Continuous Runahead: Transparent Hardware Acceleration

for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin

ABSTRACT

Runahead execution pre-executes the application’s own code to
generate new cache misses. This pre-execution results in prefetch
requests that are overwhelmingly accurate (95% in a realistic
system configuration for the memory intensive SPEC CPU2006
benchmarks), much more so than a global history buffer (GHB)
or stream prefetcher (by 13%/19%). However, we also find that
current runahead techniques are very limited in coverage: they
prefetch only a small fraction (13%) of all runahead-reachable
cache misses. This is because runahead intervals are short
and limited by the duration of each full-window stall. In this
work, we explore removing the constraints that lead to these
short intervals. We dynamically filter the instruction stream to
identify the chains of operations that cause the pipeline to stall.
These operations are renamed to execute speculatively in a loop
and are then migrated to a Continuous Runahead Engine (CRE),
a shared multi-core accelerator located at the memory controller.
The CRE runs ahead with the chain continuously, increasing
prefetch coverage to 70% of runahead-reachable cache misses.
The result is a 43.3% weighted speedup gain on a set of memory
intensive quad-core workloads and a significant reduction in
system energy consumption. This is a 21.9% performance gain
over the Runahead Buffer, a state-of-the-art runahead proposal
and a 13.2%/13.5% gain over GHB/stream prefetching. When
the CRE is combined with GHB prefetching, we observe a 23.5%
gain over a baseline with GHB prefetching alone.

1. Introduction

Runahead execution for out-of-order processors [29,30,33,34]
is a proposal that reduces the impact of main memory access
latency on single-thread performance. In runahead, once the
processor stalls, it uses the instruction window to continue to
fetch and execute operations. The goal of runahead is to gen-
erate new cache misses, thereby turning subsequent demand
requests into cache hits instead of cache misses. Runahead
pre-executes the application’s own code and therefore gener-
ates extremely accurate memory requests. Figure 1 shows the
prefetch accuracy of runahead when compared to a stream
[45] and a global-history buffer (GHB) prefetcher [36] on the
memory intensive SPEC CPU2006 benchmarks (sorted from
lowest to highest memory intensity).! The stream and GHB
prefetchers both use prefetcher throttling [45] to dynamically
reduce the number of inaccurate requests. Prefetch accuracy

!Simulated on an aggressive 4-wide out-of-order processor with a 256-
entry reorder buffer (ROB) and 1IMB LLC.
978-1-5090-3508-3/16/$31.00 ©2016 IEEE

SETH Ziirich

is measured as the percentage of all prefetched cache-lines
that have been accessed by the core prior to eviction from
the last level cache (LLC).

Overall, runahead requests have 95% average accuracy.
This is significantly higher than the dynamically throttled
GHB and stream prefetchers. Yet, despite high accuracy, runa-
head prefetches only a small portion of all runahead-reachable
memory requests and consequently results in only a fraction
of the Oracle performance gain, as shown in Figure 2. A
runahead-reachable memory request is defined as a request
that is not dependent on off-chip source data at issue. The Ora-
cle turns all of these runahead-reachable misses into LLC hits.
85% of all LLC misses on average are runahead-reachable.

100%

g 80% g 2
: l
S 60%
: 11 l
S 40%
: 11 l
s ol l
0% [}) [0 [] [} X x w0 o '] =z
S £ = o = [9) ft v Qo g O <
§ ¢ = 5§ 3§ § E & £ z = 2 £ &
> © o = c o o z =
QN) (o) E w wn o
o
[EEE Runahead [Stream B GHB|
Figure 1: Average prefetch accuracy.
1009 101% 310% 110% 125%

[% Runahead Performance Gain
% Oracle Performance Gain

‘- % of Runahead-Reachable Misses Prefetched
==

Figure 2: Runahead coverage/performance vs. Oracle.

