
DRAM-Aware Last-Level Cache Writeback:
Reducing Write-Caused Interference in Memory Systems

Chang Joo Lee Veynu Narasiman Eiman Ebrahimi Onur Mutlu‡ Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

‡Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890

TR-HPS-2010-002
April 2010

This page is intentionally left blank.

DRAM-Aware Last-Level Cache Writeback:
Reducing Write-Caused Interference in Memory Systems

Abstract
Read and write requests from a processor contend for the mainmemory data bus. System performance depends heavily on whenread requests

are serviced since they are required for an application’s forward progress whereas writes do not need to be performed immediately. However,
writes eventually have to be written to memory because the storage required to buffer them on-chip is limited.

In modern high bandwidth DDR (Double Data Rate)-based memory systems write requests significantly interfere with the servicing of read
requests by delaying the more critical read requests and by causing the memory bus to become idle when switching between the servicing of a
write and read request. This interference significantly degrades overall system performance. We call this phenomenon write-caused interference.
To reduce write-caused interference, this paper proposes anew last-level cache writeback policy, called DRAM-aware writeback. The key idea of
the proposed technique is to aggressively send out writeback requests that are expected to hit in DRAM row buffers beforethey would normally be
evicted by the last-level cache replacement policy and havethe DRAM controller service as many writes as possible together. Doing so not only
reduces the amount of time to service writes by improving their row buffer locality but also reduces the idle bus cycles wasted due to switching
between the servicing of a write and a read request.

DRAM-aware writeback improves system performance by 7.1% and 12.8% on single and 4-core systems respectively. The performance benefits
of the mechanism increases in systems with prefetching since such systems have higher contention between reads and writes in the DRAM system.

1. Introduction

Read and write requests from the processor contend for the main memory data bus. In general, read requests (i.e., miss requests

from the last-level cache) are critical for system performance since they are required for an application’s progress whereas writes

(i.e., writeback requests from the last-level cache) do notneed to be performed immediately. In modern DDR (Double DataRate)-

based memory systems, write requests significantly interfere with the servicing of read requests, which can degrade overall system

performance by delaying the more critical read requests. Wecall this phenomenonwrite-caused interference. There are two major

sources of performance penalty when a write request is serviced instead of a read request. First, the critical read request is delayed

for the duration of the service latency of the write request.Second, even after the write is serviced fully, the read cannot be started

because the DDR DRAM protocol requires additional timing constraints to be satisfied which causes idle cycles on the DRAMdata

bus in which no data transfer can be done.

The two most important of these timing constraints are write-to-read (tWTR) and write recovery (write-to-precharge,tWR)

latencies as specified in the current JEDEC DDR DRAM standard[3]. These timing constraints in addition to other main access

latencies such as precharge, activate and column address strobe latencies (tRP,t RCD, andCL/CWL) dictate the number of cycles

in which the DRAM data bus should remain idle after a write, before a read can be performed. In a state-of-the-art DDR3 DRAM

systemtWTR andtWR latencies are 7.5 and 15 ns [9], which translates to 30 and 60 processor cycle delays assuming a processor

clock frequency of 4 GHz. Both latencies increase in terms ofnumber of DRAM clock cycles as the operating frequency of the

DRAM chip increases [16, 3] as do other main access latencies. The end result is that high penalties caused by write requests will

become even larger in terms of number of cycles because the operating frequency of future DRAM chips will continue to increase

to maintain high peak bandwidth.

A write bufferin the main memory system can mitigate this problem. A write buffer holds write requests on-chip until they are

sent to the memory system according to the write buffer management policy. While write requests are held by the write buffer,

read requests from the processor can be serviced by DRAM without interference from write requests. As a result, memory service

time for reads that are required by the application can be reduced. As the write buffer size increases, write-caused interference

in the memory system decreases. For example, an infinite write buffer can keep all write requests on-chip, thereby completely

3

removing write-caused interference. However, a very largewrite buffer is not attractive since it requires high hardware cost and

high design complexity (especially to enable forwarding ofdata to matching read requests) and leads to inefficient utilization of

on-chip hardware/power budget. In fact, a write buffer essentially acts as another level of cache (holding only written-back cache

lines) between the last-level cache and the main memory system.

To motivate the performance impact of write-caused interference, Figure 1 shows performance on a single-core system (with

no prefetching) that employs a state-of-the-art DDR3-1600DRAM system (12.8 GB/s peak bandwidth) [9] and a First Ready-First

Come First Served (FR-FCFS) DRAM controller [15]. We evaluate three write request management policies: 1) a 64-entry write

buffer with a management policy similar to previous proposals [6, 12, 17] which exposes writes (i.e., makes them visible) to the

DRAM controller only when there is no pending read request orwhen the write buffer is full, and stops exposing writes when

a read request arrives or when the write buffer is not full anymore (serviceat no read), 2) a 64-entry write buffer with a policy

that exposes all writes only when the write buffer is full andcontinues to expose all writes until the write buffer becomes empty

(drain whenfull), and 3) ideally eliminating all writes assuming that thereis no correctness issue (nowrite). Ideally eliminating all

writes removes all write-caused interference and therefore shows the upper bound on performance that can be obtained byhandling

write-caused interference intelligently.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

IP
C

 n
or

m
al

iz
ed

 t
o

ba
se

lin
e

service_at_no_read
drain_when_full (base)
no_write

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf

gm
ea

n

Figure 1. Potential performance of intelligently handling write-caused interference in the DRAM system

We make two main observations. First,serviceat no readusually performs worse than servicing writes when the writebuffer

is full. This is because when a read arrives at the DRAM controller very soon after a write is serviced, a significant amountof

write-caused penalty delays that read. This happens to all the benchmarks except forlucaswhere there are long enough periods

to satisfy the large write-caused penalties during which reads are not generated. Servicing writes opportunisticallywhen there

are no reads degrades performance due to two reasons: 1) it incurs the costly write-to-read and read-to-write switchingpenalties,

thereby wasting DRAM bandwidth, 2) it does not exploit row buffer locality when servicing write requests since writes that go to

the same row are serviced far apart from each other in time. Incontrast,drain whenfull improves performance by 9.8% compared

to serviceat no read on average because it 1) delays service of writes as much as possible, 2) services all writes once it starts

servicing one write, thereby amortizing write-to-read switching penalties across multiple writes by incurring them only once for

an entire write-buffer worth of writes, and 3) increases thepossibility of having more writes to the same DRAM row address or

higherrow buffer localityin the write buffer that is exploited by the DRAM controller for better DRAM throughput. Second, even

thoughdrain whenfull significantly improves performance compared to the best existing write buffer management policies, there

is still large potential performance improvement (20.2% compared todrain whenfull) that can be achieved by further reducing

write-caused interference, as shown by the rightmost set ofbars.

1We chose 16benchmarks among all SPEC2000/2006 CPU benchmarks that have at least 10% IPC (retired instruction per cycle)performance improvement
compared todrain whenfull when all writes are ideally removed. The performance numbers shown in Figure 1 are normalized todrain whenfull. Section 5
describes our experimental methodology in detail.

4

As shown above, the impact of write-caused interference on an application’s performance is significant even with a decently-sized

(i.e., 64-entry) write buffer and a good write buffer policy. This is because a size-limited write buffer or a write buffer management

policy cannot completely remove write-caused interference since 1) writes eventually have to be written back to DRAM whenever

the write buffer is full and 2) servicing all writes in the write buffer still consumes a significant amount of time. To overcome

this problem, we propose a new last-level cache writeback policy called DRAM-aware writebackthat aims to maximize DRAM

throughput for write requests in order to minimize write-caused interference. The basic idea is to send out writebacks that are

expected to hit in DRAM row buffers before they would normally be evicted by the last-level cache replacement policy. This allows

higher row buffer locality to be exposed in an existing writebuffer which the DRAM controller can take advantage of. Oncethe

write buffer becomes full, the DRAM controller services writes quickly (since they would hit in row buffers) until all writes in the

write buffer are serviced. Our mechanism is able to continueto send more writes to the write buffer while the DRAM controller

is servicing writes. This allows the DRAM controller to service more writes once it starts servicing writes thereby resulting in less

frequent write-to-read switching later.

