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DRAM-Aware L ast-L evel Cache Writeback:
Reducing Write-Caused I nterferencein Memory Systems

Abstract

Read and write requests from a processor contend for the mamory data bus. System performance depends heavily onredterequests
are serviced since they are required for an application’sifard progress whereas writes do not need to be performeceniiately. However,
writes eventually have to be written to memory because titage required to buffer them on-chip is limited.

In modern high bandwidth DDR (Double Data Rate)-based mgragstems write requests significantly interfere with theisimg of read
requests by delaying the more critical read requests andauging the memory bus to become idle when switching beteesetvicing of a
write and read request. This interference significantlyrddgs overall system performance. We call this phenomeniosrgaused interference.
To reduce write-caused interference, this paper proposesnalast-level cache writeback policy, called DRAM-awarigeback. The key idea of
the proposed technique is to aggressively send out writetsgiests that are expected to hitin DRAM row buffers befarg would normally be
evicted by the last-level cache replacement policy and tiey®RAM controller service as many writes as possible twgeDoing so not only
reduces the amount of time to service writes by improving thes buffer locality but also reduces the idle bus cyclessted due to switching
between the servicing of a write and a read request.

DRAM-aware writeback improves system performance by 7ridd.2.8% on single and 4-core systems respectively. Therpeahce benefits
of the mechanism increases in systems with prefetching sinth systems have higher contention between reads ames writhe DRAM system.

1. Introduction

Read and write requests from the processor contend for tive mmamory data bus. In general, read requests (i.e., misgests
from the last-level cache) are critical for system perfoncesince they are required for an application’s progressreds writes
(i.e., writeback requests from the last-level cache) doeetd to be performed immediately. In modern DDR (Double Batee)-
based memory systems, write requests significantly imeeréth the servicing of read requests, which can degradeathsystem
performance by delaying the more critical read requestscallghis phenomenowrite-caused interferenc& here are two major
sources of performance penalty when a write request isahinstead of a read request. First, the critical read i=qaelelayed
for the duration of the service latency of the write requ&sicond, even after the write is serviced fully, the read otbe started
because the DDR DRAM protocol requires additional timingstaaints to be satisfied which causes idle cycles on the DRIAM
bus in which no data transfer can be done.

The two most important of these timing constraints are wimiteead (W71 R) and write recovery (write-to-precharggy’ R)
latencies as specified in the current JEDEC DDR DRAM stanfrdThese timing constraints in addition to other main asce
latencies such as precharge, activate and column addrelss ktencies @ P,* RC D, andC'L/CW L) dictate the number of cycles
in which the DRAM data bus should remain idle after a writefpbe a read can be performed. In a state-of-the-art DDR3 DRAM
system!WT R and!W R latencies are 7.5 and 15 ns [9], which translates to 30 andd@psor cycle delays assuming a processor
clock frequency of 4 GHz. Both latencies increase in termswhber of DRAM clock cycles as the operating frequency of the
DRAM chip increases [16, 3] as do other main access latenties end result is that high penalties caused by write reguwet
become even larger in terms of number of cycles because #ratiqy frequency of future DRAM chips will continue to ieerse
to maintain high peak bandwidth.

A write bufferin the main memory system can mitigate this problem. A writéidy holds write requests on-chip until they are
sent to the memory system according to the write buffer meamegt policy. While write requests are held by the write éyff
read requests from the processor can be serviced by DRAMutithterference from write requests. As a result, memoryise
time for reads that are required by the application can baaed. As the write buffer size increases, write-causedfarence

in the memory system decreases. For example, an infinite Wtiffer can keep all write requests on-chip, thereby cotajyle



removing write-caused interference. However, a very lavgée buffer is not attractive since it requires high hardevaost and
high design complexity (especially to enable forwardinglafa to matching read requests) and leads to inefficienzatidn of
on-chip hardware/power budget. In fact, a write buffer atially acts as another level of cache (holding only writteack cache
lines) between the last-level cache and the main memorgmsyst

To motivate the performance impact of write-caused interfee, Figure 1 shows performance on a single-core systetm (w
no prefetching) that employs a state-of-the-art DDR3-1BBAM system (12.8 GB/s peak bandwidth) [9] and a First ReBigt
Come First Served (FR-FCFS) DRAM controller [15]. We evéduthree write request management policies: 1) a 64-entitg wr
buffer with a management policy similar to previous propge$é, 12, 17] which exposes writes (i.e., makes them viitdethe
DRAM controller only when there is no pending read requesivben the write buffer is full, and stops exposing writes when
a read request arrives or when the write buffer is not fullranye Gerviceat no.read), 2) a 64-entry write buffer with a policy
that exposes all writes only when the write buffer is full ar@htinues to expose all writes until the write buffer becereenpty
(drain_whenfull), and 3) ideally eliminating all writes assuming that thisrao correctness issue (werite). Ideally eliminating all
writes removes all write-caused interference and theesfbows the upper bound on performance that can be obtaineahioling

write-caused interference intelligently.
1.5

w14
£ 13
'g 1.24
811
o L10]
204

ed
<)

00000000«

=service_at_no_read
=drain_when_full (bas{
=no_write

IPC normaliz
ENe RPN
-----‘
Lt 1 11 [ [ |

Figure 1. Potential performance of intelligently handling write-caused interference in the DRAM system

We make two main observations. Firsgrviceat.no_readusually performs worse than servicing writes when the writéfer
is full. This is because when a read arrives at the DRAM cdietreery soon after a write is serviced, a significant amooit
write-caused penalty delays that read. This happens tbalbénchmarks except ftucaswhere there are long enough periods
to satisfy the large write-caused penalties during whicdseare not generated. Servicing writes opportunisticatign there
are no reads degrades performance due to two reasons: tyisithe costly write-to-read and read-to-write switchpemalties,
thereby wasting DRAM bandwidth, 2) it does not exploit rovffbulocality when servicing write requests since writeatto to
the same row are serviced far apart from each other in timeoftrastdrain_.whenfull improves performance by 9.8% compared
to serviceat.no_read on average because it 1) delays service of writes as muchsssbpy 2) services all writes once it starts
servicing one write, thereby amortizing write-to-read tehing penalties across multiple writes by incurring thentyconce for
an entire write-buffer worth of writes, and 3) increases plossibility of having more writes to the same DRAM row addres
higherrow buffer localityin the write buffer that is exploited by the DRAM controllarfbetter DRAM throughput. Second, even
thoughdrain_whenfull significantly improves performance compared to the bestiexj write buffer management policies, there
is still large potential performance improvement (20.2%mnpared todrain_whenfull) that can be achieved by further reducing

write-caused interference, as shown by the rightmost seas.

1We chose 16benchmarks among all SPEC2000/2006 CPU berichthat have at least 10% IPC (retired instruction per cypksformance improvement
compared tadrain_whenfull when all writes are ideally removed. The performance nusiséiown in Figure 1 are normalized doain_whenfull. Section 5
describes our experimental methodology in detail.



As shown above, the impact of write-caused interferencenapalication’s performance is significant even with a ddgesized
(i.e., 64-entry) write buffer and a good write buffer polidhis is because a size-limited write buffer or a write buffeanagement
policy cannot completely remove write-caused interfeeesiace 1) writes eventually have to be written back to DRAMendver
the write buffer is full and 2) servicing all writes in the weibuffer still consumes a significant amount of time. To ovene
this problem, we propose a new last-level cache writebadikypoalled DRAM-aware writebackhat aims to maximize DRAM
throughput for write requests in order to minimize writedsad interference. The basic idea is to send out writebdeitsatre
expected to hitin DRAM row buffers before they would norrgdie evicted by the last-level cache replacement policys @iows
higher row buffer locality to be exposed in an existing wiiigfer which the DRAM controller can take advantage of. Otiee
write buffer becomes full, the DRAM controller services teg quickly (since they would hit in row buffers) until all ites in the
write buffer are serviced. Our mechanism is able to contirmugend more writes to the write buffer while the DRAM conieol
is servicing writes. This allows the DRAM controller to sg® more writes once it starts servicing writes thereby Itesyin less
frequent write-to-read switching later.