Runahead results in a 12% performance gain (vs. an 85%
Oracle gain) while prefetching 13% of all runahead-reachable
misses (vs. 100% for the Oracle). This runahead performance
gap between runahead and the Oracle is because the total
number of cycles that the core spends in each runahead inter-
val is small, as shown in Figure 3. Runahead intervals are less
than 60 cycles long on average in a machine with a 256-entry
reorder buffer (ROB). A short runahead interval significantly

limits both the number of pre-executed instructions and the
number of new cache misses generated per runahead interval
[28,33]. However, even though each full-window stall is short,
the core is still memory-bound. A 256-entry ROB machine
with runahead still spends over 50% of total execution time
waiting for data from main memory.

-
N
o

[
o
o
s |
s |

o]
o
al

EN
o

Runahead Interval (Cycles)
[=)]
o

N
[« =]
i

3 g £ 8 =2 5§ 2 ¢ & E T %
T % § 9 § E 5 £ z = 2 E W
c [S c] Q 2 =
€ v a
o
[== 128r0B mEW 256ROB EEE 512ROB [1024 ROB]

Figure 3: Average number of cycles per runahead interval.

Runahead is a reactive technique that imposes constraints
on how often and how long the core is allowed to pre-execute
operations. First, the core is required to completely fill its
reorder buffer before runahead begins. This limits how often
the core can enter runahead mode, particularly as ROB size
increases (Figure 3). Second, the runahead interval terminates
when the runahead-causing cache miss is serviced. This lim-
its the duration of each runahead interval. Since runahead
uses the pipeline only when the main thread is stalled, these
constraints are necessary to maintain maximum performance
when the main thread is active. However, despite high accu-
racy, these constraints force prior runahead policies to run
for very short intervals. Prior runahead proposals improve
runahead efficiency in single-core systems [16, 31, 33], but
do not solve the major problem: short runahead intervals
dramatically limit runahead performance gain.

In this paper, we explore removing the constraints that
lead to these short intervals. The goal is a proactive policy
that uses runahead to accurately prefetch data so that the
core stalls less often. To this end, we propose the notion of
Continuous Runahead, where the instructions that cause LLC
misses are executed speculatively for extended intervals to
prefetch data. The implementation of Continuous Runahead
involves exploring three major challenges: Continuous Runa-
head instruction supply, Continuous Runahead hardware,
and Continuous Runahead control.

Continuous Runahead Instruction Supply. Which in-
structions should be executed during runahead? We show
that the most critical cache misses to prefetch with runahead
are those that cause the pipeline to stall most frequently. We
dynamically filter the instruction stream down to the chains
of operations that generate the addresses of these critical
misses. These dependence chains are then renamed to exe-
cute continuously in a loop.

Continuous Runahead Hardware. What hardware should
Continuous Runahead dependence chains execute on? It

is possible to use full simultaneous multi-threading (SMT)

thread contexts or idle cores as the substrate for Continuous

Runahead. However, we argue that this is inefficient and

that full cores are over-provisioned for Continuous Runahead

dependence chains. Instead, we use specialized hardware
for the implementation of Continuous Runahead [15]. The

Continuous Runahead Engine (CRE) speculatively executes

renamed dependence chains as if they were in a loop, accu-

rately generating new cache misses. The CRE is a lightweight
runahead accelerator (with a 2% quad-core area overhead)
located at the memory controller so a single CRE can be
efficiently multiplexed among the cores of a multi-core chip.

Continuous Runahead Control. How should Continuous

Runahead be controlled to maintain high accuracy/coverage?

We demonstrate that the accuracy of CRE requests can be con-

trolled by a “chain update interval” parameter that regulates

when the CRE can receive and switch to a new dependence
chain to execute.
This paper makes the following contributions:

« We show that while runahead execution is extremely accu-
rate, the number of generated memory requests is limited
by the duration of each runahead interval. We demonstrate
that runahead interval length significantly limits the per-

formance of state-of-the-art runahead proposals.
« To solve this problem, we introduce the notion of Contin-

uous Runahead. We demonstrate that by running ahead
continuously, we increase prefetch coverage from 13% to

