The Efficacy of Error Mitigation Techniques for DRAM Retention Failures

Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris Wilkerson, and Onur Mutlu

SAFARI

Carnegie Mellon

Motivation

Scaling DRAM cells results in more failures

- Longer manufacture-time tests
- Lower yield
- Higher cost

Vision: Online Profiling

DRAM Cells

System

Detect and mitigate errors after the system has become operational

Reduces cost of testing, increases yield, enables scaling

What is the effectiveness of system-level detection and mitigation techniques?

Summary

- We analyze the efficacy of testing, guardbanding, ECC, and recent techniques
 - Using experimental data from real DRAMs
- Key Conclusions
 - Testing alone cannot guarantee reliable operation
 - A combination of ECC, testing, and guardbanding is more effective
 - Testing+ECC-based techniques block memory for significant time → Performance degradation
- We propose a possible online profiling mechanism

Outline

- DRAM Scaling Problem
- Online Profiling as a Solution
- Efficacy of System-Level Detection and Mitigation
 - Simple Techniques
 - Recently Proposed Techniques
- Towards an Online Profiling System
- Conclusion

Outline

- DRAM Scaling Problem
- Online Profiling as a Solution
- Efficacy of System-Level Detection and Mitigation
 - Simple Techniques
 - Recently Proposed Techniques
- Towards an Online Profiling System
- Conclusion

Retention Failure

Retention Failure

Intermittent Retention Failure

- Some retention failures are intermittent
- Two characteristics of intermittent retention failures
 - 1 Data Pattern Sensitivity
 - **Variable Retention Time**

1 Data Pattern Sensitivity

Some cells can fail depending on the data stored in neighboring cells

Variable Retention Time

Retention time of some cells change at random points of time

Testing for Retention Failures

Manufacturers perform exhaustive testing Chips failing the tests are discarded

DRAM Scaling Problem

More interference in smaller technology nodes leads to lower yield and higher cost

Outline

- DRAM Scaling Problem
- Online Profiling as a Solution
- Efficacy of System-Level Detection and Mitigation
 - Simple Techniques
 - Recently Proposed Techniques
- Towards an Online Profiling System
- Conclusion

System-Level Online Profiling

Increases yield, reduces cost, enables scaling

System-Level Online Profiling

What is the effectiveness of detection and mitigation techniques for retention failures?

Our goal is to analyze the efficacy of

- 1. Simple Techniques
 - Testing, Guardbanding, ECC
- 2. Recently Proposed Techniques
 - ArchShield, RAIDR, SECRET, RAPID, VS-ECC, Hi-ECC

We analyze the effectiveness of these techniques using experimental data from real DRAM

Methodology

FPGA-based testing infrastructure

Evaluated 96 chips from three major vendors

Outline

- DRAM Scaling Problem
- Online Profiling as a Solution
- Efficacy of System-Level Detection and Mitigation
 - Simple Techniques
 - Recently Proposed Techniques
- Towards an Online Profiling System
- Conclusion

Efficacy of Simple Techniques

- 1 Testing
- **Q** Guardbanding
- **B** Error Correcting Code

Test each module with different patterns for many rounds Zeros (0000), Ones (1111), Tens (1010), Fives (0101), Random

Efficacy of Testing

Testing alone cannot detect all possible failures

Q Guardbanding

- Adding a safety-margin on the refresh interval
- Can avoid VRT failures

Effectiveness of guardbanding depends on the difference between retention times of a cell

22

Retention Time (in seconds)

Retention Time (in seconds)

Retention Time (in seconds)

Retention Time (in seconds)

Retention Time (in seconds)

Even a large guardband (5X) cannot detect 5-15% of the intermittently failing cells

23

3 Error Correcting Code

- Error Correcting Code (ECC)
 - Additional information to detect error and correct data

A combination of mitigation techniques is much more effective

Outline

- DRAM Scaling Problem
- Online Profiling as a Solution
- Efficacy of System-Level Detection and Mitigation
 - Simple Techniques
 - Recently Proposed Techniques
- Towards an Online Profiling System
- Conclusion

Efficacy of Recent Techniques

- 1 Bit Repair Techniques
 - In the paper
- 2 Variable-Strength ECC
- **3** Higher-Strength ECC