Our evaluations show that the proposed mechanism improxsters performance significantly by managing DRAM write-
caused interference, which in turn increases DRAM buszatiibon. The DRAM-aware writeback mechanism improves thréope
mance of 18 memory intensive SPEC CPU 2000/2006 benchmgrkslB6 on a single-core processor compared to the best write
buffer policy among policies we evaluated. It also improsgstem performance (i.e. harmonic speedup) of 30 multiarogied
workloads by 12.8% on a 4-core CMP. We show that our mechaisisimple to implement and low-cost.

Contributions To our knowledge, this is the first paper that addresses tite-aaused interference problem in state-of-the-art
DDR DRAM systems. We make the following contributions:

1. We show that write-caused interference in DRAM is and wglhtinue to be a significant performance bottleneck in moder
and future processors.

2. We show that a simple write buffer management policy teatises all writes only when the write buffer is full outpenns
previously proposed policies by reducing DRAM write-t@deswitching penalties.

3. We propose a new writeback policy for the last-level cablagétakes advantage of the best write buffer managemeioy@zoid
reduces the service time of DRAM writes by exploiting DRAMwbuffer locality. The proposed writeback mechanism img®ov
DRAM throughput for both reads and writes by reducing widtessed interference.

4. We evaluate our techniques for various configurationsingle-core and CMP systems, and show that they significantly

improve system performance on a wide variety of system cordigpns.

2. Background
2.1. Write-Caused Interferencein DRAM systems

Write-caused interference in DRAM comes from read-to-gyritrite-to-read, and write-to-precharge latency peesltiRead-
to-write and write-to-read latencies specify the minimudteilatencies on the data bus between a read and a write legsuaf
what DRAM banks they belong to. In contrast, write-to-pr@gfe specifies the minimum latency between a write commaddan

subsequent precharge command to the same bank. We firsib@esad-to-write and write-to-read latencies.

2.1.1. Writeto-Read and Read-to-Write Penalties and How to Reduce Them Read-to-write latency is the minimum latency
from a read data burst to a write data burst. This latencygsired to change the data bus pins’ state from read stateite wr
state. Therefore, during this latency the bus has to be idIBDR3 DRAM systems, the read-to-write latency is two DRAMak

cycles. Write-to-read'{¥ T'R) latency is the minimum latency from a write burst to a sulged read command. In addition to the



time required for the bus state change from write to read, ltency also includes the time required to guarantee thtewdata
can be safely written to the row buffer (i.e., sense ampjiech that a possible subsequent read to the same row canfberpezl
correctly. ThereforéWW TR is much larger (e.g., 6 DRAM clock cycles for DDR3-1600) thaad-to-write latency and introduces
more DRAM data bus idle cycles. Note that both of the lateswaiest be satisfied regardles of whether the read and theaugess
the same bank or different banks.

We demonstrate the implications of these penalties on DRégUghput and overall performance with an example in Figure
Figure 2(a) shows the state of the DRAM read and write buffér brevity, we assume that each buffer has only two eninies
this example. All the read requests in the DRAM read bufferaways exposed to the DRAM controller for scheduling where
the writes are exposed based on the write buffer managenoéioy.pThere is one read (Read A, a read request to row buffer A
and one write (Write B) in the read and write buffers respedyi At time t1, another read (Read C) and a write (Write Dineo
from the processor. We assume that each request goes t@eedtfbank and that all requests match the open row bufférein t

corresponding DRAM banks (all requests are row-hits).
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Figure 2. Effect of read-to-write and write-to-read penalt  ies based on write buffer management policies

Figure 2(b) shows the DRAM timing diagram for the policy winiexposes writes to the DRAM controller only when there is
no pending read request or when the write buffer is full ampstexposing writes when a read request comes in or when ftee wr
buffer is not full anymore (theerviceat.no_readpolicy in Section 1). Since no read is pending in the DRAM rbaffer after Read
A'is scheduled, this policy schedules Write B from the writéfér. Subsequently Read C and Write D are scheduled.

Each command (e.g., read, write, or precharge) takes a DRég\t¥cle and every data transfer is done in burst mode (BLstBur
length of 8 in the figure) at twice the rate of the clock (i.euble data rate, 4 DRAM clock cycles for BL = 8). Two obserwati
can be made from Figure 2(b) which will demonstrate the moisl caused by write-to-read and read-to-write latencigst, fhe
command for Write B after Read A must satisfy read-to-wragehcy; it has to be scheduled by the DRAM controller at least
CL +! BL +2 — CWL [3] DRAM clock cycles after the read command is scheduledhghat the write burst can be on the bus
two DRAM cycles after the read burst Second, Read C after Write B must satisfiy7'R. The command for Read C can only be
scheduledWT' R cycles after the data burst for Write B is completed. In castito read-to-write latency, the data bus must be idle
for ‘WTR + CL cycles since the subsequent read command cannot be sahéaii&/ T R cycles. The last write is scheduled

after read-to-write latency is satisfied as shown.

2We assume that the additive latency (AL) is 0 in this studllfis considered, the subsequent write command can be sktb@L + AL +t CCD + 2 —
(CWL + AL) cycles after the read, whef€'C D is the minimum column strobe to column strobe latency). Taimize bandwidth we set upBL to eight,
therefore! CC'D is equal to {BL) [3].



This policy results in many idle cycles (i.e., poor DRAM thghput) on the data bus. This is because it sends writes asasoo
there are no pending reads which is problematic when a subségpad arrives immediately after the write is scheduddRAM.

The penalties introduced by the write cause a significantuentnof interference and therefore increase both the reamtismaite’s
service time. This is the main reason why this policy doegpeotorm well as shown in Figure 1.

On the other hand, if the write buffer policy that exposesaaltes only when the write buffer is full and continues to esp
all writes until the write buffer becomes emptyréin_whenfull) is used, Reads A and C are serviced first (Write B is not sedvic
immediately after Read A since the write buffer is not fulidathen Writes B and D are serviced. Figure 2(c) shows the DRAM
timing diagram for this policy. Read C can be scheduled oheeDRAM controller sees it since there is no unsatisfied @gmin
constraint for Read C. Then Write B can be scheddldd+! BL + 2 — CW L cycles after the command for Read A is scheduled.
Note that the command for Write D can be scheduled very soangmrecisely! CC D cycles after the command for Write B)
since DDR3 DRAM chips support back-to-back data bursts fistes (as well as for reads) by overlapping column addresbet
latencies C L or CW L).

This policy results in better DRAM service time for the fowguests compared to the policy shown in Figure 2(b). Since
buffering writes in the DRAM write buffer and servicing alf them together when the buffer gets full reduces the largé-te-
write and write-to-read latency penalties, DRAM throughipgreases. Also note that by delaying writes as much aslgesseads
that are more critical to an application’s progress can Ioeiced quickly thereby improving performance. This is thaimreason
this policy outperforms the policy of Figure 2(b) as showrFigure 1. We found that this policy is the best among the presly

proposed write buffer policies we evaluated. We use thigcpals our baseline write buffer policy.