Our evaluations show that the proposed mechanism improves system performance significantly by managing DRAM write-

caused interference, which in turn increases DRAM bus utilization. The DRAM-aware writeback mechanism improves the perfor-

mance of 18 memory intensive SPEC CPU 2000/2006 benchmarks by 7.1% on a single-core processor compared to the best write

buffer policy among policies we evaluated. It also improvessystem performance (i.e. harmonic speedup) of 30 multiprogrammed

workloads by 12.8% on a 4-core CMP. We show that our mechanismis simple to implement and low-cost.

Contributions To our knowledge, this is the first paper that addresses the write-caused interference problem in state-of-the-art

DDR DRAM systems. We make the following contributions:

1. We show that write-caused interference in DRAM is and willcontinue to be a significant performance bottleneck in modern

and future processors.

2. We show that a simple write buffer management policy that services all writes only when the write buffer is full outperforms

previously proposed policies by reducing DRAM write-to-read switching penalties.

3. We propose a new writeback policy for the last-level cachethat takes advantage of the best write buffer management policy and

reduces the service time of DRAM writes by exploiting DRAM row buffer locality. The proposed writeback mechanism improves

DRAM throughput for both reads and writes by reducing write-caused interference.

4. We evaluate our techniques for various configurations on single-core and CMP systems, and show that they significantly

improve system performance on a wide variety of system configurations.

2. Background
2.1. Write-Caused Interference in DRAM systems

Write-caused interference in DRAM comes from read-to-write, write-to-read, and write-to-precharge latency penalties. Read-

to-write and write-to-read latencies specify the minimum idle latencies on the data bus between a read and a write regardless of

what DRAM banks they belong to. In contrast, write-to-precharge specifies the minimum latency between a write command and a

subsequent precharge command to the same bank. We first describe read-to-write and write-to-read latencies.

2.1.1. Write-to-Read and Read-to-Write Penalties and How to Reduce Them Read-to-write latency is the minimum latency

from a read data burst to a write data burst. This latency is required to change the data bus pins’ state from read state to write

state. Therefore, during this latency the bus has to be idle.In DDR3 DRAM systems, the read-to-write latency is two DRAM clock

cycles. Write-to-read (tWTR) latency is the minimum latency from a write burst to a subsequent read command. In addition to the

5

time required for the bus state change from write to read, this latency also includes the time required to guarantee that written data

can be safely written to the row buffer (i.e., sense amplifier) such that a possible subsequent read to the same row can be performed

correctly. ThereforetWTR is much larger (e.g., 6 DRAM clock cycles for DDR3-1600) thanread-to-write latency and introduces

more DRAM data bus idle cycles. Note that both of the latencies must be satisfied regardles of whether the read and the writeaccess

the same bank or different banks.

We demonstrate the implications of these penalties on DRAM throughput and overall performance with an example in Figure2.

Figure 2(a) shows the state of the DRAM read and write buffers. For brevity, we assume that each buffer has only two entriesin

this example. All the read requests in the DRAM read buffer are always exposed to the DRAM controller for scheduling whereas

the writes are exposed based on the write buffer management policy. There is one read (Read A, a read request to row buffer A)

and one write (Write B) in the read and write buffers respectively. At time t1, another read (Read C) and a write (Write D) come

from the processor. We assume that each request goes to a different bank and that all requests match the open row buffer in their

corresponding DRAM banks (all requests are row-hits).

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Read A

DRAM read buffer

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(b) DRAM timing for the policy that exposes writes when no read is waiting

(a) DRAM buffer state

Read A
Command

Data bus

CL

CL
CWL

Read A

Read to write latency
tWTR

CL

Read C Write D

Data A Data B

Command

Data bus

Read to write latency

CWL
Data D

Data C

(c) DRAM timing for the policy that exposes writes when write buffer is full

Data A

tWTR: Write to read latency

Rows A, B, C, and D are initially open

CL: Read column address strobe latency
CWL: Write column address strobe latency
tCCD: Column address strobe to column address strobe latency

tBL: Burst length time

tBL

Write B

t1

Saved cyclesCWL
CL

CWL

Read to write latency

Data C Data B Data D

Write B Write DRead C

t1

DRAM write buffer

Write B

To DRAM

Read C at t1 Write D at t1

Read/write x : Read/write a column in row x

}
tCCD

at no read

when full
Drain

Service}

Figure 2. Effect of read-to-write and write-to-read penalt ies based on write buffer management policies

Figure 2(b) shows the DRAM timing diagram for the policy which exposes writes to the DRAM controller only when there is

no pending read request or when the write buffer is full and stops exposing writes when a read request comes in or when the write

buffer is not full anymore (theserviceat no readpolicy in Section 1). Since no read is pending in the DRAM readbuffer after Read

A is scheduled, this policy schedules Write B from the write buffer. Subsequently Read C and Write D are scheduled.

Each command (e.g., read, write, or precharge) takes a DRAM bus cycle and every data transfer is done in burst mode (BL, Burst

length of 8 in the figure) at twice the rate of the clock (i.e., double data rate, 4 DRAM clock cycles for BL = 8). Two observations

can be made from Figure 2(b) which will demonstrate the problems caused by write-to-read and read-to-write latencies. First, the

command for Write B after Read A must satisfy read-to-write latency; it has to be scheduled by the DRAM controller at least

CL +t BL + 2 − CWL [3] DRAM clock cycles after the read command is scheduled such that the write burst can be on the bus

two DRAM cycles after the read burst2. Second, Read C after Write B must satisfytWTR. The command for Read C can only be

scheduledtWTR cycles after the data burst for Write B is completed. In contrast to read-to-write latency, the data bus must be idle

for tWTR + CL cycles since the subsequent read command cannot be scheduled for tWTR cycles. The last write is scheduled

after read-to-write latency is satisfied as shown.

2We assume that the additive latency (AL) is 0 in this study. IfAL is considered, the subsequent write command can be scheduled CL + AL +t CCD + 2 −

(CWL + AL) cycles after the read, wheretCCD is the minimum column strobe to column strobe latency). To maximize bandwidth we set uptBL to eight,
thereforetCCD is equal to (tBL) [3].

6

This policy results in many idle cycles (i.e., poor DRAM throughput) on the data bus. This is because it sends writes as soon as

there are no pending reads which is problematic when a subsequent read arrives immediately after the write is scheduled to DRAM.

The penalties introduced by the write cause a significant amount of interference and therefore increase both the read’s and write’s

service time. This is the main reason why this policy does notperform well as shown in Figure 1.

On the other hand, if the write buffer policy that exposes allwrites only when the write buffer is full and continues to expose

all writes until the write buffer becomes empty (drain whenfull) is used, Reads A and C are serviced first (Write B is not serviced

immediately after Read A since the write buffer is not full) and then Writes B and D are serviced. Figure 2(c) shows the DRAM

timing diagram for this policy. Read C can be scheduled once the DRAM controller sees it since there is no unsatisfied timing

constraint for Read C. Then Write B can be scheduledCL +t BL + 2 − CWL cycles after the command for Read A is scheduled.

Note that the command for Write D can be scheduled very soon (more precisely,tCCD cycles after the command for Write B)

since DDR3 DRAM chips support back-to-back data bursts for writes (as well as for reads) by overlapping column address strobe

latencies (CL or CWL).

This policy results in better DRAM service time for the four requests compared to the policy shown in Figure 2(b). Since

buffering writes in the DRAM write buffer and servicing all of them together when the buffer gets full reduces the large read-to-

write and write-to-read latency penalties, DRAM throughput increases. Also note that by delaying writes as much as possible, reads

that are more critical to an application’s progress can be serviced quickly thereby improving performance. This is the main reason

this policy outperforms the policy of Figure 2(b) as shown inFigure 1. We found that this policy is the best among the previously

proposed write buffer policies we evaluated. We use this policy as our baseline write buffer policy.

