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Memory Power 1s Significant

= Power consumption is a primary concern in modern servers

= Many works: CPU, whole-system or cluster-level approach

= But memory power is largely unaddressed

= Our server system*: memory is 19% of system power (avg)
o Some work notes up to 40% of total system power

= Goal: Can we reduce this figure? ® System Power

B Memory Power
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Existing Solution: Memory Sleep States?

= Most memory energy-efficiency work uses sleep states
o Shut down DRAM devices when no memory requests active

= But, even low-memory-bandwidth workloads keep memory
awake
o Idle periods between requests diminish in multicore workloads

o CPU-bound workloads/phases rarely completely cache-resident
Sleep State Residency
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Memory Bandwidth Varies Widely

= Workload memory bandwidth requirements vary widely

Memory Bandwidth for SPEC CPU2006
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= Memory system is provisioned for peak capacity
- often underutilized




Memory Power can be Scaled Down

DDR can operate at multiple frequencies - reduce power
o Lower frequency directly reduces switching power

o Lower frequency allows for lower voltage

o Comparable to CPU DVFS

CPU Voltage/ [System Memory  [System
Freq. Power Freq. Power
J 15% J 9.9% J 40% J 7.6%

Frequency scaling increases latency - reduce performance
o Memory storage array is asynchronous

o But, bus transfer depends on frequency

o When bus bandwidth is bottleneck, performance suffers



Observations So Far

Memory power is a significant portion of total power
o 19% (avg) in our system, up to 40% noted in other works

Sleep state residency is low in many workloads
o Multicore workloads reduce idle periods

o CPU-bound applications send requests frequently enough
to keep memory devices awake

Memory bandwidth demand is very low in some workloads

Memory power is reduced by frequency scaling
o And voltage scaling can give further reductions



DVES tor Memory

Key Idea: observe memory bandwidth utilization, then
adjust memory frequency/voltage, to reduce power with
minimal performance loss

- Dynamic Voltage/Frequency Scaling (DVFS)
for memory

Goal in this work:

o Implement DVFS in the memory system, by:

o Developing a simple control algorithm to exploit opportunity
for reduced memory frequency/voltage by observing behavior

o Evaluating the proposed algorithm on a real system
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DRAM Operation

= Main memory consists of DIMMs of DRAM devices
= Each DIMM is attached to a memory bus (channel)

O O O O

Memory Bus (64 bits)
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DRAM Operation

= Main memory consists of DIMMs of DRAM devices
= Each DIMM is attached to a memory bus (channel)
= Multiple DIMMs can connect to one channe

—
to Memory Controller
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nside a DRAM Device
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Inside a DRAM Device

g Banks

S e Independent arrays
2 Bank 0 e Asynchronous:

2 independent of

memory bus speed

Sense Amps

Column Decoder
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Inside a DRAM Device

I/0 Circuitry

e Runs at bus speed

e Clock sync/distribution <)
e Bus drivers and receivers ) é
e Buffering/queueing v B

Sense Amps <
Column Decoder
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Inside a DRAM Device

On-Die Termination

e Required by bus electrical characteristiCs
for reliable operation

e Resistive element that dissipates power
when bus is active

D Nnas ﬁnt:oder
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Inside a DRAM Device
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Efttect ot Frequency Scaling on Power

Reduced memory bus frequency:

Does not affect bank power:

o Constant energy per operation

o Depends only on utilized memory bandwidth
Decreases I/O power:

o Dynamic power in bus interface and clock circuitry
reduces due to less frequent switching

Increases termination power:
o Same data takes longer to transfer

o Hence, bus utilization increases

Tradeoff between I/O and termination results in a net
power reduction at lower frequencies
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Ettects of Voltage Scaling on Power

Voltage scaling further reduces power because all parts of
memory devices will draw less current (at less voltage)

Voltage reduction is possible because stable operation
requires lower voltage at lower frequency:

Minimum Stable Voltage for 8 DIMMs in a Real System
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Outline

Performance Effects of Frequency Scaling
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How Much Memory Bandwidth 1s Needed?

Memory Bandwidth for SPEC CPU2006
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Performance Impact of Static Frequency Scaling

= Performance impact is proportional to bandwidth demand

= Many workloads tolerate lower frequency with minimal
performance drop

Performance Loss, Static Frequency Scaling
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Performance Impact of Static Frequency Scaling

= Performance impact is proportional to bandwidth demand

= Many workloads tolerate lower frequency with minimal
performance drop
.. ..Perfarmance Loss, Static Frequency Scaling
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Memory Latency Under LLoad

At low load, most time is in array access and bus transfer
- small constant offset between bus-frequency latency curves
As load increases, queueing delay begins to dominate
- bus frequency significantly affects latency

Memory Latency as a Function of Bandwidth and Mem Frequency
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Control Algorithm: Demand-Based Switching

Memory Latency as a Function of Bandwidth and Mem Frequency
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After each epoch of length T,
Measure per-channel bandwidth BW
if BW < Tgyy : switchto 800MHz
else if BW < T,y : switch to 1066MHz
else : switch to 1333MHz
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Implementing V/F Switching

Halt Memory Operations

o Pause requests

o Put DRAM in Self-Refresh

o Stop the DIMM clock

Transition Voltage/Frequency
o Begin voltage ramp

o Relock memory controller PLL at new frequency
o Restart DIMM clock

o Wait for DIMM PLLs to relock
Begin Memory Operations

o Take DRAM out of Self-Refresh

o Resume requests
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Implementing V/F Switching