2.1.2. Write-to-Precharge Penalty In the previous example we assumed that all rows for the fequests are open in the row
buffers of their corresponding DRAM banks. Write-to-praade latency (write recovery timéJ¥/ R) comes into play when a
subsequent precharge command (for either a read or a wsitghieduled to open a different row after a write data tranefa
bank. This write-to-precharge latency specifies the mimmtatency from a write data burst to a precharge command iisdnee
DRAM bank. This latency is very large (12 DRAM clock cycles BDR3-1600) because the written data in the bank must be
written back to the corresponding DRAM row through the rovif@ubefore precharging the DRAM bank. This needs to be done
to avoid the loss of modified data.

Figure 3 illustrates write-to-precharge penalty in a DRARhk. Write A and Read B access different rows in the same bank.
Therefore a precharge command is required to be sent to DRAMe¢N the row for Read B. Subsequent to the scheduling oEWrit
A, the precharge command must wait until write-to-prechdadency is satisfied before it can be scheduled. Note tisapémalty

must be satisfied regardless of whether the subsequentgpgecis for a read or write.

. . ) Write A Precharge Activate B Read B
Read/write x : Read/write a column in row x Command—@ n n
Rows A and B arein the same bank Y Y
tBL: Burst length time Data A tRP tRCD CL
CL: Read column address strobe latency Data bus m (I
CWL: Write column address strobe latency “BL Data B
tRCD: Activate to read/write latency tWR

tRP: Precharge command period

Figure 3. Write-to-precharge latency ( ‘W R)

This write-to-precharge latency affects DRAM throughpwinty in two ways. First, when reads and writes to differeows
(i.e., row-conflict) are serviced alternatively, the togahount of write-to-precharge penalty becomes very larger example,
servicing Write A (write to row A), Read B, Write A, and Read B a bank will result in poor service time by introducing large

penalties (3 row-conflict and 2 write-to-precharge latesgi This can be mitigated by the write buffer policy thatesegs all writes



to the DRAM controller only when the write buffer is full. Byothg so, first the two writes to row A are serviced and then e t

reads to row B are serviced (resulting in 1 row-conflict andritesto-precharge latency).

Second, since the write-to-precharge latency must befisatisven for a subsequent precharge for a write, row-cosftiotong
writes degrade DRAM throughput for writes. For example, #&/B after Write A must still satisfy this write-to-prechargenalty
before the precharge to open row B can be scheduled. Thisepnadannot be solved by write buffer policies. If writes iretivrite
buffer access different rows in the same bank, the total amnofwrite-to-precharge penalty becomes very large. Tleigrddes
DRAM throughput for writes even with the write buffer politiyat exposes writes only when the write buffer is full. Thisetually

results in delaying service of reads thereby degradingiegin performance.

3. Motivation

3.1. Performance Impact of Write-caused I nterferencein the Future

We expect that write-caused interference will continuallyrease in terms of number of clock cycles as the operatewuency
of the DRAM chip increases to maintain high peak bandwidthe Write-to-read penalty which guarantees that modified dat
written to the row buffer correctly (sense amplifier) willtize easily reduced in absolute time similar to other acagssities such
as precharge periodRg P) and column address strobe laten€y(CW L). This is especially true for the write-to-precharge laten
which guarantees modified data will be completely writteokbi® the memory rows before a new precharge. This latencgatan
easily be reduced because reducing access latency to thergneefl core is very difficult [16, 3]. We believe this will keue for
any future memory technology (not limited to DRAM technoldpthat supports high peak bandwidth. This means that veaiesed

interference will continue to be a performance bottlenecthe future.

Figure 4 shows the performance improvement of the ideakbaitk policy across future high bandwidth memory systene. W
assume that the DRAM operating frequency continue to irser@athe future. Since the future memory specifications akaown,
we speculatively scaled the number of clock cycles for alREBEL600 performance-related latencies that cannot be/eadiuced
(e.g.'WTR,*WR,*RP,*RCD, CL, etc) in absolute time. For example, x2 of DDR3-1600 indisa DDR system that maintains
twice the DDR3-1600 peak bandwidth (25.6GB/s = 2 x 12.8GBAg also assume that the DRAM frequency increases as fast as
the processor frequency. We show two cases: when no prefgtishemployed and when an aggressive stream prefetchsedsin

the processor.
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Figure 4. Performance potential as memory operating freque ncy increases
We make two observations from Figure 4. First, the higheptk bandwidth, the larger the performance impact of wréesed
interference. Second, removing write-caused interfezéaenore critical for systems with prefetching. The perfamoe impact of

writes for these systems is much higher due to higher coiotebetween reads and writes (prefetch requests are akyead



3.2. Last-Level Cache Writeback Poalicy: A Way to Reduce Write-Caused I nterference

As discussed in Section 2.1.2, write-to-precharge perwainot be reduced by write buffer policies (such as drainnafa8).
Servicing row-conflict writes in the same bank takes a sigaift number of cycles. This will delay service of writes il thrite
buffer and eventually results in delaying service of rea&ksvice of writes can be done faster if the write buffer hasymaw-hit
writes. Note that the source of DRAM writes is the last-lesathe’s writebacks which are dirty line evictions in a woiek cache.
In contrast to read requests that are required immediatelarfi application’s progress, writes can be scheduled to MRAore
freely. For example, the last-level cache can more aggrelgssend out writebacks even though no dirty line is evidigdts cache

replacement policy to improve service time of writes.

Figure 5 shows an example of an aggressive writeback pofitiyeolast-level cache. Figure 5(a) shows the initial stdtthe
DRAM read/write buffers and a set of the last-level cacheeddr(Read A, read to row A) and a write (Write B, write to row By a
waiting to be scheduled to DRAM in the DRAM read and write budf(two entries for each) respectively. Two dirty linesr(ipiC
and Dirty B) are at the least recently used (LRU) positionthefshown set of the last-level cache. For simplicity, welassthat
rows B and C are mapped to the same bank, whereas row A is mappedifferent bank. Also row A and row B are open in the
row buffers of the respective banks. Read A is about to bedwdld and will be inserted in the shown set of the cache.

f To DRAM f
Read/write x : Read/write a column in row x

Read A Write B Bank for row A isdifferent from rowsB and C
Bank for row B isequal torow C
DRAM read buffer DRAM write buffer Rows A and B areinitially open
Less recently used Data for Read A isstored in the set shown
. tBL: Burst length time
Set| Clean| Clean| Dirty § Dirty G CL: Read column address strobe latency
. CWL: Write column address strobe latency
Last-level cache tCCD: Column address strobe to column address strobe latency
(@) Cache/DRAM buffer initial state tWR: Write to precharge latency
f To DRAM f
Read A Write B Precharge Activate C  Write C
Command—] § (] (] §
DRAM read buffer DRAM write buffer Y Y Conventional
Less recently used cL CwL Data B tRP tRCD CWL patac writeback
s Data bus
Set|Clean A| Clean]| Clean] Dirty B Data A=g
. tWR

.
Last-level cache
(b) Cache/DRAM buffer state and DRAM timing when Dirty C is evicted by a new cache line

To DRAM
f f tCCD

Write C Read A

Command—}

Write B, Write B
0

DRAM read buffer DRAM write buffer DRAM-aware
Less recently used CcL CwL Saved cycles writeback
= Data bus (o Y
L -
Set|Clean A| Clean]| Clean] Clean E Data A
-
.