2.1.2. Write-to-Precharge Penalty In the previous example we assumed that all rows for the four requests are open in the row

buffers of their corresponding DRAM banks. Write-to-precharge latency (write recovery time,tWR) comes into play when a

subsequent precharge command (for either a read or a write) is scheduled to open a different row after a write data transfer in a

bank. This write-to-precharge latency specifies the minimum latency from a write data burst to a precharge command in thesame

DRAM bank. This latency is very large (12 DRAM clock cycles for DDR3-1600) because the written data in the bank must be

written back to the corresponding DRAM row through the row buffer before precharging the DRAM bank. This needs to be done

to avoid the loss of modified data.

Figure 3 illustrates write-to-precharge penalty in a DRAM bank. Write A and Read B access different rows in the same bank.

Therefore a precharge command is required to be sent to DRAM to open the row for Read B. Subsequent to the scheduling of Write

A, the precharge command must wait until write-to-precharge latency is satisfied before it can be scheduled. Note that this penalty

must be satisfied regardless of whether the subsequent precharge is for a read or write.

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

CWL

Write A
Command

Data bus
CL

Precharge

Data A

BL

Activate B

CL: Read column address strobe latency

tRCD: Activate to read/write latency

tBL: Burst length time

CWL: Write column address strobe latency

tRP: Precharge command period
tWR

Read B

Data B

tRCDtRP

Read/write x : Read/write a column in row x
Rows A and B are in the same bank

Figure 3. Write-to-precharge latency (tWR)

This write-to-precharge latency affects DRAM throughput mainly in two ways. First, when reads and writes to different rows

(i.e., row-conflict) are serviced alternatively, the totalamount of write-to-precharge penalty becomes very large. For example,

servicing Write A (write to row A), Read B, Write A, and Read B in a bank will result in poor service time by introducing large

penalties (3 row-conflict and 2 write-to-precharge latencies). This can be mitigated by the write buffer policy that exposes all writes

7

to the DRAM controller only when the write buffer is full. By doing so, first the two writes to row A are serviced and then the two

reads to row B are serviced (resulting in 1 row-conflict and 1 write-to-precharge latency).

Second, since the write-to-precharge latency must be satisfied even for a subsequent precharge for a write, row-conflicts among

writes degrade DRAM throughput for writes. For example, Write B after Write A must still satisfy this write-to-precharge penalty

before the precharge to open row B can be scheduled. This problem cannot be solved by write buffer policies. If writes in the write

buffer access different rows in the same bank, the total amount of write-to-precharge penalty becomes very large. This degrades

DRAM throughput for writes even with the write buffer policythat exposes writes only when the write buffer is full. This eventually

results in delaying service of reads thereby degrading application performance.

3. Motivation

3.1. Performance Impact of Write-caused Interference in the Future

We expect that write-caused interference will continuallyincrease in terms of number of clock cycles as the operating frequency

of the DRAM chip increases to maintain high peak bandwidth. The write-to-read penalty which guarantees that modified data is

written to the row buffer correctly (sense amplifier) will not be easily reduced in absolute time similar to other access latencies such

as precharge period (tRP) and column address strobe latency (CL/CWL). This is especially true for the write-to-precharge latency

which guarantees modified data will be completely written back to the memory rows before a new precharge. This latency cannot

easily be reduced because reducing access latency to the memory cell core is very difficult [16, 3]. We believe this will betrue for

any future memory technology (not limited to DRAM technology) that supports high peak bandwidth. This means that write-caused

interference will continue to be a performance bottleneck in the future.

Figure 4 shows the performance improvement of the ideal writeback policy across future high bandwidth memory systems. We

assume that the DRAM operating frequency continue to increase in the future. Since the future memory specifications are unknown,

we speculatively scaled the number of clock cycles for all DDR3-1600 performance-related latencies that cannot be easily reduced

(e.g.,tWTR, tWR, tRP , tRCD, CL, etc) in absolute time. For example, x2 of DDR3-1600 indicates a DDR system that maintains

twice the DDR3-1600 peak bandwidth (25.6GB/s = 2 x 12.8GB/s). We also assume that the DRAM frequency increases as fast as

the processor frequency. We show two cases: when no prefetching is employed and when an aggressive stream prefetcher is used in

the processor.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

IP
C

 n
or

m
al

iz
ed

 t
o

ba
se

lin
e

DDR3-
16

00

x2 x4

(a) No prefetching

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

IP
C

 n
or

m
al

iz
ed

 t
o

ba
se

lin
e

DDR3-
16

00

x2 x4

(b) Prefetching

Figure 4. Performance potential as memory operating freque ncy increases

We make two observations from Figure 4. First, the higher thepeak bandwidth, the larger the performance impact of write-caused

interference. Second, removing write-caused interference is more critical for systems with prefetching. The performance impact of

writes for these systems is much higher due to higher contention between reads and writes (prefetch requests are all reads).

8

3.2. Last-Level Cache Writeback Policy: A Way to Reduce Write-Caused Interference

As discussed in Section 2.1.2, write-to-precharge penaltycannot be reduced by write buffer policies (such as drain when full).

Servicing row-conflict writes in the same bank takes a significant number of cycles. This will delay service of writes in the write

buffer and eventually results in delaying service of reads.Service of writes can be done faster if the write buffer has many row-hit

writes. Note that the source of DRAM writes is the last-levelcache’s writebacks which are dirty line evictions in a writeback cache.

In contrast to read requests that are required immediately for an application’s progress, writes can be scheduled to DRAM more

freely. For example, the last-level cache can more aggressively send out writebacks even though no dirty line is evictedby its cache

replacement policy to improve service time of writes.

Figure 5 shows an example of an aggressive writeback policy of the last-level cache. Figure 5(a) shows the initial state of the

DRAM read/write buffers and a set of the last-level cache. A read (Read A, read to row A) and a write (Write B, write to row B) are

waiting to be scheduled to DRAM in the DRAM read and write buffers (two entries for each) respectively. Two dirty lines (Dirty C

and Dirty B) are at the least recently used (LRU) positions ofthe shown set of the last-level cache. For simplicity, we assume that

rows B and C are mapped to the same bank, whereas row A is mappedto a different bank. Also row A and row B are open in the

row buffers of the respective banks. Read A is about to be scheduled and will be inserted in the shown set of the cache.

Clean Dirty CSet Clean Dirty B

Less recently used

Last−level cache

Read A

DRAM read buffer

Write B

DRAM write buffer

To DRAM

tWR: Write to precharge latency

CL: Read column address strobe latency
CWL: Write column address strobe latency

tBL: Burst length time

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

CWL

Write B

tRP CWLtRCD

Write CActivate CPrecharge

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

DRAM write buffer

To DRAM

DRAM read buffer

Set

Less recently used

Last−level cache

Clean BCleanClean

Write C

Read/write x : Read/write a column in row x
Bank for row A is different from rows B and C
Bank for row B is equal to row C
Rows A and B are initially open

DRAM write buffer

To DRAM

DRAM read buffer

CL

Data A
Data bus

tBL

Read A
Command

Set

Less recently used

Last−level cache

Dirty BCleanClean

Read A
Command

Data bus
CL

Data A

(c) Cache/DRAM buffer state and DRAM timing when writeback for Dirty B is sent before Dirty C is evicted

(a) Cache/DRAM buffer initial state

tCCD: Column address strobe to column address strobe latency

Data for Read A is stored in the set shown

Clean A

Clean A

tWR

Data CData B

Saved cycles

CWL
CWL

Data B Data B

Write B Write B

tCCD

} Conventional
writeback

DRAM−aware} writeback

(b) Cache/DRAM buffer state and DRAM timing when Dirty C is evicted by a new cache line

Figure 5. How last-level cache’s writeback policies affect DRAM service time

Figure 5(b) shows the resulting cache and buffer states and the DRAM timing when a conventional writeback policy is used

in the cache. The LRU line (Dirty C) is evicted by the new line for Read A after read A is serviced by DRAM. Therefore a

write is generated for row C (Write C) and is inserted into thewrite buffer. The write buffer becomes full since it contains two

writes. Subsequently, the baseline write buffer policy (drain whenfull) allows the DRAM controller to schedule both writes. Write

B is scheduled first since it is a row-hit and write C is serviced next. Because Write C accesses a different row from Write B,

precharging is required to open row C. Since a write was serviced before, write-to-precharge penalty must be satisfied before the

precharge command for C is scheduled. This increases the idle cycles on the DRAM data bus since the write data for Write C must

9

wait for tWR +t RP +t RCD + CWL cycles after the write burst for Write B.

