MICRO-47, December 15, 2014

FIRM: Fair and Hlgh-PerfoRmance
Memory Control for
Persistent Memory Systems

Jishen Zhao Onur Mutlu Yuan Xie

f PENNSTATE SAFARI
ﬁ Carnegie Mellon

New Designh Opportunity with NVMs

D e

- DRA

Main Memory
Load/store
Not persistent

Page faUltS

Mgg
Fopen, fread, fwrite

Persistent

New Designh Opportunity with NVMs

STT-MRAM ail =

PCM, ReRAM

Persistent Memory

NV-DIMM1~ Persistent
Battery-backed "0 Load_/ store Applications
DRAM, etc. Persistent

Storage
Fopen, fread, fwrite

Persistent

Examples applications
Databases, file systems, key-value stores
(In-memory data structures can
immediately become permanent)

New Designh Opportunity with NVMs

STT-MRAM

dE "

PCM, ReRAM .
NV-DIMM Persistent Memory Persistent
Battery-backed M Load./store Applications
DRAM, etc. Persistent
Load/store Applications

ot persistent

New use case of NVM:

concurrently running two types of applications
[Kannan + HPCA’14, Liu + ASPLOS’14, Meza + WEED’14]

Focus of Our Work:
Memory Controller Design

Memory i S S
Controller

Persistent
Memory requests go through~" [y Applications

the shared memory interface a2\ Non-persistent
Applications

Fair and High-Performance Memory Control

Why Another Memory Control Scheme?

SMS [ISCA’12 [

S8 Careful control over writes to
guarantee data persistence

Persistent
Memory _

Memory Controller

Memory
Requests™

Limited number

of entries <

If one of them overflows, MC
needs to drain it by stalling
the service of the other

4 Memory Controller

Determine which requests can be sent on the memory bus to be serviced

Why conventional memory control schemes are
inefficient in persistent memory systems

How to design fair and high-performance
memory control in this new scenario

Assumptions and Design Choices

Conventional memory control schemes
Assumptions Design choices

1. Reads are on the 1. Prioritize reads over writes

critical path of
application execution

(Application execution is
read-dependent)

2. Applications are 2. Delay writes until
usually read-intensive they overflow the write queue

(Infrequent write queue drains)

These assumptions no longer hold in persistent memory,
which needs to support data persistence

(Data consistency when the system suddenly crashes or loses power)

Mechanisms: multiversioning and write-order control

10

Implication of Multiversioning

Updates of
data structure A
have multiple
write requests

=

NVM

Crash

g A

Persistent

11

Implication of Multiversioning

NVM
Persistent
: X ;Cr;a;sh \/ > Original data

- Logging
- Copy-on-write

The two versions are not updated at the same time

Significantly increasing write traffic —

Two writes with each one data update

[Volos+ ASPLOS’11, Coburn+ ASPLOS’11, Condit+ SOSP’09, Venkataraman+ FAST'11]
12

Assumptions

Assumptions

_ /

2. Applicdtions are
usually iead-intensive

7\

Persistent applications are
usually write-intensive

13

Implication of Write-order Control

The two versions

Processor

are not supposed
to be updated

at the same time,
issued in order:

NVM

B

A=A, A, AL
A= {All A2/ A3}
Reordered by caches and MCs:

A, A, A’ll A, A,

Crash

X

Persistent

14

Implication of Write-order Control

Issued in order:
Update A’
Cache flush;

Memory barrier;
Update A .
Cache flush;

Memory barrier;

Restrict the ordering of writes arriving at the memory

Cache flushes
Memory barriers

Processor I_l
NVM vV
A

\

Persistent

|
Writes to A" complete \ Writes to A start

Making application execution write dependent —

Subsequent writes, reads, and computation can all
depend on a previously issued write

[Volos+ ASPLOS’11, Coburn+ ASPLOS’11, Condit+ SOSP’09, Venkataraman+ FAST'11]

15

Assumptions

Assumptions

1. Reads are/On the

— Writes are also on the
critical path of

critical execution path

applicati xecution
(Applféytion e>ecution is (Application execution is

read-dependent) write-dependent)

16

Assumptions

Assumptions

1. Writes are also on the
critical execution path

| appMIlIILatlivil TATULVULIVII |

I I

2. Persistent applications
are usually write-intensive

17

Design Choices

Assumptions Design choices

1. Writes are also on the 1. Prioritize re
critical execution path

2. Persistent applications 2. Delay wri
are usually write-intensive they QVWﬂOW the

Frequentdwrite queue drains

Why > Frequent stall reads to drain the write queue,
frequently switch between
servicing reads and servicing writes

18

Bus Turnaround Overhead

tRTW ~ 7.5ns tWTR ~ 15ns
[Kim + ISCA’12]
Forcing write queue drain by stalling reads
Read Write
Queue Queue

Bus cycles wasted on
bus turnarounds
(tRTW and tWTR)

Bus cycles to perform
memory accesses

19

Assumptions

Assumptions

1. Writes are also on the
critical execution path

2. Persistent applications
are usually write-intensive

3. Writes in persistent
memory have low
bank-level parallelism (BLP)

Low Bank-level Parallelism (BLP)

Stalling reads for a long time

while the bus is servicing writes to persistent memory
A Log (Spans Multiple Banks)
One or several sets of

contiguous memory locations

__Bank 3

1'Req Hm
~ Writes Logoi Rea |
Log1 e
i i ~Bank 1
LogZE i
I | | No service for reads, idle, ! i
" wasted memory bandwidth i E:
i | Bank 2
. .