Last-level cache
(c) Cache/DRAM buffer state and DRAM timing when writeback for Dirty B is sent before Dirty C is evicted

Figure 5. How last-level cache’s writeback policies affect DRAM service time

Figure 5(b) shows the resulting cache and buffer states lmdRAM timing when a conventional writeback policy is used
in the cache. The LRU line (Dirty C) is evicted by the new liee Read A after read A is serviced by DRAM. Therefore a
write is generated for row C (Write C) and is inserted into Write buffer. The write buffer becomes full since it contaitwo
writes. Subsequently, the baseline write buffer polidsa{n_.whenfull) allows the DRAM controller to schedule both writes. Write
B is scheduled first since it is a row-hit and write C is serdicext. Because Write C accesses a different row from Write B,
precharging is required to open row C. Since a write was sedvbefore, write-to-precharge penalty must be satisfiéoré¢he

precharge command for C is scheduled. This increases theydles on the DRAM data bus since the write data for Write Gtmu



wait for 'W R +t RP +! RCD + CW L cycles after the write burst for Write B.

On the other hand, as shown in Figure 5(c), if the writebacliaty B in the cache can be sent out before Dirty C is evictad d
to the new line for Read A, the write buffer will contain twoites to the same row. The two writes to row B are serviced laek-
back thereby resulting in significant reduction in DRAM deevtime. This example illustrates that a writeback polidyieth can
send out writeback requests that will access the same rothaswrites can improve service time for writes. This is hesmwrite-
to-precharge, precharge, and activate latenéidsi{ +* RP +! RC D) that would have been applied to a subsequent row-conflict
write can be replaced by a row-hit write. Note that two write$he same row can be even faster since DDR3 DRAM chips stippor
back-to-back data bursts for writes and this is why the aggive writeback policy’s “Saved cycles™i®/ R+ RP+*RCD+CW L
in Figure 5.

Note that due to this aggressive writeback, the state of #tthe and DRAM read/write buffer differs in the case of the new
writeback policy of Figure 5(c) compared to the conventigr@icy. In the case of the conventional policy, Dirty B stap the
cache and no write is left in the write buffer whereas in thé&etmack policy of Figure 5(c), a clean (non-dirty) copy fow B
stays in the cache and Write C remains in the write buffer. étloeless, the aggressive writeback policy can still otdioper the
conventional writeback, because 1) a clean copy of B doesewd to be written back to DRAM unless it is rewritten by aydirt
line eviction from the lower-level cache and 2) it may find edlirty lines to row C (the same row as Write C in the write boffe
in the cache and send out the writebacks for them to the witiedso that those row-hit writes to row C can be serviced fake

reduced DRAM service time turns into higher performancesitme DRAM controller quickly switches to service reads.

4. Mechanism: DRAM -Aware Writeback

Our mechanism, DRAM-aware writeback, aims to maximize th&AM throughput for write requests in order to minimize
write-caused interference. It monitors dirty cache linggt€backs) that are evicted from the last-level cache &aed to find other
dirty cache lines that are mapped to the same row as the dvine When found, the mechanism aggressively sends \agteb
for those dirty cache lines to DRAM. Thdrain_whenfull write buffer policy allows writes to be seen by the DRAM cantiigr
when the write buffer is full thereby allowing the DRAM coalier to exploit row buffer locality of writes. Aggressiwekending
writebacks selectively cleans cache lines which can beemriback quickly due to the DRAM'’s open row buffers.

The mechanism consists of a writeback monitor unit and stetehines in each last-level cache bank as shown in Figure 6.
The writeback monitor unit monitors evicted cache linesrfrall cache banks until it finds one dirty cache line being edc It
then records the row address of the cache line in each caclieststate machine. Once a write’s row address is recorded, t
state machines start sending out writebacks for dirty limksse row address is the same as the recorded row addreshifrdinty
lines). To find row-hit dirty cache lines, each state maclsinares the port of its cache bank with the demand cache asciesm
the lower-level cache. Since the demand accesses are nitizal ¢o performance, they are prioritized over the statgchine’s
accesses. Once a row-hit dirty line is found, the line’s elréick is sent out through the conventional writeback pegandless of
the LRU position of the cache line. Because the cache linéshwdre written back in this manner may be reused later, tobeca
lines stay in the cache and only have their dirty bit resety(thecome non-dirty or clean). The state machine in eachlesps
sending row-hit writebacks until all possible sets that rreyjude cache lines whose row address is the same as theleelcaw
address have been checked. When all state machines in tke fir@sh searching, the writeback monitor unit starts obisgrthe
writebacks coming out of the cache to start another set of MFfwvare writebacks.

The DRAM-aware writeback technique leverages the bendfiteavrite buffer and the baseline write buffer managemetitp

(drain_whenfull). Our DRAM-aware writeback technique can send more rowvhiiebacks than the number of write buffer entries
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Figure 6. Writeback mechanism in last-level cache

within a very short time. In fact, a single dirty line eviatican trigger our mechanism to send up to reie/cachdine_size
writebacks. Once the write buffer becomes full, all statechirges stall and delay the current searching. At the same, tihe
underlyingdrain_whenfull write buffer management policy starts exposing the writesesthe write buffer is full. As the DRAM
controller services writes, free write buffer entries bewoavailable for new writebacks. The state machine resussslsing and
sending row-hit writes to the write buffer. Because thiain_whenfull policy keeps exposing writes until the write buffer becomes
empty, all possible row-hit writebacks for a row can be sedi quickly by the DRAM controller since they are all rowshitin
this way, our mechanism can effectively enable more writebd serviced quickly, which in turn reduces the number otewri
buffer drains over the entire run of an application. Thisuttsin fewer write-to-read switching penalties which irmpes DRAM
throughput and performance.

Note that two conditions should be true for our mechanismeteffective. First, the last-level cache banks should haeeigh
idle cycles for the state machine to look for row-hit writel.this is true the mechanism would not significantly contamwith
demand accesses from the lower-level cache for the cacHedrahwill be able to generate many row-hit writebacks. Sdgon
rewrites to cache lines which our mechanism preemptivelteaback to DRAM should not occur too frequently. If writesppen
too frequently, the mechanism significantly increases tiraber of writes to DRAM. Even though row-hit writes can beviesd

quickly, the increased writes might increase time spenéemising writes. We discuss these two issues in the follgvgections.

4.1. DoesLast-Level Cache Have Room for DRAM -Aware Writeback?

Table 1 shows the percent of last-level cache bank idle sy@eeraged over all banks) over the entire run for each ofL.éhe
SPEC2000/20006 benchmarks in a single core system desanilgzction 5. For all benchmarks, except, cache bank idle time

is more than 95%.
[ Benchmark [[swim[applu] galgel] art [lucas] fma3d] mcf]milc]cactusADM] soplex GemsFDT( libquantun Tom Jomnetpd astaf wrf |

[1dle cycles (%]] 0.96] 0.97] 0.92 [0.91] 0.98] 0.97 [0.97]0.97] 0.99 [ 098] 0.7 | 0.7 [0.95] 0.98 [0.98[0.99
Table 1. Last-level cache bank idle cycles (%) in single core system for 16 SPEC 2000/2006 benchmarks

Table 2 shows the average idle bank cycles of the last-leadte (shared cache for multi-core systems) of the singland,
8-core systems described in Section 5. Even in multi-coséesys, the shared last-level cache has many idle cycles.isihecause
last-level cache accesses are not too frequent comparedén-level caches, since the lower-level cache and MissiStdolding
Registers (MSHRS) filter out many accesses from the lasi-leache. Therefore, we expect contention between demamts a
our DRAM-aware writeback accesses to be insignificant. W tiirat prioritizing demands over the accesses for DRAM-awar

writeback is enough to reduce the impact of using the cachkddfar our mechanism.
[ [[1-core[ 4-core[ 8-core]
[1dle cycles (%) 0.97 ] 0.91] 0.89 |
Table 2. Average last-level cache bank idle cycles (%) in sin  gle, 4, and 8-core systems
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4.2. Dynamic Optimization for Frequent Rewrites

For applications that exploit temporal locality of the Kestel caches, the cache lines which are written back by ggressive
writeback policy may be rewritten by subsequent dirty limetons of the lower-level cache. Thesslirtied cache lines may come
to be written back to DRAM again by the last-level cache’daepment policy or the DRAM-aware writeback policy. Thidlwi
increase the number of writebacks (i.e., writes to DRAM)ebhinay hurt performance by delaying service of reads duestpient
services for writes.