On the other hand, as shown in Figure 5(c), if the writeback for Dirty B in the cache can be sent out before Dirty C is evicted due

to the new line for Read A, the write buffer will contain two writes to the same row. The two writes to row B are serviced back-to-

back thereby resulting in significant reduction in DRAM service time. This example illustrates that a writeback policy which can

send out writeback requests that will access the same row as other writes can improve service time for writes. This is because write-

to-precharge, precharge, and activate latencies (tWR +t RP +t RCD) that would have been applied to a subsequent row-conflict

write can be replaced by a row-hit write. Note that two writesto the same row can be even faster since DDR3 DRAM chips support

back-to-back data bursts for writes and this is why the aggressive writeback policy’s “Saved cycles” istWR+tRP +tRCD+CWL

in Figure 5.

Note that due to this aggressive writeback, the state of the cache and DRAM read/write buffer differs in the case of the new

writeback policy of Figure 5(c) compared to the conventional policy. In the case of the conventional policy, Dirty B stays in the

cache and no write is left in the write buffer whereas in the writeback policy of Figure 5(c), a clean (non-dirty) copy for row B

stays in the cache and Write C remains in the write buffer. Nonetheless, the aggressive writeback policy can still outperform the

conventional writeback, because 1) a clean copy of B does notneed to be written back to DRAM unless it is rewritten by a dirty

line eviction from the lower-level cache and 2) it may find more dirty lines to row C (the same row as Write C in the write buffer)

in the cache and send out the writebacks for them to the write buffer so that those row-hit writes to row C can be serviced fast. The

reduced DRAM service time turns into higher performance since the DRAM controller quickly switches to service reads.

4.. Mechanism: DRAM-Aware Writeback

Our mechanism, DRAM-aware writeback, aims to maximize the DRAM throughput for write requests in order to minimize

write-caused interference. It monitors dirty cache lines (writebacks) that are evicted from the last-level cache and tries to find other

dirty cache lines that are mapped to the same row as the evicted line. When found, the mechanism aggressively sends writebacks

for those dirty cache lines to DRAM. Thedrain whenfull write buffer policy allows writes to be seen by the DRAM controller

when the write buffer is full thereby allowing the DRAM controller to exploit row buffer locality of writes. Aggressively sending

writebacks selectively cleans cache lines which can be written back quickly due to the DRAM’s open row buffers.

The mechanism consists of a writeback monitor unit and statemachines in each last-level cache bank as shown in Figure 6.

The writeback monitor unit monitors evicted cache lines from all cache banks until it finds one dirty cache line being evicted. It

then records the row address of the cache line in each cache bank’s state machine. Once a write’s row address is recorded, the

state machines start sending out writebacks for dirty lineswhose row address is the same as the recorded row address (row-hit dirty

lines). To find row-hit dirty cache lines, each state machineshares the port of its cache bank with the demand cache accesses from

the lower-level cache. Since the demand accesses are more critical to performance, they are prioritized over the state machine’s

accesses. Once a row-hit dirty line is found, the line’s writeback is sent out through the conventional writeback ports regardless of

the LRU position of the cache line. Because the cache lines which are written back in this manner may be reused later, the cache

lines stay in the cache and only have their dirty bit reset (they become non-dirty or clean). The state machine in each corekeeps

sending row-hit writebacks until all possible sets that mayinclude cache lines whose row address is the same as the recorded row

address have been checked. When all state machines in the banks finish searching, the writeback monitor unit starts observing the

writebacks coming out of the cache to start another set of DRAM-aware writebacks.

The DRAM-aware writeback technique leverages the benefits of the write buffer and the baseline write buffer management policy

(drain whenfull). Our DRAM-aware writeback technique can send more row-hitwritebacks than the number of write buffer entries

10

Row address

Writeback state machine

Last−level cache bank
Set

DataCache access address

Writeback dataWriteback address

writeback monitor
from
Row address

Last−level cache
Bank 0

Last−level cache

Writeback monitor

Data

DataCache access address Cache access address Data

Writeback to DRAM

Last−level cache

Bank N−1

Address
Data Address

(To write buffer)

Figure 6. Writeback mechanism in last-level cache

within a very short time. In fact, a single dirty line eviction can trigger our mechanism to send up to rowsize/cacheline size

writebacks. Once the write buffer becomes full, all state machines stall and delay the current searching. At the same time, the

underlyingdrain whenfull write buffer management policy starts exposing the writes since the write buffer is full. As the DRAM

controller services writes, free write buffer entries become available for new writebacks. The state machine resumes searching and

sending row-hit writes to the write buffer. Because thedrain whenfull policy keeps exposing writes until the write buffer becomes

empty, all possible row-hit writebacks for a row can be serviced quickly by the DRAM controller since they are all row-hits. In

this way, our mechanism can effectively enable more writes to be serviced quickly, which in turn reduces the number of write

buffer drains over the entire run of an application. This results in fewer write-to-read switching penalties which improves DRAM

throughput and performance.

Note that two conditions should be true for our mechanism to be effective. First, the last-level cache banks should have enough

idle cycles for the state machine to look for row-hit writes.If this is true the mechanism would not significantly contendwith

demand accesses from the lower-level cache for the cache bank and will be able to generate many row-hit writebacks. Second,

rewrites to cache lines which our mechanism preemptively writes back to DRAM should not occur too frequently. If writes happen

too frequently, the mechanism significantly increases the number of writes to DRAM. Even though row-hit writes can be serviced

quickly, the increased writes might increase time spent in servicing writes. We discuss these two issues in the following sections.

4.1. Does Last-Level Cache Have Room for DRAM-Aware Writeback?

Table 1 shows the percent of last-level cache bank idle cycles (averaged over all banks) over the entire run for each of the16

SPEC2000/20006 benchmarks in a single core system described in Section 5. For all benchmarks, exceptart, cache bank idle time

is more than 95%.
Benchmark swim applu galgel art lucas fma3d mcf milc cactusADM soplex GemsFDTD libquantum lbm omnetpp astar wrf

Idle cycles (%) 0.96 0.97 0.92 0.91 0.98 0.97 0.97 0.97 0.99 0.98 0.97 0.97 0.95 0.98 0.98 0.98

Table 1. Last-level cache bank idle cycles (%) in single core system for 16 SPEC 2000/2006 benchmarks

Table 2 shows the average idle bank cycles of the last-level cache (shared cache for multi-core systems) of the single, 4,and

8-core systems described in Section 5. Even in multi-core systems, the shared last-level cache has many idle cycles. This is because

last-level cache accesses are not too frequent compared to lower-level caches, since the lower-level cache and Miss Status Holding

Registers (MSHRs) filter out many accesses from the last-level cache. Therefore, we expect contention between demands and

our DRAM-aware writeback accesses to be insignificant. We find that prioritizing demands over the accesses for DRAM-aware

writeback is enough to reduce the impact of using the cache banks for our mechanism.
1-core 4-core 8-core

Idle cycles (%) 0.97 0.91 0.89
Table 2. Average last-level cache bank idle cycles (%) in sin gle, 4, and 8-core systems

11

4.2. Dynamic Optimization for Frequent Rewrites

For applications that exploit temporal locality of the last-level caches, the cache lines which are written back by our aggressive

writeback policy may be rewritten by subsequent dirty line evictions of the lower-level cache. Theseredirtiedcache lines may come

to be written back to DRAM again by the last-level cache’s replacement policy or the DRAM-aware writeback policy. This will

increase the number of writebacks (i.e., writes to DRAM) which may hurt performance by delaying service of reads due to frequent

services for writes.

We mitigate this problem using a simple optimization. We periodically estimate the rewrite rate of cache lines whose writebacks

are sent out by the DRAM-aware writeback mechanism. Based onthis estimation, our mechanism dynamically adjusts its aggres-

siveness. For instance, when the rewrite rate is high, the mechanism sends out only row-hit writebacks close to the LRU position.