70% of all runahead-reachable cache misses.
« In order to implement Continuous Runahead, we develop

policies to dynamically identify the most critical depen-
dence chains to pre-execute. We show that dependence
chain selection has a significant impact on runahead per-
formance. These dependence chains are then renamed to
execute in a loop and migrated to a specialized compute
engine where they can run ahead continuously. This Con-
tinuous Runahead Engine (CRE) leads to a 21.9% single-core
performance gain over prior state-of-the-art techniques on

the memory intensive SPEC CPU2006 benchmarks.
« In a quad-core system, we comprehensively evaluate

the CRE with and without traditional prefetching. The
CRE leads to a 43.3% weighted speedup gain over a no-
prefetching baseline and a 30.1% reduction in system en-
ergy consumption. This is a 13.2% gain over the highest
performing prefetcher (GHB) in our evaluation. When the
CRE is combined with a GHB prefetcher, the result is a
23.5% gain over a baseline with GHB prefetching alone.

2. Related Work

Runahead. This paper builds on the concepts that were
proposed in runahead execution. In runahead [9, 29,30, 34],
once the back-end of a processor is stalled due to a full reorder
buffer, the state of the processor is checkpointed and the front-
end continues to fetch instructions. These instructions are
executed if source data is available. Some proposals do not
maintain pre-executed results [29, 32], while other related

proposals like Continual Flow Pipelines do [2,32,46]. Prior
proposals have also combined runahead with SMT [39,40,50].
The main goal of runahead is to generate additional LLC
misses to prefetch future demand requests. Hashemi et al.
[16] identify that the only operations that are required to
generate these cache misses are in the address generation
chain of the load. Executing only these filtered dependence
chains during runahead results in more cache misses per
runahead interval. All of these prior proposals are only able
to “run ahead” for the short intervals that the pipeline is
stalled (Figure 3). This is the first work that we are aware of
that evaluates runahead execution for extended intervals.
Pre-Execution. This paper is also related to prior proposals
that dynamically identify code segments or “helper threads”
to pre-execute to generate new cache misses. For a helper-
thread to be effective, it needs to execute ahead of the main-
thread. In prior work [1, 6,47, 52], this is done by using a
dynamically filtered version of the main-thread, where unim-
portant instructions have been removed as the helper thread
(such that the helper thread can run much faster than the
main thread). These helper-threads are then executed using
either: a full core, SMT contexts, or a separate back-end. All
of these prior proposals consider only single-core systems.

Prior work has proposed using two full processors to ex-
ecute an application [12,47,52]. Slipstream uses a filtered
A-stream to run ahead of the R-stream, but does not filter code
down to address generation chains. Dual-core execution does
not explicitly filter the instruction stream, but instead uses
runahead in one core to prefetch for the other. The power
and performance overhead of using two cores to execute one
application is significant. We show that one optimized CRE
located near-memory can be effectively shared by all cores.

Annavaram et al. [1] add hardware to extract a dependent
chain of operations that are likely to result in a cache miss
from the front-end during decode. These operations are pri-
oritized and execute on a separate back-end. This reduces
the effects of pipeline contention on these operations, but
limits runahead distance to operations that the processor has
already fetched.

Collins et al. [6] propose a dynamic mechanism to ex-
tract helper-threads based on address-generation chains from
the back-end of a core. To do so, retired operations are fil-
tered through new hardware structures. The generated helper
threads are then stored in a large cache and run on one of
8 full SMT thread contexts, potentially contending with the
main thread for resources.

Prior work also proposes compiler/programmer driven
helper-thread generation [4,7,21, 25,53] or dynamic compila-
tion techniques [24,51]. Statically-generated helper threads
can run on idle-cores of a multi-core processor [3, 20].

In contrast to prior work, we develop algorithms to identify
the most critical load to accelerate with pre-execution and dy-
namically generate a filtered dependence chain for only that
load. The dependence chain is then speculatively executed

with minimal control overhead on specialized hardware that
is shared among all cores. This allows the dependence chain
to continuously run ahead of the core without contending
for pipeline resources. We demonstrate that the additional
hardware required to execute a dependence chain is small
when added to prior compute-near-memory proposals [15].
Prefetching. Pre-execution is a form of prefetching. Many
prior works have used pattern-matching prefetchers to pre-
dict future misses based on past memory access patterns.
Stream/stride prefetchers are simple structures that can have
large memory bandwidth utilization but prefetch simple ac-
cess patterns accurately [13, 19,37]. Correlation prefetch-
ers maintain large tables that link past miss addresses to
future miss addresses to capture complicated access patterns
[5,18,22,41,44]. The global-history buffer [36] uses a two-level
mechanism that reduces correlation table overhead. Content-
directed prefetching [8, 10] greedily prefetches by derefer-
encing values that could be memory addresses. We evaluate
the CRE in comparison to on-chip prefetchers, as well as in
conjunction with them.