We mitigate this problem using a simple optimization. Wegdically estimate the rewrite rate of cache lines whoséabacks
are sent out by the DRAM-aware writeback mechanism. Basdtis®stimation, our mechanism dynamically adjusts itsegg
siveness. For instance, when the rewrite rate is high, thehamésm sends out only row-hit writebacks close to the LREitjm.
When the rewrite rate is low, the mechanism can send out eehit writebacks close to the MRU position. Since the eation
of rewrite rate is periodically done, the DRAM-aware wridéelt mechanism can adapt to the phase behavior of an appficati
well. When employing this optimization in the shared cache multi-core system, we adapt the mechanism to estimatetirite
rate for each core (or application).

To implement this, each cache line keeps track of which ddrselongs to using core ID bits and also tracks whether thbecac
line becomes clean (or non-dirty) due to the DRAM-awareetndck mechanism using an additional bit for each line. A taror
each core periodically tracks the total number of the coseltebacks sent out by the DRAM-aware writeback mechani&snather
counter counts the number of the core’s rewrites to the abaahe lines whose writebacks were sent early by our meaharike
rewrite rate for each core for an interval is calculated byiding the number of rewrites by the total number of writekasent
out in that interval. The estimated rewrite rate is storea iregister for each core and used to determine how aggréssie
mechanism sends writebacks (from LRU or from other pos#ticlose to MRU) for the next interval.

We found that our mechanism without this optimization dligllegrades performance for only two applicatiompr(andtwolf,
both of which are memory non-intensive) out of all 55 SPE@ZR006 benchmarks by increasing the number of writebacks.
Therefore the gain from this optimization is small compa@design effort and hardware cost. We analyze this optiticizavith

experimental results in detail in the results section (Bad.2).

4.3. Implementation and Hardware Cost

As shown in Figure 6, our DRAM-aware writeback mechanisnmunes a simple state machine in each last-level cache bank
and a monitor unit. Most of the hardware cost is in logic medifions. For example, the comparator structure should ldifred
to support tag comparison with the row address in each statshime. The only noticeable storage cost is eight bytes qehe
bank for storing the row address of the recent writeback.eNloat none of the last-level cache structure is on the atipath. As
Figure 4.1 shows, the accesses to the last-level cache avenydrequent.

If we implement the optimization in Section 4.2, one addigéibbit and core ID bits (for multi-core systems) for eachhmtine
are required. Three counters (2 bytes for each) are reqtorkedep track of the number of writebacks sent, the numbeswfites,

and the rewrite rate.
4.4. Comparison to Eager Writeback

Eager writeback [6] was proposed to make efficient use of dlgsdycle for writes in a Rambus DRAM system in order to
minimize read and write contention. It sends writebacksdidly LRU lines in a set to the write buffer when the set is aseal.

Writes in the write buffer are scheduled when the bus is idileere are important key differences between eager writebad our

DRAM-aware writeback technique which we discuss below.
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First, eager writeback is not aware of DRAM characteristidge find that simply sending writebacks for dirty LRU cache
lines does not work with today’s high-frequency DDR DRAM t&yas because servicing those writes in DRAM is not necdgsari
completed quickly. For instance, servicing row-conflicites causes large penalties (write-to-precharge lateheig shown in

Section 3. This eventually significantly delays the sergtsubsequent reads.

Second, the write-caused penalties of state-of-the-aR MRAM systems are too large to send a write only because ttze da
bus is idle or there are no pending reads. To tolerate thewnitg-caused penalties, there must be no read requesingriat the
DRAM system for a long time such that all write-caused timimgstraints are satisfied before the subsequent read. Heovier
memory intensive applications whose working set does nt fite last-level cache, it is very likely that read requests/e at the

DRAM system before all constraints are satisfied. Theredatessequent reads suffer large write-to-read penalties.

In contrast, our mechanism does not aim to minimize immediaite-caused interference but targets minimizing thetewri
caused penalties for the entire run of an application. @vedlto stop servicing current reads to service writes. Harewnce it
does, it makes the DRAM controller service many writes fasexploiting row buffer locality such that servicing writegxt time

can be performed a long time later.

We extensively analyze and compare DRAM-aware writebackemger writeback in Section 6.2.

5. Methodology

5.1. System Model

We use a cycle accurate x86 CMP simulator for our evaluatur.simulator faithfully models all microarchitecturaltdés such
as bank conflicts, port contention, and buffer/queuingydeldhe baseline configuration of processing cores and timearyesystem
for single, 4, and 8-core CMP systems is shown in Table 3. @oulator also models DDR3 DRAM performance-related timing
constraints in detail as shown in Table 4. To evaluate trectiffieness of our mechanism in systems with prefetchirggdised in
Section 6.4), we employ an aggressive stream prefetchg(32%treams, prefetch degree of 4, prefetch distance otbechines)

for each core.

4.8 GHz, Out of order, 15 (fetch, decode, rename stages3stdgcode/retire up to 4 instructions, issue/execute 8mi@roinstructions;
256-entry reorder buffer; 32-entry load-store queue; 25gsizal registers
Fetch up to 2 branches; 4K-entry BTB; 64-entry return adsistack;
Hybrid branch predictor: 64K-entry gshare and 64K-entng pfedictor with 64K-entry selector
L1 I-cache: 32KB, 4-way, 2-cycle, 1 read port, 1 write podBdine size;

1 D-cache: 32KB, 4-way, 4-bank, 2-cycle, 1 read port, 1evport, 64B line size;

hared last-level cache: 8-way, 8-bank, 15-cycle, 1 redtd/wort per bank, writeback, 64B line size, 1, 2, 4MB forgi®y 4 and 8-core CMPs$;
32, 128, 256-entry MSHRs, 32, 128, 256-entry L2 access/filligsiffer for single, 4 and 8-core CMPs
1, 2, 2 channels (memory controllers) for 1, 4, 8-core CMP&NHz DRAM bus cycle, Double Data Rate (DDR3 1600MHz) [9];
8B-wide data bus per channel, BL = 8; 1 rank, 8 banks per cha8K8 row buffer per bank;
On-chip, open-row, FR-FCFS scheduling policy [15];
64-entry (8x 8 banks) DRAM read and write buffers per channel, draimenfull write buffer policy

Table 3. Baseline configuration

Execution Core

Front End

Caches and on-chip buffg

DRAM and bus

DRAM controllers

| Latency | Symbol DRAM cycles|| Latency | Symbol DRAM cycles|
Precharge ‘RP 11 Activate to read/write ‘RCD 11
Read column address strobe | CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39
Activate to precharge ‘RAS 28 Read to precharge tRTP 6
Burst length ‘BL 4 Column address strobe to column address strébe” D 4
Activate to activate (different banky RRD 6 Four activate windows tFAW 24
Write to read '"WTR 6 Write recovery "WR 12

Table 4. DDR3 1600 DRAM timing specifications
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5.2. Metrics

To measure multi-core system performance, welodevidual Speedup (ISWeighted Speedup (WRJB], andHarmonic mean
of Speedups (H$B]. As shown by Eyerman and Eeckhout [1], WS correspondystesn throughput and HS corresponds to the
inverse of job turnaround time. In the equations that folaivis the number of cores in the CMP systef?C#/°¢ is the IPC

measured when applicatiarruns alone on one core of the CMP system (other cores aretidiesfore application can utilize

together
c;?

all of the shared resources) ané? is the IPC measured when applicatioruns on one core while other applications are

running on the other cores of the CMP system.