When the rewrite rate is low, the mechanism can send out even row-hit writebacks close to the MRU position. Since the estimation

of rewrite rate is periodically done, the DRAM-aware writeback mechanism can adapt to the phase behavior of an application as

well. When employing this optimization in the shared cache of a multi-core system, we adapt the mechanism to estimate therewrite

rate for each core (or application).

To implement this, each cache line keeps track of which core it belongs to using core ID bits and also tracks whether the cache

line becomes clean (or non-dirty) due to the DRAM-aware writeback mechanism using an additional bit for each line. A counter for

each core periodically tracks the total number of the core’swritebacks sent out by the DRAM-aware writeback mechanism.Another

counter counts the number of the core’s rewrites to the cleancache lines whose writebacks were sent early by our mechanism. The

rewrite rate for each core for an interval is calculated by dividing the number of rewrites by the total number of writebacks sent

out in that interval. The estimated rewrite rate is stored ina register for each core and used to determine how aggressively the

mechanism sends writebacks (from LRU or from other positions close to MRU) for the next interval.

We found that our mechanism without this optimization slightly degrades performance for only two applications (vpr andtwolf,

both of which are memory non-intensive) out of all 55 SPEC2000/2006 benchmarks by increasing the number of writebacks.

Therefore the gain from this optimization is small comparedto design effort and hardware cost. We analyze this optimization with

experimental results in detail in the results section (Section 6.2).

4.3. Implementation and Hardware Cost

As shown in Figure 6, our DRAM-aware writeback mechanism requires a simple state machine in each last-level cache bank

and a monitor unit. Most of the hardware cost is in logic modifications. For example, the comparator structure should be modified

to support tag comparison with the row address in each state machine. The only noticeable storage cost is eight bytes per cache

bank for storing the row address of the recent writeback. Note that none of the last-level cache structure is on the critical path. As

Figure 4.1 shows, the accesses to the last-level cache are not very frequent.

If we implement the optimization in Section 4.2, one additional bit and core ID bits (for multi-core systems) for each cache line

are required. Three counters (2 bytes for each) are requiredto keep track of the number of writebacks sent, the number of rewrites,

and the rewrite rate.

4.4. Comparison to Eager Writeback

Eager writeback [6] was proposed to make efficient use of bus idle cycle for writes in a Rambus DRAM system in order to

minimize read and write contention. It sends writebacks fordirty LRU lines in a set to the write buffer when the set is accessed.

Writes in the write buffer are scheduled when the bus is idle.There are important key differences between eager writeback and our

DRAM-aware writeback technique which we discuss below.

12

First, eager writeback is not aware of DRAM characteristics. We find that simply sending writebacks for dirty LRU cache

lines does not work with today’s high-frequency DDR DRAM systems because servicing those writes in DRAM is not necessarily

completed quickly. For instance, servicing row-conflict writes causes large penalties (write-to-precharge latencies) as shown in

Section 3. This eventually significantly delays the serviceof subsequent reads.

Second, the write-caused penalties of state-of-the-art DDR DRAM systems are too large to send a write only because the data

bus is idle or there are no pending reads. To tolerate the longwrite-caused penalties, there must be no read request arriving at the

DRAM system for a long time such that all write-caused timingconstraints are satisfied before the subsequent read. However, for

memory intensive applications whose working set does not fitin the last-level cache, it is very likely that read requestsarrive at the

DRAM system before all constraints are satisfied. Thereforesubsequent reads suffer large write-to-read penalties.

In contrast, our mechanism does not aim to minimize immediate write-caused interference but targets minimizing the write-

caused penalties for the entire run of an application. It allows to stop servicing current reads to service writes. However, once it

does, it makes the DRAM controller service many writes fast by exploiting row buffer locality such that servicing writesnext time

can be performed a long time later.

We extensively analyze and compare DRAM-aware writeback and eager writeback in Section 6.2.

5. Methodology

5.1. System Model

We use a cycle accurate x86 CMP simulator for our evaluation.Our simulator faithfully models all microarchitectural details such

as bank conflicts, port contention, and buffer/queuing delays. The baseline configuration of processing cores and the memory system

for single, 4, and 8-core CMP systems is shown in Table 3. Our simulator also models DDR3 DRAM performance-related timing

constraints in detail as shown in Table 4. To evaluate the effectiveness of our mechanism in systems with prefetching (discussed in

Section 6.4), we employ an aggressive stream prefetcher [19] (32 streams, prefetch degree of 4, prefetch distance of 6 cache lines)

for each core.
4.8 GHz, Out of order, 15 (fetch, decode, rename stages) stages, decode/retire up to 4 instructions, issue/execute up to8 microinstructions;Execution Core
256-entry reorder buffer; 32-entry load-store queue; 256 physical registers
Fetch up to 2 branches; 4K-entry BTB; 64-entry return address stack;Front End
Hybrid branch predictor: 64K-entry gshare and 64K-entry PAs predictor with 64K-entry selector
L1 I-cache: 32KB, 4-way, 2-cycle, 1 read port, 1 write port, 64B line size;
L1 D-cache: 32KB, 4-way, 4-bank, 2-cycle, 1 read port, 1 write port, 64B line size;Caches and on-chip buffers
Shared last-level cache: 8-way, 8-bank, 15-cycle, 1 read/write port per bank, writeback, 64B line size, 1, 2, 4MB for single, 4 and 8-core CMPs;
32, 128, 256-entry MSHRs, 32, 128, 256-entry L2 access/miss/fill buffer for single, 4 and 8-core CMPs
1, 2, 2 channels (memory controllers) for 1, 4, 8-core CMPs; 800MHz DRAM bus cycle, Double Data Rate (DDR3 1600MHz) [9];DRAM and bus
8B-wide data bus per channel, BL = 8; 1 rank, 8 banks per channel, 8KB row buffer per bank;
On-chip, open-row, FR-FCFS scheduling policy [15];DRAM controllers
64-entry (8× 8 banks) DRAM read and write buffers per channel, drainwhen full write buffer policy

Table 3. Baseline configuration

Latency Symbol DRAM cycles Latency Symbol DRAM cycles

Precharge tRP 11 Activate to read/write tRCD 11
Read column address strobe CL 11 Write column address strobe CWL 8

Additive AL 0 Activate to activate tRC 39
Activate to precharge tRAS 28 Read to precharge tRT P 6

Burst length tBL 4 Column address strobe to column address strobetCCD 4
Activate to activate (different bank)tRRD 6 Four activate windows tFAW 24

Write to read tWTR 6 Write recovery tWR 12
Table 4. DDR3 1600 DRAM timing specifications

13

5.2. Metrics

To measure multi-core system performance, we useIndividual Speedup (IS), Weighted Speedup (WS)[18], andHarmonic mean

of Speedups (HS)[8]. As shown by Eyerman and Eeckhout [1], WS corresponds to system throughput and HS corresponds to the

inverse of job turnaround time. In the equations that follow, N is the number of cores in the CMP system.IPCalone
i is the IPC

measured when applicationi runs alone on one core of the CMP system (other cores are idle,therefore applicationi can utilize

all of the shared resources) andIPCtogether
i is the IPC measured when applicationi runs on one core while other applications are

running on the other cores of the CMP system.

ISi =
IPC

together
i

IPCalone
i

, WS =
N

X

i

IPC
together
i

IPCalone
i

, HS =
N

N
X

i

IPCalone
i

IPC
together
i

5.3. Workloads

We use the SPEC CPU 2000/2006 benchmarks for experimental evaluation. Each benchmark was compiled using ICC (Intel C

Compiler) or IFORT (Intel Fortran Compiler) with the -O3 option. We ran each benchmark with the reference input set for 200

million x86 instructions selected by Pinpoints [14] as a representative portion of each benchmark.

We evaluate 18 SPEC benchmarks on the single-core system. The 16 benchmarks (which have at least 10% ideal performance

improvement when all writes are removed) discussed in Figure 1 and the two benchmarks,vpr andtwolf mentioned in Section 4.2.