Higher Strength ECC (Hi-ECC)

No testing, use strong ECC But amortize cost of ECC over larger data chunk

Can potentially tolerate errors at the cost of higher strength ECC

Hi-ECC ISCA'10 28

Efficacy of Hi-ECC

Testing can help to reduce the ECC strength

Outline

- DRAM Scaling Problem
- Online Profiling as a Solution
- Efficacy of System-Level Detection and Mitigation
 - Simple Techniques
 - Recently Proposed Techniques
- Towards an Online Profiling System
- Conclusion

Towards an Online Profiling System

Key Observations:

- Testing alone cannot detect all possible failures
- Combination of ECC and other mitigation techniques is much more effective
 - But degrades performance
- Testing can help to reduce the ECC strength
 - Even when starting with a higher strength ECC

Towards an Online Profiling System

Run tests periodically after a short interval at smaller regions of memory 32

Outline

- DRAM Scaling Problem
- Online Profiling as a Solution
- Efficacy of System-Level Detection and Mitigation
 - Simple Techniques
 - Recently Proposed Techniques
- Towards an Online Profiling System
- Conclusion

Conclusion

- We analyze the efficacy of testing, guardbanding, ECC, and recent techniques at system-level
 - Using experimental data from real DRAMs
- Key Conclusions
 - Testing alone cannot guarantee reliable operation
 - A combination of techniques is more effective
 - Testing+ECC-based techniques block memory for significant time → Performance degradation
- We propose Online profiling that runs at background without disrupting current programs
 - Run periodically at smaller regions of memory

Thank you

Full data set for 96 chips is available at

http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures

Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris Wilkerson, and Onur Mutlu

SAFARI

Carnegie Mellon

1 Bit Repair Techniques

These techniques are vulnerable to new intermittent failures

Efficacy of Bit Repair Techniques

Efficacy of Bit Repair Techniques

Efficacy of Bit Repair Techniques

Even longer tests are not sufficient to guarantee reliable operation

Variable-Strength ECC (VS-ECC)

Test DRAM module at boot up

Protect failed lines with strong ECC 2

Will fail as soon as there are two bit errors in SECDED lines

VS-ECC ISCA'11 52

Efficacy of VS-ECC

Efficacy of VS-ECC

Efficacy of VS-ECC

With higher capacity DRAM, memory will be blocked for an unacceptable amount of time

Challenges and Opportunities

Challenges:

- Performance Overhead
- Mitigation Overhead

Opportunities:

Enable Failure-aware
Optimizations

Reduction in Error Rate in all Modules

Difference in Modules

Tested DRAM Modules

Manufacturer	Module Name	Assembly Date (Year-Week)	Number of Chips
А	A1	2013-18	8
	A2	2012-26	8
	А3	2013-18	8
	A4	2014-08	8
В	B1	2012-37	8
	B2	2012-37	8
	В3	2012-41	8
	B4	2012-20	8
С	C1	2012-29	8
	C2	2012-29	8
	C3	2013-22	8
	C4	2012-29	8

Time to Test

Operation	Time (2GB)	Time (64GB)
Write/Read a Row	667.5 ns	667.5 ns
Write/Read 2GB Module	174.98 ms	5.59 s
1 round , 1 pattern	413:96 ms	11.24 s
1 round, 5 patterns	2.06 s	56.22 s
1000 rounds, 5 patterns	34 m	15.6 hours

Temperature Controlled Environment

Dependence of Retention Time on Temperature

Dependence of Retention Time on Temperature

Relationship between retention time and temperature is consistently bounded (predictable) within a device

Every 10°C temperature increase→ 46.5% reduction in retention time in the worst case

Effect of Temperature

- Worst fit curve for retention time at different temperature corresponds to e^-0.0625T, where T is the temperature [ISCA'13]
- A 10 C increase in temperature results in a reduction of 1 – e^-0.0625*10 = 46.5%
- 1 second \rightarrow 82 ms at 45 C
- 20 seconds \rightarrow 1640 ms at 85 C

Characteristics not Dependent on Refresh Interval

Expected Number of Multi-Bit Failures

- 1 Bit Failure
- 1 Bit Failure, 2X Guardband
- 2 Bit Failure
- 2 Bit Failure, 2X Guardband
- 3 Bit Failure