IPC?ogether N IPC?ogether N
Isi = IPZCvalone ’ WS = Z IPZCvalone ’ HS = N alone
i B i IPCS ©
Z IPCFogether
i

i

5.3. Workloads

We use the SPEC CPU 2000/2006 benchmarks for experimertalation. Each benchmark was compiled using ICC (Intel C
Compiler) or IFORT (Intel Fortran Compiler) with the -O3 apt. We ran each benchmark with the reference input set for 20
million x86 instructions selected by Pinpoints [14] as aresentative portion of each benchmark.

We evaluate 18 SPEC benchmarks on the single-core systeenl@henchmarks (which have at least 10% ideal performance
improvement when all writes are removed) discussed in Eiduand the two benchmarkgr andtwolf mentioned in Section 4.2.
The characteristics of the 18 SPEC benchmarks are showrbie Ba To evaluate our mechanism on CMP systems, we formed
combinations of multiprogrammed workloads from all the 33E&® 2000/2006 benchmarks. We ran 30 and 12 randomly chosen

workload combinations for our 4 and 8-core CMP configuraticespectively.
[ Benchmark [ Type [[ IPC[MPKI] RHR][ Benchmark [ Type [[ IPC[MPKI] RHR]

171.swim FP00]]|0.35] 23.10[47.84]] 173.applu | FPOO[[0.93] 11.40] 82.12]
175.vpr INOO [[1.02] 0.89]18.36]] 178.galgel | FP0O[[1.42] 4.84]46.14]
179.art FP00]]|0.26] 90.92/94.59 189.lucas | FP00[[0.61] 10.61] 56.09
191.fma3d | FPOO[[1.01] 4.13[73.48]| 300.twolf [INTOO[[0.98] 0.72|31.12
429.mcf INT06[[0.15] 33.64]17.93] 433.milc FP06[]0.48] 29.33/84.39
436.cactusADM FP06(|0.63| 4.51{12.94|| 450.soplex | FP06 || 0.40| 21.24|75.76|
459.GemsFDTD) FP06[|0.49| 15.63|47.28| 462.libquantumINT06[0.67| 13.51] 93.20|
470.Ibm FPO06 || 0.46 20.16]66.58|] 471.omnetpp|INTO06][0.49] 10.11]46.93]
473.astar  [INT06]]0.47] 10.19[42.62 481.wrf FP06[]0.72] 8.11]73.71

Table 5. Characteristics for 18 SPEC benchmarks: IPC, MPKI ( last-level cache misses per 1K instructions), DRAM row-hit rate (RHR)

6. Experimental Evaluation

We first show that the baseline write buffer management pdttiat we use outperforms other policies and then we analgwe h

our proposed DRAM-aware writeback mechanism works forlsimgd multi-core systems.
6.1. Performance of Write Buffer Management Policies

In addition to our baselined¢ain_.whenfull), we evaluate four write buffer management policies thatalbased on the same
principle as previous work [6, 12, 17]. The first orexposealways is a policy that always exposes DRAM writes and reads
to the DRAM controller together. The DRAM controller makeshsduling decisions based on the baseline FR-FCFS schgduli
policy while always prioritizing reads over writes. Howey# all DRAM timing constraints are satisfied for a write,ethwrite
can be scheduled even though there are reads in the readstdugdffer. For example, while a precharge for a read is in prsg
in one bank, a row-hit write in a different bank can be schedwnd serviced if all timing constraints for the write aréisieed
(assuming there is no pending read to the corresponding)bditie second policy iserviceat no.read which was discussed in

Section 1. This policy exposes writes to the DRAM controtiaty when there is no pending read request or when the wrifetbu
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is full, and stops exposing writes when a read request ariavevhen the write buffer is not full any more. The third pglis
serviceat no_read and.drain_.whenfull which is the same as servied no_read except that once the write buffer is full, all writes
are exposed until the buffer becomes empty. The fourth pai@in_whenno_read.and whenfull is the same as our baseline policy
that exposes all writes and drains the buffer every time thieveuffer is full, except that it also keeps exposing alites until
the buffer becomes empty even when writes are exposed duegemnding read in the read request buffer. The DRAM controlle
follows the FR-FCFS policy to schedule reads and exposeésior all of the above policies.

Figure 7 shows IPC normalized to the baseline and DRAM dasaukilization on a single-core system for the above five write
buffer policies. DRAM bus utilization is calculated by dimg the number of cycles the data bus transfers data (battsrand
writes) by the number of total execution cycles. Note thatsiwe only change the write buffer policy, the total numterads
and writes does not change significantly among the five mdiciTherefore, we can meaningfully compare the DRAM data bus
utilization of each policy as shown in Figure 7(b). A largemher of busy cycles indicates high DRAM throughput. On thesot

hand, a larger number of idle cycles indicates more interfee among the requests.
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Figure 7. Performance and DRAM bus utilization for various w rite buffer policies

Our baselinedrain_whenfull policy outperforms the other four polices significantly famost all benchmarks. The other
policies cause many idle cycles due to frequent read-ttevand write-to-read switching as shown in Figure 7(b). Be
posealways policy performs worst since writes are always exposed amdbzascheduled more freely than other policies by
the DRAM controller, hence the most read-to-write and writeead penalties. Theerviceat_no_read.and.drain_whenfull and
drain_.whenno_read.and whenfull policies also cause many write-to-read switching peratieallowing some writes to be sched-
uled when there is no read in the read buffer thereby regpitirmany idle cycles.

In contrast, thalrain_.whenfull policy increases data bus utilization by allowing the DRAbtroller to service reads without
interference from writes as much as possible. It also reslucite-to-read switching penalties overall because onbywrite-to-read
switching penalty (also one read-to-write penalty) is regktb drain all the writes from the write buffer. Finally itsal gives more
chances to the DRAM controller to exploit better row bufieecality and DRAM bank-level parallelism (servicing writiesdifferent
banks concurrently, if possible) by exposing more writggetber. To summarize, tiirain_whenfull policy improves performance
by 8.8% on average and increases data bus utilization by 8méterage compared to the best of the other four policies.

Note that there is still a significant number of bus idle cgdle Figure 7(b) even with the best policy. Our DRAM-aware

writeback mechanism aims to minimize write-caused interfee so that idle cycles are better utilized.
6.2. Single-Core Results

This section presents performance evaluation of the DRAWra writeback mechanism on a single-core system. Figune®s
IPC normalized to the baseline and DRAM data bus utilizafarthe eager writeback technique, DRAM-aware writebacid a

DRAM-aware writeback with the optimization described ircen 4.2. The optimization dynamically adjusts the diityel LRU
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positions which are considered for writeback based on tieirite rate. When the rewrite rate is less than 50%, we adlowLRU
position which generates a row-hit to be written back. If tarite rate is between 50% and 90%, only the least recesty half

of the LRU stack can be sent out. If the rewrite rate is mora ®1@%, only writebacks in the LRU position can be sent out.eNot
that the eager writeback mechanism uses a write bufferytiiat sends writes when the bus is idle as pointed out in &edté4.