The characteristics of the 18 SPEC benchmarks are shown in Table 5. To evaluate our mechanism on CMP systems, we formed

combinations of multiprogrammed workloads from all the 55 SPEC 2000/2006 benchmarks. We ran 30 and 12 randomly chosen

workload combinations for our 4 and 8-core CMP configurations respectively.
Benchmark Type IPC MPKI RHR Benchmark Type IPC MPKI RHR

171.swim FP00 0.35 23.10 47.84 173.applu FP00 0.93 11.40 82.12
175.vpr IN00 1.02 0.89 18.36 178.galgel FP00 1.42 4.84 46.14
179.art FP00 0.26 90.92 94.59 189.lucas FP00 0.61 10.61 56.09

191.fma3d FP00 1.01 4.13 73.48 300.twolf INT00 0.98 0.72 31.12
429.mcf INT06 0.15 33.64 17.93 433.milc FP06 0.48 29.33 84.39

436.cactusADM FP06 0.63 4.51 12.94 450.soplex FP06 0.40 21.24 75.76
459.GemsFDTD FP06 0.49 15.63 47.28 462.libquantumINT06 0.67 13.51 93.20

470.lbm FP06 0.46 20.16 66.58 471.omnetpp INT06 0.49 10.11 46.93
473.astar INT06 0.47 10.19 42.62 481.wrf FP06 0.72 8.11 73.71

Table 5. Characteristics for 18 SPEC benchmarks: IPC, MPKI (last-level cache misses per 1K instructions), DRAM row-hit rate (RHR)

6. Experimental Evaluation

We first show that the baseline write buffer management policy that we use outperforms other policies and then we analyze how

our proposed DRAM-aware writeback mechanism works for single and multi-core systems.

6.1. Performance of Write Buffer Management Policies

In addition to our baseline (drain whenfull), we evaluate four write buffer management policies that are all based on the same

principle as previous work [6, 12, 17]. The first one,exposealways, is a policy that always exposes DRAM writes and reads

to the DRAM controller together. The DRAM controller makes scheduling decisions based on the baseline FR-FCFS scheduling

policy while always prioritizing reads over writes. However, if all DRAM timing constraints are satisfied for a write, the write

can be scheduled even though there are reads in the read request buffer. For example, while a precharge for a read is in progress

in one bank, a row-hit write in a different bank can be scheduled and serviced if all timing constraints for the write are satisfied

(assuming there is no pending read to the corresponding bank). The second policy isserviceat no read which was discussed in

Section 1. This policy exposes writes to the DRAM controlleronly when there is no pending read request or when the write buffer

14

is full, and stops exposing writes when a read request arrives or when the write buffer is not full any more. The third policy is

serviceat no read and drain whenfull which is the same as serviceat no read except that once the write buffer is full, all writes

are exposed until the buffer becomes empty. The fourth policy, drain whenno read and whenfull is the same as our baseline policy

that exposes all writes and drains the buffer every time the write buffer is full, except that it also keeps exposing all writes until

the buffer becomes empty even when writes are exposed due to no pending read in the read request buffer. The DRAM controller

follows the FR-FCFS policy to schedule reads and exposed writes for all of the above policies.

Figure 7 shows IPC normalized to the baseline and DRAM data bus utilization on a single-core system for the above five write

buffer policies. DRAM bus utilization is calculated by dividing the number of cycles the data bus transfers data (both reads and

writes) by the number of total execution cycles. Note that since we only change the write buffer policy, the total number of reads

and writes does not change significantly among the five policies. Therefore, we can meaningfully compare the DRAM data bus

utilization of each policy as shown in Figure 7(b). A large number of busy cycles indicates high DRAM throughput. On the other

hand, a larger number of idle cycles indicates more interference among the requests.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

IP
C

 n
or

m
al

iz
ed

 t
o

ba
se

lin
e

expose_always
service_at_no_read
service_at_no_read_and_drain_when_full
drain_when_no_read_and_when_full
drain_when_full (base)

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

gm
ea

n

(a) Performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

ti
on idle

busy

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

am
ea

n

(b) Data bus utilization

Figure 7. Performance and DRAM bus utilization for various w rite buffer policies

Our baselinedrain whenfull policy outperforms the other four polices significantly foralmost all benchmarks. The other

policies cause many idle cycles due to frequent read-to-write and write-to-read switching as shown in Figure 7(b). Theex-

posealways policy performs worst since writes are always exposed and can be scheduled more freely than other policies by

the DRAM controller, hence the most read-to-write and write-to-read penalties. Theserviceat no read and drain whenfull and

drain whenno read and whenfull policies also cause many write-to-read switching penalties by allowing some writes to be sched-

uled when there is no read in the read buffer thereby resulting in many idle cycles.

In contrast, thedrain whenfull policy increases data bus utilization by allowing the DRAM controller to service reads without

interference from writes as much as possible. It also reduces write-to-read switching penalties overall because only one write-to-read

switching penalty (also one read-to-write penalty) is needed to drain all the writes from the write buffer. Finally it also gives more

chances to the DRAM controller to exploit better row buffer locality and DRAM bank-level parallelism (servicing writesto different

banks concurrently, if possible) by exposing more writes together. To summarize, thedrain whenfull policy improves performance

by 8.8% on average and increases data bus utilization by 9.4%on average compared to the best of the other four policies.

Note that there is still a significant number of bus idle cycles in Figure 7(b) even with the best policy. Our DRAM-aware

writeback mechanism aims to minimize write-caused interference so that idle cycles are better utilized.

6.2. Single-Core Results

This section presents performance evaluation of the DRAM-aware writeback mechanism on a single-core system. Figure 8 shows

IPC normalized to the baseline and DRAM data bus utilizationfor the eager writeback technique, DRAM-aware writeback, and

DRAM-aware writeback with the optimization described in Section 4.2. The optimization dynamically adjusts the dirty line LRU

15

positions which are considered for writeback based on theirrewrite rate. When the rewrite rate is less than 50%, we allowany LRU

position which generates a row-hit to be written back. If therewrite rate is between 50% and 90%, only the least recently used half

of the LRU stack can be sent out. If the rewrite rate is more than 90%, only writebacks in the LRU position can be sent out. Note

that the eager writeback mechanism uses a write buffer policy that sends writes when the bus is idle as pointed out in Section 4.4.

In Section 6.1 we showed that sending out writes when the bus is idle is inferior to draining the write buffer only when it isfull

(as done bydrain whenfull). As such, for fair comparison we use an improved version of eager writeback that uses the baseline

drain whenfull policy. First we make the following major performance-related observations from Figure 8 and then provide more

insights and supporting data using other DRAM and last-level cache statistics in subsections.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

IP
C

 n
or

m
al

iz
ed

 t
o

ba
se

lin
e

base
eager
DRAM-aware
DRAM-aware dyn

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

gm
ea

n

(a) Performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

ti
on idle

busy

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

am
ea

n

(b) Data bus utilization

Figure 8. Performance and DRAM bus utilization on single-co re system

First, the eager writeback technique degrades performanceby 1.1% compared to the baseline. This is mainly because it is

not aware of DRAM characteristics. Filling the write buffers with writebacks for dirty lines which are in the LRU position of their

respective sets does not guarantee fast service time of writes since servicing row-conflict writes must pay the large write-to-precharge

penalties. As shown in Figure 8(b), eager writeback suffersas many idle cycles as the baseline on average.

Second, DRAM-aware writeback improves performance for allbenchmarks except forvpr andtwolf. It improves performance

by more than 10% forlucas, milc, cactusADM, libquantumandomnetpp. This is because our mechanism sends many row-hit writes

that are serviced quickly by the DRAM controller, which in turn reduces write-to-read switching penalties. As shown in Figure 8(b),

our mechanism improves DRAM bus utilization by 12.3% on average across all 18 benchmarks. Increased bus utilization translates

to high performance. On average, the mechanism improves performance by 7.1%. However, the increased bus utilization does not

increase performance forvpr andtwolf. In fact, the mechanism degrades performance for these two benchmarks by 2.4% and 3.8%

respectively. This is due to the large number of writebacks that are generated by the DRAM-aware writeback mechanism forthese

two benchmarks. We developed a dynamic optimization to mitigate this degradation which we refer to as dynamic DRAM-aware

writeback.