Halt Memory Operations
o Pause requests
o Put DRAM in Self-Refresh
o Stop the DIMM clock
Transition Voltage/Frequency
o Begin voltage ramp
" N

Memory frequency already adjustable statically

& Voltage regulators for CPU DVFS can work for
memory DVFS

© Full transition takes ~20us

g )
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Evaluation Methodology

Real-system evaluation
o Dual 4-core Intel Xeone, 3 memory channels/socket
o 48 GB of DDR3 (12 DIMMs, 4GB dual-rank, 1333MHz)

Emulating memory frequency for performance
o Altered memory controller timing registers (tRC, tB2BCAS)
o Gives performance equivalent to slower memory frequencies

Modeling power reduction
o Measure baseline system (AC power meter, 1s samples)
o Compute reductions with an analytical model (see paper)

29



Evaluation Methodology

Workloads
o SPEC CPU2006: CPU-intensive workloads
a All cores run a copy of the benchmark

Parameters

a

a
a
a

Tepoch - 10mS

Two variants of algorithm with different switching thresholds:

BW(O.S, 1): T800 — O.SGB/S, T1066 — 1GB/S
BW(O.S, 2): T800 — O.SGB/S, T1066 — ZGB/S
- More aggressive frequency/voltage scaling
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Performance Impact of Memory DVES

= Minimal performance degradation: 0.2% (avg), 1.7% (max)

= BW(0.5,1)
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Performance Impact of Memory DVES

= Minimal performance degradation: 0.2% (avg), 1.7% (max)

= Experimental error ~1%

= BW(0.5,1)
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Memory Frequency Distribution
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Memory Power Reduction

= Memory power reduces by 10.4% (avg), 20.5% (max)
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System Power Reduction

= As a result, system power reduces by 1.9% (avg), 3.5% (max)
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System Energy Reduction

= System energy reduces by 2.4% (avg), 5.1% (max)
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Related Work

MemScale [Dengl11], concurrent work (ASPLOS 2011)
o Also proposes Memory DVFS

o Application performance impact model to decide voltage and
frequency: requires specific modeling for a given system; our
bandwidth-based approach avoids this complexity

o Simulation-based evaluation; our work is a real-system proof
of concept

Memory Sleep States (Creating opportunity with data placement
[Lebeck00,Pandey06], OS scheduling [Delaluz02], VM subsystem [Huang05];
Making better decisions with better models [Hur08,Fan01])

Power Limiting/Shifting (RAPL [David10] uses memory throttling for
thermal limits; CPU throttling for memory traffic [Lin07,08]; Power shifting
across system [Felter05])
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Conclusions

Memory power is a significant component of system power
o 19% average in our evaluation system, 40% in other work

Workloads often keep memory active but underutilized
o Channel bandwidth demands are highly variable
o Use of memory sleep states is often limited

Scaling memory frequency/voltage can reduce memory
power with minimal system performance impact

o 10.4% average memory power reduction
o Yields 2.4% average system energy reduction

Greater reductions are possible with wider frequency/
voltage range and better control algorithms
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Why Real-System Evaluation?

Advantages:

o Capture all effects of altered memory performance
System/kernel code, interactions with IO and peripherals, etc

o Able to run full-length benchmarks (SPEC CPU2006) rather
than short instruction traces

a No concerns about architectural simulation fidelity
Disadvantages:

o More limited room for novel algorithms and detailed
measurements

o Inherent experimental error due to background-task noise,
real power measurements, nondeterministic timing effects

For a proof-of-concept, we chose to run on a real system in
order to have results that capture all potential side-effects
of altering memory frequency
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CPU-Bound Applications in a DRAM-rich system

We evaluate CPU-bound workloads with 12 DIMMs:
what about smaller memory, or I0-bound workloads?

12 DIMMs (48GB): are we magnifying the problem?
o Large servers can have this much memory, especially for database
or enterprise applications

o Memory can be up to 40% of system power [1,2], and reducing its
power in general is an academically interesting problem

CPU-bound workloads: will it matter in real life?
o Many workloads have CPU-bound phases (e.g., database scan or
business logic in server workloads)

o Focusing on CPU-bound workloads isolates the problem of varying
memory bandwidth demand while memory cannot enter sleep
states, and our solution applies for any compute phase of a workload

[1] L. A. Barroso and U. Holzle. “The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines.” Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.
[2] C. Lefurgy et al. “Energy Management for Commercial Servers.” IEEE Computer, pp. 39—48, December 2003.
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Combining Memory & CPU DVFES?

Our evaluation did not incorporate CPU DVFS:
o Need to understand effect of single knob (memory DVFS) first

o Combining with CPU DVFS might produce second-order effects
that would need to be accounted for

Nevertheless, memory DVFS is effective by itself, and
mostly orthogonal to CPU DVFS:

o Each knob reduces power in a different component

o Our memory DVFS algorithm has neligible performance impact
- negligible impact on CPU DVFS

o CPU DVFS will only further reduce bandwidth demands relative
to our evaluations = no negative impact on memory DVFS
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Why 1s this Autonomic Computing?

Power management in general is autonomic: a system
observes its own needs and adjusts its behavior accordingly

- Lots of previous work comes from architecture community,
but crossover in ideas and approaches could be beneficial

This work exposes a new knob for control algorithms to
turn, has a simple model for the power/energy effects of
that knob, and observes opportunity to apply it in a simple
way

Exposes future work for:
More advanced control algorithms
Coordinated energy efficiency across rest of system

Coordinated energy efficiency across a cluster/datacenter,
integrated with memory DVFS, CPU DVFS, etc.
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