3. Continuous Runahead

The only operations that need to be executed during runa-
head are in the address dependence chain of a load that is
likely to result in a cache miss. Such dependence chains can
be dynamically identified and have been shown to have three
properties [16]. First, if a dependence chain generates a cache
miss, the same sequence of operations is likely to generate ad-
ditional cache misses in the near future. Second, dependence
chains are generally short, under 32 micro-operations (uops)
on average. Third, dependence chains generally contain only
simple integer operations for pointer arithmetic. One exam-
ple of a dependence chain is shown in Figure 4. Four uops
produce the value in R1, which is then used to access memory.
The load that results in the cache miss is dashed.

ADDR5 +1->R3
| SHIFTR3 -> R4 |—>|ADD R4 +R3 -> R2|

SHIFT R2 -> R1

F=-=--=-=-=- 1
1 MEM_LD [R1] -> ROt
1 |

Figure 4: Example dependence chain adapted from mcf.

Using a dependence chain, we argue that it is possible to
execute it continuously in a loop to prefetch new data. How-
ever, for high accuracy, it is important to make the correct
choice of which dependence chain to use. We examine this
problem in Section 3.1.

After identifying a dependence chain, it can be executed
continuously on an SMT thread context or an idle core. How-
ever, Section 3.2 argues that these prior solutions are over-
provisioned. Instead, a single, tailored Continuous Runahead

Engine (CRE) can be shared by multiple cores. Section 4.2 then
shows that the CRE can be controlled in an interval-based
fashion to maintain high prefetch accuracy. As dependence
chain selection and accuracy are single-thread decisions, we
first focus on a single-core system and then explore multi-core
policies in Section 6.2.

3.1. Dependence Chain Selection
To generate a dependence chain, the original Runahead Buffer
policy [16] speculates that at a full window stall, a different
dynamic instance of the load that is blocking retirement is
currently available in the reorder buffer. This second load is
then used to complete a backwards data-flow walk to deter-
mine a dependence chain to use during runahead. While this
is a straightforward and greedy mechanism, it is not clear that
it always produces the best dependence chain to use during
runahead. In this section, we explore relaxing the constraints
of the original policy with three new policies for dependence
chain generation that use the hardware implementation from
the Runahead Buffer proposal.
PC-Based Policy. The original policy restricts itself to using
a dependence chain that is available in the reorder buffer. For
the PC-Based policy, this restriction is relaxed. The hardware
maintains a table of all PCs that cause LLC misses. For each
PC, the hardware also maintains a list of all of the unique
dependence chains that have led to an LLC miss in the past.
During a full-window stall, the Runahead Buffer is loaded
with the dependence chain that has generated the most LLC
misses for the PC of the operation that is blocking retirement.
Maximum-Misses Policy. The original policy constrains
itself to using a dependence chain based on the PC of the op-
eration that is blocking retirement. In the Maximum-Misses
policy, instead of using this PC, the hardware searches the
entire PC-miss table for the PC that has caused the most LLC
misses over the history of the application so far. This assigns
priority to the loads that miss most often. At a full window
stall, the dependence chain that has led to the most cache
misses for the PC that has caused the most cache misses is
loaded into the Runahead Buffer and runahead begins.
Stall Policy. Due to overlapping memory access latencies in
an out-of-order processor, the load with the highest number
of total cache misses is not necessarily the most critical load
operation. Instead, the most important memory operations
to accelerate are those that cause the pipeline to stall most
often. For this new policy, the hardware tracks each PC that
has caused a full-window stall and every dependence chain
that has led to a full-window stall for every PC. Each PC has
a counter that is incremented when a load operation blocks
retirement. At a full-window stall, the hardware searches the
table for the PC that has caused the most full-window stalls.
The dependence chain that has resulted in the most stalls for
the chosen PC is then loaded into the runahead buffer.
Figure 5 shows performance results for using these new
policies during runahead on a single core system (Table 1).
Overall, all new policies result in performance gains over