Dynamic DRAM-aware writeback mitigates the performance degradation forvpr and twolf by selectively sending writebacks

based on the rewrite rate of DRAM-aware writebacks. By doingso, the performance degradation ofvpr andtwolf becomes 1.2%

and 1.8% respectively, which results in 7.2% average performance improvement for all 18 benchmarks. Note that the dynamic mech-

anism still achieves almost all of the performance benefits of non-dynamic DRAM-aware writeback for the other 16 benchmarks.

As we discussed in Section 4.2, the gain from this optimization is small compared to design effort and hardware cost.

6.2.1. Why Does Eager Writeback Not Perform Well? As discussed above, eager writeback degrades performance compared

to the baseline in today’s DDR DRAM systems since it generates writebacks in a DRAM-unaware manner. In other words, it can

fill the write buffer with many row-conflict writes. Figure 9 shows the row-hit rate for write and read requests serviced byDRAM

for the 18 benchmarks. Because we use the open-row policy (that does not use either auto precharge or manual precharge after each

16

access), row-conflict rate can be calculated by subtractingrow-hit rate from one.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ow

-h
it

 r
at

e

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

am
ea

n

(a) Writes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ow

-h
it

 r
at

e

base
eager
DRAM-aware
DRAM-aware dyn

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

am
ea

n

(b) Reads

Figure 9. Row-hit rate for DRAM writes and reads

While eager writeback does not change row-hit rates for reads as shown in Figure 9(b), it generates more row-conflict writes

(fewer row-hits) forswim, art, milc, andlibquantumcompared to the baseline as shown in Figure 9(a). For these benchmarks, these

row-conflict writes introduce many idle cycles during the servicing of writes with the baselinedrain whenfull write buffer policy

as shown in Figure 8(b). This increases the time to drain the write buffer which in turn delays the service of critical reads required

for an applications’ progress.

6.2.2. How Does DRAM-Aware Writeback Perform Better? In contrast to eager writeback, our mechanism selectively sends

many row-hit writes that are serviced quickly by the DRAM controller. Therefore the row-hit rate for writes significantly increases

(to 94.6% on average) as shown in Figure 9(a). Note that it also increases the row-hit rate for reads (by 3.3% on average) asshown

in Figure 9(b). This is mainly because DRAM-aware writebackreduces row-conflicts between reads and writes as well by reducing

write-to-read switching occurrences. We found that due to the last-level cache and row locality of programs, it is very unlikely that

while servicing reads to a row, a dirty cache line to that row is evicted from the cache. Therefore decreased write-to-read switching

frequency reduces row-conflicts between writes and reads for the entire run of an application.

DRAM-aware writeback leverages the benefits of the write buffer and thedrain whenfull write buffer policy as discussed in

Section 4. Once the mechanism starts sending all possible row-hit writebacks for a row, the write buffer becomes full very quickly.

Thedrain whenfull write buffer policy continues to expose writes until the buffer becomes empty. This makes it possible for the

DRAM controller to service all possible writes to a row very quickly. Therefore our mechanism reduces the total number ofwrite

buffer drains over the entire run of an application. Table 6 provides the evidence of such behavior. It shows the total number of

write buffer drains and the average number of writes per write buffer drain for each benchmark. The number of writes per write

buffer drain for DRAM-aware writeback is increased significantly compared to the baseline and eager writeback. Therefore the total

number of drains is significantly reduced, which indicates that DRAM-aware writeback reduces write-to-read switchingfrequency

thereby increasing row-hit rate for reads. The increased row-hits (i.e., reduced row conflicts) lead to high data bus utilization for

both reads and writes and performance improvement as shown in Figure 8.
Benchmark swim applu galgel art lucas fma3d mcf milc cactusADM soplex GemsFDTD libquantum lbm omnetpp astar wrf vpr twolf

base 64960 24784 2891 83870 19890 24625 62521 50764 15264 43967 49027 115563 92310 35902 26377 38353 1961 4785
drains eager 76660 26367 4264 90020 22096 25263 62938 52581 15243 43033 50805 114461 94396 36425 26859 38622 2732 8080

DRAM-aware 13642 2927 8043 16754 7677 2995 49915 47982 2142 17611 14023 12535 24630 44413 29836 4921 4346 9030
base 25.38 14.36 80.11 23.34 23.93 14.79 34.19 20.43 15.99 17.07 28.21 10.16 22.57 23.22 28.78 13.16 27.54 21.18

writes/drain eager 21.52 13.51 97.86 24.29 22.47 14.43 34.09 19.75 16.05 17.53 27.34 10.26 22.19 23.24 28.48 13.08 29.72 27.15
DRAM-aware 121.90 121.97 50.19 128.26 96.24 122.09 45.05 21.83 114.27 44.32 99.49 93.66 85.08 20.50 27.05 103.26 69.91 71.88

Table 6. Number of write buffer drains and number of writes pe r drain

17

6.2.3. When is Dynamic DRAM-Aware Writeback Required? Recall that DRAM-aware writeback degrades performance for

vpr and twolf. Figure 10 shows the total number of DRAM read and write requests serviced by DRAM for the 18 benchmarks.

While DRAM-aware writeback does not increase the total number of reads and writes significantly for the other 16 benchmarks like

the baseline and eager writeback do, it does increases the number of writes significantly forvpr andtwolf.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

M
ill

io
n

D
R

A
M

 r
eq

ue
st

s

writes
reads

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ill

io
n

D
R

A
M

 r
eq

ue
st

s

vp
r
tw

olf

Figure 10. Number of DRAM requests

Table 7 shows the total number of writebacks generated by DRAM-aware writeback, cache lines that were cleaned but reread, and

cache lines that were cleaned but rewritten. It also shows the number of rewrites per cache line written back (referred toas rewrite

rate). Forvpr and twolf, rewrites to cache lines cleaned by the mechanism happen very frequently (82% and 85% respectively).

These rewritten lines’ writebacks are sent again by the mechanism thereby increasing the number of writes significantly. Increased

writes make the write buffer full frequently, therefore aggregate write-to-read switching penalty becomes larger which degrades

performance. However, the performance degradation is not significant because the total number of requests is not large (i.e.,

memory non-intensive) as shown in Figure 10. .
Benchmark swim applu galgel art lucas fma3d mcf milc cactusADM soplex GemsFDTD libquantum lbm omnetpp astar wrf vpr twolf

Writebacks 1640260 350641 346550 2061007 731063 361590 2167616 947328 242377 732556 1251832 1161287 2069208 698896 612423 500963 299262 639582
Reread 42 183 23741 70931 0 0 122290 0 16 1599 1905 0 0 21982 6012 746 12479 24230

Rewritten 20 0 166871 191596 0 501 108871 0 55 28593 13474 0 0 73667 37075 2588 245645 540604
Rewrite Rate 0.00 0.00 0.48 0.09 0.00 0.00 0.05 0.00 0.00 0.04 0.01 0.00 0.00 0.11 0.06 0.01 0.82 0.85

Table 7. Number of DRAM-aware writebacks generated, reread cache lines and rewritten cache lines, and rewrite rate

The dynamic DRAM-aware writeback mechanism discussed in Section 4.2 mitigates this problem by adaptively limiting write-

backs based on rewrite rate estimation. Since the rewrite rate is high most of the time forvpr andtwolf, the dynamic mechanism

allows writebacks only for row-hit dirty lines which are in the LRU position of their respective sets. Therefore, it reduces the number

of writebacks as shown in Figure 10. In this way, it mitigatesthe performance degradation for these two benchmarks as shown in

Figure 8. Note that the dynamic mechanism does not change thebenefits of DRAM-aware writeback for the other 16 benchmarks

since it adapts itself to the rewrite behavior of the applications.

