GPU
applications to interfere with each other

s Existing GPU TLP management techniques are not well-suited
for heterogeneous architectures

s We propose two GPU TLP management techniques for
heterogeneous architectures
0 CM-CPU reduces GPU TLP to improve CPU performance

o CM-BAL is similar to CM-CPU, but increases GPU TLP when it
detects low latency tolerance in GPU cores

o TLP can be tuned based on user’s preference for higher CPU or
GPU performance




THANKS!




Managing GPU Concurrency in
Heterogeneous Architectures

Onur Kayiran, Nachiappan CN, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T. Kandemir, Gabriel H. Loh,
Onur Mutly, Chita R. Das

PENNSTAT
i Carnegie Mellon a

w AMD