21

Assumptions and Design Choices

Assumptions

1. Writes are also on the
critical execution path

2. Persistent applications
are usually write-intensive

3. Writes of persistent
applications have low BLP

Design choices

?

o Fairness

High

> Performance
% E_/

22

Design Principles

Persistence-Aware Memory Scheduling
Minimizing write queue drains and

bus turnarounds, while ensuring fairness

~ Persistent Write Striding
Increasing BLP of writes to persistent memory

to fully utilize memory bandwidth

23

Persistence-aware Memory Scheduling
D Minimizing write queue drains and bus turnarounds, 1

while ensuring fairness

Problem: when to switch between

servicing read batches and write batches
Low bus turnaround overhead, risk frequent write queue drains

Batch
Read j j = = From the same source,
Queue L/M [L/M] To the same NVM row,
In the same R/W direction

e C I =TI

24

Persistence-aware Memory Scheduling

Minimizing write queue drains and bus turnarounds,
while ensuring fairness

Problem: when to switch between

servicing read batches and write batches
Less likely to starve reads and writes, higher bus turnaround overhead

Batch
Read Aj \Jj = = From the same source,
Queue L—/JJ[L/JJ] To the same NVM row,
In the same R/W direction

queve [(50 (50 (00

25

Persistence-aware Memory Scheduling

Minimizing write queue drains and bus turnarounds,
whilglensuring fairness

Key idea 1: balance the amount of time spent in
continuously servicing reads and writes

Tmax = 200 ns
Time >
T=100 ns >

Read __/JJ L_/_UJ L_/_UJ L_/JJ Tmax (read) T (read)
Queue _ 1 _
Write L_/_LU L_/_LU L/LU L_/_LU Tmax (write) T (write)
Queue >

. T =200 ns

Time >

Tmax =400 ns

26

Persistence-aware Memory Schedulin

D Minimizing write queue drains and bus turnarounds, |

wniie ensuring ralrness

Key idea 2: Time to service read batches and
write batches is[JUST long enough]

tRTW + tWTR
< U

T(read batches) + T(write batches)

User-defined bus turnaround overhead

Pick the choice with the shortest times

27

Persistent Write Striding

U Increasing BLP of persistent writes to fully utilize memory bandwidth

0]

A Log (Spans Multiple Banks)

— Bank 1

No service
for reads, idle

__Bank 2

__Bank 3

28

Persistent Write Striding

0]

Increasing BLP of persistent writes to fully utilize memory bandwidth

Key idea: stride writes by an offset to

remap them to different banks
A Log (Spans Multiple Banks)

Stride + offset
Serviced in

parallel

_ Bank 2

—

§tride + offset

. Bank 3

29

Experimental Setup

Simulator
- McSimA+ [Ahn+, ISPASS’13] (modified)

Configuration

- Four-core processor, eight threads

- Private caches: L1/L2, SRAM, 64KB/256KB per core
- Shared last-level cache: L3, SRAM, 2MB per core

- Main memory: STT-MRAM DIMM (8GB)

Benchmarks
- 7 non-persistent applications

- 3 persistent applications :IL' 18 Workloads

Metrics
- Weighted speedup & maximum slowdown

30

Performance

Weighted Speedup

3.0
2.5

2.0
1.5
1.0
0.5
0.0

w
L
O
L
oc
L

MTCM

PAR-BS

TCM

NVMDuet

Our Design

31

Fairness

Maximum Slowdown

TCM

V8
L
O
L
oc
L

MTCM
PAR-BS
NVMDuet
Our Design

32

Fraction of Bus
Cycles Wasted on

Bus Turnaround Overhead

8%

6.7%

6%

4%

2%

Bus Turnarounds

1%

0%

TCM Our Design

(The worst case of previous designs: 17%)

33

Other Results

Sensitivity study on various
* NVM Latencies
 Row-buffer sizes

e Number of threads

34

Summary

Writes
§: FIRM [MICRO’14]

Reads*

BLISS [ICCD’14] guN
SMS [ISCA’12] R - Q-
TCM [MICRO’10] A |

ATLAS [HPCA’10] 38 |
PAR-BS [ISCA'08] -l
STFM [MICRO’07]
FR-FCFS [ISCA'00] | §

, T Design principles:
B Persistence-aware memory scheduling

B Persistent write striding

Fairness

High
Performance

Thank you!

MICRO-47, December 15, 2014

FIRM: Fair and Hlgh-PerfoRmance
Memory Control for
Persistent Memory Systems

Jishen Zhao Onur Mutlu Yuan Xie

f PENNSTATE SAFARI
ﬁ Carnegie Mellon