6.3. Multi-Core Results

We also evaluate the DRAM-aware writeback mechanism on multi-core systems. Figures 11 and 12 show average system

performance and bus utilization for the 4 and 8-core systemsdescribed in Section 5. In multi-core systems, write-caused interference

is more severe since there is greater contention between reads and writes in the DRAM system. Furthermore, writes can delay critical

reads of all cores. As such, reducing write-caused interference is even more important in multi-core systems. Our DRAM-aware

writeback mechanism increases bus utilization by 16.5% and18.1% for the 4 and 8-core systems respectively. This leads to an

increase in weighted speedup (WS) and harmonic speedup (HS)by 11.8% and 12.8% for the 4-core system and by 12.0% and

14.4% for the 8-core system. We conclude that DRAM-aware writeback is effective for multi-core systems.

18

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

V
al

ue
 o

f
m

et
ri

c

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
al

ue
 o

f
m

et
ri

c

base
DRAM-aware

(b) HS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

ti
on idle

busy

(c) Bus utilization

Figure 11. Performance for 30 4-core workloads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
al

ue
 o

f
m

et
ri

c

(a) WS

0.0

0.1

0.2

0.3

0.4

V
al

ue
 o

f
m

et
ri

c

base
DRAM-aware

(b) HS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

ti
on idle

busy

(c) Bus utilization

Figure 12. Performance for 12 8-core workloads

6.4. Effect on Systems with Prefetching

We evaluate our mechanism when it is employed in a 4-core system with the stream prefetcher described in Section 5. Figure13

shows average system performance and bus utilization for the baseline with no prefetching, the baseline with prefetching, and the

baseline with prefetching and DRAM-aware writeback for our30 4-core workloads.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
al

ue
 o

f
m

et
ri

c

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
al

ue
 o

f
m

et
ri

c

base
base_pref
DRAM-aware

(b) HS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

ti
on idle

busy

(c) Bus utilization

Figure 13. Performance for 30 4-core workloads when prefetc hing is enabled

Prefetching increases write-caused interference severely. Prefetch requests, that are essentially reads, put more pressure on the

DRAM system. Prefetching improves weighted speedup by 11.5% by utilizing idle DRAM bus cycles while it degrades harmonic

speedup by 8.6% compared to the baseline with no prefetching. Using DRAM-aware writeback significantly improves DRAM bus

utilization (by 19.4% compared to prefetching) by reducingwrite-caused interference. The increased bus utilizationtranslates into

higher performance. Using DRAM-aware writeback improves WS and HS by 15.4% and 13.5% compared to prefetching alone. We

conclude that DRAM-aware writeback is also effective in multi-core systems that employ prefetching.

19

7. Related Work
7.1. DRAM Access Scheduling and Write Buffer Policies

Many DRAM scheduling policies [21, 15, 12, 13, 10, 11, 2, 5] have been proposed in the literature. Many of them [15, 11,

2, 5] do not address how to manage write-caused interferencefor high DRAM throughput. In contrast, our mechanism sends

writes intelligently from the last-level cache so that overall write-caused interference can be reduced. As such, our techniques are

orthogonal to these DRAM scheduling policies. As shown in Section 6.2, our mechanism allows the underlying DRAM controller

to better exploit row buffer locality for not only writes butalso reads by reducing write-to-read switching penalties.

Other proposals [6, 12, 17] discuss writeback management polices and DRAM scheduling for writes. Their policies are based

on the principle that scheduling writes when the bus is idle (no pending reads) can reduce the contention between reads and writes.

However, we found that this principle does not work with today’s high-bandwidth DDR DRAM systems with their large write-

caused latency penalties as shown in Section 6.1. We have shown that servicing all writes when the write buffer is full is the

best since it reduces write-to-read switching penalties and allows the DRAM controller to better exploit row buffer locality and

bank-level parallelism exposed by more writes.

7.2. Last-Level Cache Management

Many cache replacement and insertion policies have been proposed. These are all orthogonal to our work since our mechanism

does not change the underlying replacement or insertion policies. If a writeback of a dirty line is sent by our mechanism,the dirty

line becomes non-dirty and stays in the cache. When any replacement policy decides to evict such a clean cache line, the line is

simply removed.

A number of prior papers propose aggressive early writebackpolicies [6, 7, 4, 20] which send writebacks of dirty lines before

they are evicted by a replacement policy. We have already compared our mechanism to eager writeback [6] both qualitatively

and quantitatively in Sections 4.4 and 6.2. Other proposals[7, 4, 20] periodically send early writebacks to the next-level cache or

DRAM to increase the reliability of on-chip caches with low cost. Even though the motivation for our mechanism is not to improve

reliability, DRAM-aware writeback can help reduce vulnerability in the last-level cache since it aggressively sends writebacks just

like other early writeback policies do.

8. Conclusion

This paper described the problem of write-caused interference in the DRAM system, and showed it has significant performance

impact in modern processors. Write-caused interference will continue to be a performance bottleneck in the future because the

memory systems operating frequency continues to increase in order to provide more memory bandwidth. To reduce write-caused

interference, we proposed a new writeback policy for the last-level cache, called DRAM-aware writeback, which aggressively

sends out writebacks for dirty lines that can be quickly written back to DRAM by exploiting row buffer locality. We demonstrated

that the proposed mechanism and the previous best write buffer management policy are synergistic in that they work together to

reduce write-caused interference by allowing the DRAM controller to service many writes quickly together. This reduces the delays

incurred by read requests and therefore increases performance significantly in both single-core and multi-core systems. We also

showed that the performance benefits of the mechanism increases in multi-core systems or systems with prefetching wherethere

is higher contention between reads and writes in the DRAM system. We conclude that DRAM-aware writeback can be a simple

solution to reduce write-caused interference.

Our mechanism is not limited to DRAM technology since other memory technologies also suffer from the write-caused interfer-

ence problem. A high data transfer frequency in the memory system makes write-to-read and even write-to-write latencies in each

20

bank very costly just as in today’s high bandwidth DDR DRAM systems. An avenue of future work is to reduce the write-back

interference in other, emerging memory technologies.

References
[1] S. Eyerman and L. Eeckhout. System-level performance metrics for multiprogram workloads.IEEE Micro, 28(3):42–53, 2008.
[2] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-optimizing memory controllers: A reinforcement learning approach. InISCA-35, 2008.
[3] JEDEC.JEDEC Standard: DDR3 SDRAM STANDARD (JESD79-3D). http://www.jedec.org/standards-documents/docs/jesd-79-3d.
[4] S. Kim. Area-efficient error protection for caches. InDATE, 2006.
[5] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware DRAM controllers. InMICRO-41, 2008.
[6] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager writeback - a technique for improving bandwidth utilization. InMICRO-33, 2000.
[7] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. Soft error and energy consumption interactions:A data cache perspective. InISLPED,

2004.
[8] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in SMT processors. InISPASS, pages 164–171, 2001.
[9] Micron. 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg x 4 x 8 banks. http://download.micron.com/pdf/datasheets/dram/ddr3/.

[10] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip multiprocessors. InMICRO-40, 2007.
[11] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both performance and fairness of shared DRAM systems. InISCA-35, 2008.
[12] C. Natarajan, B. Christenson, and F. Briggs. A study of performance impact of memory controller features in multi-processor server environment. InWMPI,

pages 80–87, 2004.
[13] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory systems. InMICRO-39, 2006.
[14] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing representative portions of large Intel Itanium programs with dynamic

instrumentation. InMICRO-37, 2004.
[15] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.Owens. Memory access scheduling. InISCA-27, 2000.
[16] Samsung.Application Note: tWR (Write Recovery Time). http://www.samsung.com/global/business/semiconductor/products/dram/downloads/.
[17] J. Shao and B. T. Davis. A burst scheduling access reordering mechanism. InHPCA-13, 2007.
[18] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultaneous multithreading processor. InASPLOS-9, pages 164–171, 2000.
[19] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.POWER4 system microarchitecture.IBM Technical White Paper, Oct. 2001.
[20] D. H. Yoon and M. Erez. Memory mapped ECC: low-cost errorprotection for last level caches. InISCA-36, 2009.
[21] W. Zuravleff and T. Robinbson. Controller for a synchronous DRAM that maximizes throughput by allowing memory requests and commands to be issued out

of order. U.S. Patent Number 5,630,096, 1997.

21

