FastHASH: A New Algorithm for Fast and Comprehensive Next-generation Sequence Mapping

Hongyi Xint, Donghyuk Lee?, Farhad Hormozdiari2, Can Alkan3, Onur Mutlu!

SAFARI

2 Department of Computer Science, University of California Los Angeles, CA

1 Departments of Computer Science and Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
3 Department of Genome Sciences, University of Washington, Seattle, WA

Next-generation DNA Sequencing and the State-of-the-art Sequence Mapping Tools

Carnegie Mellon

mrFAST

Background: DNA Sequencing

* Goal: Acquire individual’s entire DNA sequence

* Mechanism: Read DNA fragments and reconstruct it
* Break DNA into pieces and store them as strings
+ Compare the strings to a known reference DNA string

-- Search for matching coordinates in reference DNA

+ Stitch fragments together in corresponding order

« Difficulties: Individuals have mutations including
+ Mismatch, insertions and deletions; must tolerate

| —

2

Fragment

base pair (bp)

»

mrFAST: Two Key Components
* Hash table (HT):
+ Stores coordinates of segments in reference DNA

Segments Coordinate list
A A
AAAAAAAAAAAA T 11 | 303
AAAAAAAAAAAC [P 12
AAAAAAAAAAAG | 229 |- 400012 |
AAAAAAAAAAAT | 304 798 | ... |[4001451
TTTTTTTTTTTTTT 991 ‘

+ Each segment looked up in HT to get coordinate list
+ For each coordinate in the list, look up reference string

« String Compare: > expensive

+ Compare input fragment against reference DNA

+ Check for mutations: mismatches, insertions and
deletions (allow e mutations)

+ Need to compare every base pair - very slow

Effect of Adjacency Filtering

3.E+10 B Original mrFAST

1.E+10 ’t\\ﬂ; comparisons

[String comparisons
after AF

B Number of string
matches

1E08 LE07

1.E+06

« String comparisons are drastically reduced: 3.7x speedup
Our Second Observation

Original ‘ ‘
time (s)
‘ String comparison
Time with = Other
AF(s) P 1 Adjacency Filtering
0 5000 10000 15000 20000

* Adjacency Filtering becomes the bottleneck
* We can speed this up by avoiding the probing of long

coordinate lists

Challenge of Next-generation DNA Sequencing

* Next-generation DNA Sequencing:
+ Instead of reading fewer long fragments, read
many short fragments in parallel
+ This pushes the challenge to computation
* Challenge:
* Shorter but many reads: billions of them
+ Mapping a fragment to entire reference genome is

costly: cost does not reduce vs. a long fragment, and

may increase for a shorter fragment

+ More potential mapping locations: harder to search

% * Requirement:

+ Algorithm that is fast and efficient which can
Reference process enormous amount of data

DNA

for all possible matches in the reference DNA
-- Even harder when mutations are allowed

Our Goal and FastHASH

* Problem with mrFAST:
+ Slow: 5 hours to process 1M fragments (108 bp)
* Our goal:
+ Reduce the execution time while maintaining
comprehensiveness

*FastHASH Overview: Two key components:

+ Adjacency Filtering: Reject obviously non-matching
coordinates at early stage to avoid unnecessary
expensive string comparisons

+ Cheap segment selection: Reduce the absolute
number of coordinates that are subject to
examination

*Current Result:

Cheap Segment Selection (CSS)
* Observation: Hash table is imbalanced

+ Cheap segments: Segments that have few coordinates

in hash table
+ Expensive segments: Segments that have many
coordinates -> lead to slow execution during AF
* Idea: Select cheapest segments within a fragment
+ Selecting the cheapest e+1 segments guarantees
comprehensiveness (at least one has no error)

i

[Expensive | Cheap i Cheap

« Effect of CSS: The number of coordinates examined

| |
3 100%

First segments
‘ 6.4%

3E+09

+ 38x speedup for 1M fragments compared to mrFAST

Existing Mapping Tools
« Suffix tree or prefix tree based alignment tools:
+ Newer tools use Burrows-Wheeler transformation
-- Bowtie, BWA, SOAPv2
+ Advantage
-- Fast in finding the exact match without mutations
Disadvantages
-- Very slow when mutations are allowed
-- Not comprehensive: does not search for all
possible locations
* Hash table based alignment tools:
+ Use hash table for filtering non-matching coordinates
-- mrFAST, mrsFAST
+ Advantage
-- Comprehensive, and fast when comprehensive
+ Disadvantage
-- Slower in searching for just the exact match

*

Our First Observation

« String comparisons take too long
* 95% of execution time

Execution ‘ ‘ ‘
time (s) ' ' '

 String

pari
1 & Other
20000

0 5000 10000 15000

* Most string comparisons are useless: result in no match

1.E+11

3E+10
1.E+10 B Number of string
LE+09 comparisons
e conducted
1.E+08 .
]

1.E407 Number of string
1E+07 - matches
1.E+06 -

Preliminary Results

CPU Execution Time
* Input fragment set:
+ Fragment length: 108 base-pairs
+ Fragment size: 1 million
+ Number of errors: 3 mismatches, insertions or deletions

Run time (s) Intel i7 2600 / 16 GB DRAM
20000 18369
15000 B mrFAST kernel
10000 B + Adjacency Filtering
4935
5000
478 B + Cheap Segment
0 Selection (FastHASH)

* Conclusions
+ Adjacency Filtering provides 3.7x speedup
+ Adjacency Filtering + Cheap Segment Selection
provides 38x speedup

mrFAST Flow Chart
fragment
[AAAAAAAAAAAA TITTTTITITIT P/
QO ment Divide fragment into
e BMENS | segments
2. ch
. eck HT to get
3 coordinates o
segments
TR [’ coordinates in
(HT) reference DNA
Stores ~o 3. Retrieve reference
: ;l) ; DNA strings at the
(2ol @ Reference DNA .
segments in e (coordinates
reference DNA 4. Compare fragment to
b 2 reference DNA strings
AAAAAAAAAAAA T T | .
1+—Reference strings|

-

String

Adjacency Filtering (AF)

String compare: Compare every
base pair -> very slow

* Goal: Reduce the number of string comparisons

TITTIITIITTT
TITTTITTTITT...

[AAnAAAAAAAAA
[-AAAAAAAAAAAA

Input string
| Reference string

* Observation: If perfect match, consecutive segments
should be at consecutive coordinates!

« Idea: For a coordinate, check if consecutive coordinates
are in the coordinate lists of consecutive segments
* If yes -> Do string comparison
+Ifno - No need for string comparison

?
* [ARARAAARARART{ n {303]505]

Do>e
coordinate
lists contain
consecutive

coordinates?

coordinate list

Preliminary GPU Execution Time of FastHASH

Run time (s)
600

Nvidia
Tesla
C2070

500
400
300
200

s

ECPU
EGPU

100

* Conclusion
+ GPU provides 1.44x speedup (early result)

* Ongoing work
+ Schedule work better on GPU for higher
speedup

