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Executive Summary

s When sharing the memory hierarchy, CPU and GPU
applications interfere with each other

0 GPU applications significantly affect CPU applications due to
multi-threading

s Existing GPU Thread-level Parallelism (TLP) management
techniques (MICRO12, PACT13)

a Unaware of CPUs
o_Not effective in heterogeneous systems

Our Proposal:
Warp scheduling strategies to

Adjust GPU TLP to improve CPU and/or GPU
performance
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Executive Summary

CPU-GPU Balanced
CPU-centric Strategy Strategy

Memory Congestion @ GPU TLP @@
CPU Performance = ¥  GPU Latency Tolerance @

IF Memory Congestion @ 1F Latency Tolerance ¥
$-GPU TLP 4 GPU TLP

Results Summary: Results Summary:
+24% CPU & -11% GPU  +7% both CPU & GPU
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Application Interference

Up to 20% Up to 85%
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Latency Tolerance in CPUs vs. GPUs

<9-GPU IPC =CPUIPC

& = High GPU TLP ->
S memory system
s congestion
©

Problem:

TLP management strategies for GPUs are not
aware of the latency tolerance disparity
between CPU and GPU applications

Higher performance DYNCTA
potential at low TLP (PACT 2013)
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Effect of GPU Concurrency on GPU Performance
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Effect of GPU Concurrency on CPU Performance

Reduction
in GPUTLP

CPU
performance




Effect of GPU Concurrency on CPU Performance

Change in 2 metrics:
? CPU - Memory congestion
m performance | - Network congestion

CPU A\

congestionv *  performance
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Our Approach

Improved GPU Improved CPU
performance performance
Existing works E X
CPU-centric
Strategy X M
CPU-GPU
Balanced
Strategy

+ control the trade-off




CM-CPU: CPU-centric Strategy

m Categorize congestion: low, medium, or high

network

GPU-unaware TLP management:
Insufficient GPU latency tolerance

LI,

lncrease Decrease H
change

# of
warps in # of warps
P warps P




CM-BAL: CPU-GPU Balanced Strategy
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CM-BAL: CPU-GPU Balanced Strategy

Latency tolerance of GPU cores:
stall;p;: scheduler stalls @ GPU cores

Overrides CM-CPU

can only increase TLP ~ SAMme strategy as CM-CPU

Low latency High memory
tolerance  congestion

stallgpy,

Control the triggering of the condition

Control the trade-off between CPU or GPU benefits
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Evaluated Architecture

Tile-based RCTITL
design




Evaluation Methodology

= Evaluated on an integrated platform with an in-house x86 CPU simulator and
GPGPU-SIim

= Baseline Architecture
o 28 GPU cores, 14 CPU cores, 8 memory controllers, 2D mesh
GPU: 1400MHz, SIMT Width = 16*2, Max. 1536 threads/core, GTO Sch.

CPU: 2000 MHz, O00, 128-entry instr. win., max. 3 inst./cycle
8MB, 128B Line, 16-way, 700MHz
GDDR5 800MHz

o O o O

= Workloads:
o 13 GPU applications
o 34 CPU applications, 6 CPU application mixes

o 36 diverse workloads
= 1 GPU application + 1 CPU mix




GPU Performance Results
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CPU Performance Results
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System Performance

m OSS=(1-a)x WS, +axSU:p, (ISCA2012)
= «a is between O and 1
s Higher a -> higher GPU importance

—48 warps °°°°DYNCTA CM-CPU

CM-BAL

1.25

1.125

[y

Normalized OSS

.t
00
N
n

0.75
alpha 0.5

alpha (0 - 1)

1.0




More in the Paper

s Motivation
0 Analysis of the metrics used by our algorithm

s Scheme
0 Detailed hardware walkthrough of our scheme

s Results
o Analysis over time
o Change in GPU TLP
o Change in the metrics used by our algorithm
o Comparison against static approaches
a

Lower number of LL.C accesses
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Conclusions

s Sharing the memory hierarchy leads to CPU and GPU
applications to interfere with each other

s Existing GPU TLP management techniques are not well-suited
for heterogeneous architectures

s We propose two GPU TLP management techniques for
heterogeneous architectures
0 CM-CPU reduces GPU TLP to improve CPU performance

o CM-BAL is similar to CM-CPU, but increases GPU TLP when it
detects low latency tolerance in GPU cores

o TLP can be tuned based on user’s preference for higher CPU or
GPU performance
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