In Section 6.1 we showed that sending out writes when thedidia is inferior to draining the write buffer only when it fall

(as done byrain_whenfull). As such, for fair comparison we use an improved versionagfee writeback that uses the baseline
drain_whenfull policy. First we make the following major performance-tethobservations from Figure 8 and then provide more

insights and supportlng data using other DRAM and lastHeaehe statistics in subsections.
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Figure 8. Performance and DRAM bus utilization on single-co re system

First, the eager writeback technique degrades performbyck1% compared to the baseline. This is mainly because it is
not aware of DRAM characteristics. Filling the write buBerith writebacks for dirty lines which are in the LRU positiof their
respective sets does not guarantee fast service time @miitice servicing row-conflict writes must pay the largeéevtd-precharge
penalties. As shown in Figure 8(b), eager writeback sufisrmany idle cycles as the baseline on average.

Second, DRAM-aware writeback improves performance fobatichmarks except fampr andtwolf. It improves performance
by more than 10% fdlucas, milc, cactusADM, libquantuandomnetpp This is because our mechanism sends many row-hit writes
that are serviced quickly by the DRAM controller, which imiueduces write-to-read switching penalties. As showngufe 8(b),
our mechanism improves DRAM bus utilization by 12.3% on ageracross all 18 benchmarks. Increased bus utilizatioslates
to high performance. On average, the mechanism improvésrpgnce by 7.1%. However, the increased bus utilizatioesdmt
increase performance fopr andtwolf. In fact, the mechanism degrades performance for thesedwohmarks by 2.4% and 3.8%
respectively. This is due to the large number of writebable$ &re generated by the DRAM-aware writeback mechanisrihése
two benchmarks. We developed a dynamic optimization togaiéi this degradation which we refer to as dynamic DRAM-awar
writeback.

Dynamic DRAM-aware writeback mitigates the performancgrddation forvpr andtwolf by selectively sending writebacks
based on the rewrite rate of DRAM-aware writebacks. By daiogthe performance degradationvglr andtwolf becomes 1.2%
and 1.8% respectively, which results in 7.2% average perdoice improvement for all 18 benchmarks. Note that the dymarach-
anism still achieves almost all of the performance benefitsoa-dynamic DRAM-aware writeback for the other 16 benchma

As we discussed in Section 4.2, the gain from this optimizais small compared to design effort and hardware cost.

6.2.1. Why Does Eager Writeback Not Perform Well? As discussed above, eager writeback degrades performanugaced
to the baseline in today’s DDR DRAM systems since it gensratétebacks in a DRAM-unaware manner. In other words, it can
fill the write buffer with many row-conflict writes. Figure :iews the row-hit rate for write and read requests serviceDBAM

for the 18 benchmarks. Because we use the open-row poliaydties not use either auto precharge or manual prechaggeatth

16



access), row-conflict rate can be calculated by subtractiwehit rate from one.
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Figure 9. Row-hit rate for DRAM writes and reads

While eager writeback does not change row-hit rates forgesdshown in Figure 9(b), it generates more row-conflictesrit
(fewer row-hits) forswim, art, milg andlibquantumcompared to the baseline as shown in Figure 9(a). For thesmbearks, these
row-conflict writes introduce many idle cycles during theveging of writes with the baselindrain_whenfull write buffer policy
as shown in Figure 8(b). This increases the time to drain ttite Wwuffer which in turn delays the service of critical resagquired

for an applications’ progress.

6.2.2. How Does DRAM-Aware Writeback Perform Better? In contrast to eager writeback, our mechanism selectivehgds
many row-hit writes that are serviced quickly by the DRAM totler. Therefore the row-hit rate for writes significapthcreases
(to 94.6% on average) as shown in Figure 9(a). Note thatdgtialsreases the row-hit rate for reads (by 3.3% on averagsh@sn
in Figure 9(b). This is mainly because DRAM-aware writebeaduces row-conflicts between reads and writes as well hycied
write-to-read switching occurrences. We found that dudélast-level cache and row locality of programs, it is vemjikely that
while servicing reads to a row, a dirty cache line to that rewevicted from the cache. Therefore decreased write-td-gedtching

frequency reduces row-conflicts between writes and readfiéoentire run of an application.

DRAM-aware writeback leverages the benefits of the writddyudind thedrain_whenfull write buffer policy as discussed in
Section 4. Once the mechanism starts sending all possiblitavritebacks for a row, the write buffer becomes full yejuickly.
The drain_.whenfull write buffer policy continues to expose writes until thefeatbecomes empty. This makes it possible for the
DRAM controller to service all possible writes to a row venyickly. Therefore our mechanism reduces the total numberiié
buffer drains over the entire run of an application. Tabler@vjmles the evidence of such behavior. It shows the totalberrof
write buffer drains and the average number of writes perenbitffer drain for each benchmark. The number of writes petewr
buffer drain for DRAM-aware writeback is increased sigrafitly compared to the baseline and eager writeback. Theréfe total
number of drains is significantly reduced, which indicatest DRAM-aware writeback reduces write-to-read switcHimgiuency
thereby increasing row-hit rate for reads. The increasedhibs (i.e., reduced row conflicts) lead to high data bubazatiion for

both reads and writes and performance improvement as shofigire 8.

[ [ Benchmark [[ swim] applu] galgel] art[ lucag] fma3d[ mcf] milc]cactusADM] soplex] GemsFDT libquantun] TbmJomnetpd astaf — wrf][ vpr] twolf]
base 64960 24784 2891( 8387019890 2462562521 50764 15264 43967 49027 115563 92310, 35902(26377| 38353 1961| 4785

drains eager 76660] 26367 4264] 90020]22096] 2526362938 52581] 15243 43033 50805 114461 94396] 3642526859 38622 2732| 8080
DRAM-aware|| 13642 2927| 8043[ 16754] 7677] 2995[49915[47982 2142] 17611 14023] 1253524630 44413/29836] 4921 4346] 9030

base 25.38] 14.36] 80.11| 23.34| 23.93] 14.79| 34.19[ 20.43 15.99| 17.07 28.21] 10.16| 22.57 23.22| 28.78| 13.16(27.54|21.18

writes/drain| eager 21.52] 13.51] 97.86] 24.29| 22.47] 14.43] 34.09] 19.75 16.05] 17.53] 27.34] 10.26] 22.19] 23.24] 28.48] 13.08[29.72]27.15]
DRAM-aware|[121.90[121.97] 50.19[128.26] 96.24] 122.09 45.05[ 21.83] 114.27] 44.32 99.49 93.66] 85.08 20.50] 27.05[103.2669.91]71.88]

Table 6. Number of write buffer drains and number of writes pe r drain
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6.2.3. When is Dynamic DRAM-Aware Writeback Required? Recall that DRAM-aware writeback degrades performance for
vpr andtwolf. Figure 10 shows the total number of DRAM read and write retgiserviced by DRAM for the 18 benchmarks.
While DRAM-aware writeback does not increase the total neinaf reads and writes significantly for the other 16 benclkmnike

the baseline and eager writeback do, it does increases theearwof writes significantly fowpr andtwolf.
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Figure 10. Number of DRAM requests

Table 7 shows the total number of writebacks generated by lRwvare writeback, cache lines that were cleaned but reseat
cache lines that were cleaned but rewritten. It also shoesitimber of rewrites per cache line written back (referredsoewrite
rate). Forvpr andtwolf, rewrites to cache lines cleaned by the mechanism happgrreguently (82% and 85% respectively).
These rewritten lines’ writebacks are sent again by the sugisin thereby increasing the number of writes significatigreased
writes make the write buffer full frequently, therefore aggate write-to-read switching penalty becomes largerctvitiegrades

performance. However, the performance degradation is igoifeant because the total number of requests is not large (

memory non-intensive) as shown in Figure 10. .

