Managing GPU Concurrency in Heterogeneous Architectures

Onur Kayıran, Nachiappan CN, Adwait Jog, Rachata Ausavarungnirun, Mahmut T. Kandemir, Gabriel H. Loh, Onur Mutlu, Chita R. Das

Carnegie Mellon

Era of Heterogeneous Architectures

Intel Haswell

AMD Fusion

NVIDIA Denver

NVIDIA Echelon

- When sharing the memory hierarchy, CPU and GPU applications interfere with each other
 - GPU applications significantly affect CPU applications due to multi-threading
- Existing GPU Thread-level Parallelism (TLP) management techniques (MICRO12, PACT13)
 - Unaware of CPUs
 - Not effective in heterogeneous systems

Our Proposal:

Warp scheduling strategies to Adjust GPU TLP to improve CPU and/or GPU performance

CPU-centric Strategy

Memory Congestion

CPU Performance

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

CPU-centric Strategy

Memory Congestion

CPU Performance

IF Memory Congestion

Results Summary:

+24% CPU & -11% GPU

CPU-centric Strategy

CPU-GPU Balanced Strategy

Memory Congestion

GPU TLP

CPU Performance

GPU Latency Tolerance

IF Memory Congestion

Results Summary:

+24% CPU & -11% GPU

CPU-centric Strategy

CPU-GPU Balanced Strategy

Memory Congestion

GPU TLP

CPU Performance

GPU Latency Tolerance

IF Memory Congestion

IF Latency Tolerance

Results Summary:

+24% CPU & -11% GPU

CPU-centric Strategy

CPU-GPU Balanced Strategy

Memory Congestion

GPU TLP

CPU Performance

GPU Latency Tolerance

IF Memory Congestion

IF Latency Tolerance

Results Summary:

+24% CPU & -11% GPU

Results Summary:

+7% both CPU & GPU

Outline

- Summary
- Background
- Motivation
- Analysis of TLP
- Our Proposal
- Evaluation
- Conclusions

Many-core Architecture

Outline

- Summary
- Background
- Motivation
- Analysis of TLP
- Our Proposal
- Evaluation
- Conclusions

Application Interference

- GPU applications are affected moderately due to CPU interference
- CPU applications are affected significantly due to GPU interference

Latency Tolerance in CPUs vs. GPUs

High GPU TLP -> memory system congestion

Problem:

TLP management strategies for GPUs are not aware of the latency tolerance disparity between CPU and GPU applications

Higher performance potential at low TLP

DYNCTA (PACT 2013)

Outline

- Summary
- Background
- Motivation
- Analysis of TLP
- Our Proposal
- Evaluation
- Conclusions

Effect of GPU Concurrency on GPU Performance

Effect of GPU Concurrency on CPU Performance

Effect of GPU Concurrency on CPU Performance

Change in CPUperformance

2 metrics:

- Memory congestion
- Network congestion

CPU performance

Outline

- Summary
- Background
- Motivation
- Analysis of TLP
- Our Proposal
- Evaluation
- Conclusions

Our Approach

	Improved GPU performance	Improved CPU performance
Existing works		×
CPU-centric Strategy	×	
CPU-GPU Balanced Strategy		Image: section of the content of the con

+ control the trade-off

CM-CPU: CPU-centric Strategy

Categorize congestion: low, medium, or high

Latency tolerance of GPU cores:

stall_{GPU}: scheduler stalls @ GPU cores

Latency tolerance of GPU cores:

stall_{GPU}: scheduler stalls @ GPU cores

Latency tolerance of GPU cores:

stall_{GPU}: scheduler stalls @ GPU cores

Latency tolerance of GPU cores:

stall_{GPU}: scheduler stalls @ GPU cores

Control the triggering of the condition

Control the trade-off between CPU or GPU benefits

Outline

- Summary
- Background
- Motivation
- Analysis of TLP
- Our Proposal
- Evaluation
- Conclusions

Evaluated Architecture

Evaluation Methodology

- Evaluated on an integrated platform with an in-house x86 CPU simulator and GPGPU-Sim
- Baseline Architecture
 - 28 GPU cores, 14 CPU cores, 8 memory controllers, 2D mesh
 - □ GPU: 1400MHz, SIMT Width = 16*2, Max. 1536 threads/core, GTO Sch.
 - □ CPU: 2000 MHz, OoO, 128-entry instr. win., max. 3 inst./cycle
 - 8MB, 128B Line, 16-way, 700MHz
 - GDDR5 800MHz
- Workloads:
 - 13 GPU applications
 - 34 CPU applications, 6 CPU application mixes
 - 36 diverse workloads
 - 1 GPU application + 1 CPU mix

GPU Performance Results

CPU Performance Results

System Performance

- $OSS = (1 \alpha) \times WS_{CPU} + \alpha \times SU_{GPU} (ISCA 2012)$
- α is between 0 and 1
- Higher α -> higher GPU importance

More in the Paper

- Motivation
 - Analysis of the metrics used by our algorithm
- Scheme
 - Detailed hardware walkthrough of our scheme
- Results
 - Analysis over time
 - Change in GPU TLP
 - Change in the metrics used by our algorithm
 - Comparison against static approaches
 - Lower number of LLC accesses

Outline

- Summary
- Background
- Motivation
- Analysis of TLP
- Our Proposal
- Evaluation
- Conclusions

Conclusions

- Sharing the memory hierarchy leads to CPU and GPU applications to interfere with each other
- Existing GPU TLP management techniques are not well-suited for heterogeneous architectures
- We propose two GPU TLP management techniques for heterogeneous architectures
 - CM-CPU reduces GPU TLP to improve CPU performance
 - CM-BAL is similar to CM-CPU, but increases GPU TLP when it detects low latency tolerance in GPU cores
 - TLP can be tuned based on user's preference for higher CPU or GPU performance

THANKS!

Managing GPU Concurrency in Heterogeneous Architectures

Onur Kayıran, Nachiappan CN, Adwait Jog, Rachata Ausavarungnirun, Mahmut T. Kandemir, Gabriel H. Loh, Onur Mutlu, Chita R. Das

Carnegie Mellon