[ Benchmark][  swim[ applu[ galgel| art] lucas] fma3d] mcf] — milc] cactusADM[ soplex] GemsFD T libquantuny Ibm[omnetpd astaf — wrf[  vpr[ twolf]
Writebacks || 1640260 350641 346550/ 2061007 731063 361590[ 2167616 947324 242377 732556 1251832 1161287 2069208 698896612423 500963 299262 639582
Reread 42 183| 23741 70931 0 0 122290 0 16| 1599 1905 0 0| 21982 6012 746| 12479 24230
Rewritten 20 0(166871 191594 0 501| 108871 0 55| 28593 13474 0 0| 73667 37075 2588(245645 540604
Rewrite Rate 0.00f 0.00f 0.48 0.09| 0.00f 0.00 0.05 0.00 0.00{ 0.04 0.01 0.00 0.00 0.11] 0.06f 0.01] 0.82] 0.85

Table 7. Number of DRAM-aware writebacks generated, reread  cache lines and rewritten cache lines, and rewrite rate

The dynamic DRAM-aware writeback mechanism discussed ati®@e4.2 mitigates this problem by adaptively limiting ter
backs based on rewrite rate estimation. Since the rewriteisehigh most of the time fovpr andtwolf, the dynamic mechanism
allows writebacks only for row-hit dirty lines which are ing¢ LRU position of their respective sets. Therefore, it rEhthe number
of writebacks as shown in Figure 10. In this way, it mitigaties performance degradation for these two benchmarks asnsimo
Figure 8. Note that the dynamic mechanism does not chandeethefits of DRAM-aware writeback for the other 16 benchmarks

since it adapts itself to the rewrite behavior of the appiares.

6.3. Multi-Core Results

We also evaluate the DRAM-aware writeback mechanism onitooite systems. Figures 11 and 12 show average system
performance and bus utilization for the 4 and 8-core systissribed in Section 5. In multi-core systems, write-cdusterference
is more severe since there is greater contention betwedn agal writes in the DRAM system. Furthermore, writes caayetitical
reads of all cores. As such, reducing write-caused intenfeg is even more important in multi-core systems. Our DR&Wé&re
writeback mechanism increases bus utilization by 16.5% 1hi% for the 4 and 8-core systems respectively. This leadst
increase in weighted speedup (WS) and harmonic speedupkiH$).8% and 12.8% for the 4-core system and by 12.0% and

14.4% for the 8-core system. We conclude that DRAM-awaré&lveck is effective for multi-core systems.
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Figure 12. Performance for 12 8-core workloads

6.4. Effect on Systemswith Prefetching

We evaluate our mechanism when it is employed in a 4-coresystith the stream prefetcher described in Section 5. Figj8re

shows average system performance and bus utilization éob#iseline with no prefetching, the baseline with prefeighand the

baseline with prefetching and DRAM-aware writeback for 8Qr4-core workloads.
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Figure 13. Performance for 30 4-core workloads when prefetc

Prefetching increases write-caused interference sgvdpeéfetch requests, that are essentially reads, put nessyre on the
DRAM system. Prefetching improves weighted speedup by%h$ utilizing idle DRAM bus cycles while it degrades harmoni
speedup by 8.6% compared to the baseline with no prefetchisimg DRAM-aware writeback significantly improves DRAMsu
utilization (by 19.4% compared to prefetching) by reducimife-caused interference. The increased bus utilizatianslates into
higher performance. Using DRAM-aware writeback improveS #d HS by 15.4% and 13.5% compared to prefetching alone. We

conclude that DRAM-aware writeback is also effective in tincbre systems that employ prefetching.
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7. Related Work
7.1. DRAM Access Scheduling and Write Buffer Policies

Many DRAM scheduling policies [21, 15, 12, 13, 10, 11, 2, SYydndeen proposed in the literature. Many of them [15, 11,
2, 5] do not address how to manage write-caused interferfarceigh DRAM throughput. In contrast, our mechanism sends
writes intelligently from the last-level cache so that @lewrite-caused interference can be reduced. As such,eminiques are
orthogonal to these DRAM scheduling policies. As shown iotfea 6.2, our mechanism allows the underlying DRAM cori&ol
to better exploit row buffer locality for not only writes batso reads by reducing write-to-read switching penalties.

Other proposals [6, 12, 17] discuss writeback managemditescand DRAM scheduling for writes. Their policies are éxs
on the principle that scheduling writes when the bus is idedending reads) can reduce the contention between reddgries.
However, we found that this principle does not work with tpdehigh-bandwidth DDR DRAM systems with their large write-
caused latency penalties as shown in Section 6.1. We hawvenstiat servicing all writes when the write buffer is full ibet
best since it reduces write-to-read switching penaltia$ @lows the DRAM controller to better exploit row buffer klity and

bank-level parallelism exposed by more writes.

7.2. Last-Level Cache Management

Many cache replacement and insertion policies have beqropenl. These are all orthogonal to our work since our meshani
does not change the underlying replacement or inserticipsl! If a writeback of a dirty line is sent by our mechanishg dirty
line becomes non-dirty and stays in the cache. When anyaemiant policy decides to evict such a clean cache line, tieeidi
simply removed.

A number of prior papers propose aggressive early writelpadicies [6, 7, 4, 20] which send writebacks of dirty lineddre
they are evicted by a replacement policy. We have alreadypaoad our mechanism to eager writeback [6] both qualititive
and quantitatively in Sections 4.4 and 6.2. Other propd3ald, 20] periodically send early writebacks to the nextelecache or
DRAM to increase the reliability of on-chip caches with loast. Even though the motivation for our mechanism is not torove
reliability, DRAM-aware writeback can help reduce vulngtiy in the last-level cache since it aggressively sendsalvacks just

like other early writeback policies do.
8. Conclusion

This paper described the problem of write-caused intenfegeén the DRAM system, and showed it has significant perfagcaa
impact in modern processors. Write-caused interferendlecamtinue to be a performance bottleneck in the future beeahe
memory systems operating frequency continues to increeseder to provide more memory bandwidth. To reduce writesedal
interference, we proposed a new writeback policy for the-lagel cache, called DRAM-aware writeback, which aggresg
sends out writebacks for dirty lines that can be quickly weritback to DRAM by exploiting row buffer locality. We demaraged
that the proposed mechanism and the previous best writeruifinagement policy are synergistic in that they work togeto
reduce write-caused interference by allowing the DRAM oditér to service many writes quickly together. This redsitiee delays
incurred by read requests and therefore increases penfimensignificantly in both single-core and multi-core systeriie also
showed that the performance benefits of the mechanism sesda multi-core systems or systems with prefetching whieree
is higher contention between reads and writes in the DRAMesys We conclude that DRAM-aware writeback can be a simple
solution to reduce write-caused interference.

Our mechanism is not limited to DRAM technology since othenmory technologies also suffer from the write-caused fater

ence problem. A high data transfer frequency in the memosyesy makes write-to-read and even write-to-write latenieeach
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bank very costly just as in today’s high bandwidth DDR DRAM®mMSs. An avenue of future work is to reduce the write-back

interference in other, emerging memory technologies.
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