the original Runahead Buffer policy. However, the Stall pol-
icy generally outperforms the other policies that track LLC
misses, increasing performance by 7.5% on average over the
original policy. One of the reasons for this is shown in Fig-
ure 6, which plots the number of distinct instructions that
cause full-window stalls/LLC-misses and the number of op-
erations that cause 90% of all full-window stalls/LLC-misses.
On average, only 94 different operations cause full-window
stalls per benchmark and 19 operations cause 90% of all full-
window stalls. This is much smaller than the total number
of operations that cause all/90% of cache misses, particularly
for omnetpp and sphinx. We find that tracking the number of
full-window stalls provides an effective filter for identifying
the most critical loads, a similar observation to MLP-based
policies from prior work [38].

100
y -
g8()
o 60
>
s |
s 40
£
o 20
& il o ool g0l il
X | |11
_20::: PR I T n "
&y T ¥ & & ¥ x x ¥ g & % 2
3 —] = v QO
E§ £ = § %3 &£ 8 2 £ 3 £ 2 £ &
g C 2 £ 2 & z 5
N g a]

3 Original Runahead Buffer Policy
3 Maximum Misses Policy

I PC-Based Policy
@ Stall Policy

Figure 5: Effect of runahead buffer dependence chain selec-
tion policy on performance over a no-prefetching baseline.

1000

800

600

Number of Different PCs

0

omnetpp

[Em All Full Window Stalls =31 90% of Total @ All Cache Misses|

Figure 6: The number of different PCs that account for all
LLC misses/full window stalls and 90% of all LLC misses/full
window stalls.

To further reduce the storage requirements of the Stall pol-
icy, we make two observations. First, Figure 6 shows that 90%
of all full window stalls are a result of 19 static instructions on
average. Therefore, instead of storing every PC that causes
a full-window stall, we maintain new hardware, a 32-entry
cache of PCs. Each cache entry contains a counter that is
incremented every time that PC causes a full-window stall.

Second, Figure 7 shows that it is unnecessary to store all
dependence chains that have caused a full-window stall in
the past. We vary the number of dependence chains that
are stored for each miss PC from 1 to 32. Performance is
normalized to a system that stores all chains for each miss PC.
On average, storing 32 or 64 chains provides only marginally

higher performance than storing only one chain. Both leslie
and sphinx achieve maximum performance with only one
stored dependence chain, suggesting that recent path history
is more important than storing prior dependence chains for
these applications. Using this data, we maintain only the last
dependence chain that the pipeline has observed for the PC
that has caused the pipeline to stall the most often. Section

4.1 describes the details of identifying this chain.
9gl2mm—m —

2
© 1.0
E
(=} H = = = = = = = = = = |
tO.S
o
a 0.6 H H H H H H H H H H —
?
N 0.4H H H H H H H H H H H —
©
£ 0.2H{l1{I B TR O - R H HILH
2
O R g 2 5 £ 8 8 E ¢ o3
§ 8 = 8§ 3% 2 E 2 £ 3 2 2 &
=1 5 o = c] S 3z =
& £ voa
[1 Chain 3 4 Chains [16 Chains
I 2 Chains [8 Chains WM 32 Chains

Figure 7: Sensitivity to the number of stored dependence
chains per PC normalized to storing all chains.

3.2. The Continuous Runahead Engine (CRE)

While Figure 5 shows that intelligent dependence chain selec-
tion policies improve runahead performance over the state-
of-the-art, our goal is to run ahead using these dependence
chains for extended time intervals. To accomplish this goal, it
is possible to use SMT thread contexts or idle cores to execute
dependence chains. However, this has two drawbacks.

First, a full hardware thread context could be used by the
operating system to schedule non-speculative work. Second,
full hardware thread contexts are over-provisioned for exe-
cuting filtered dependence chains [15]. For example, depen-
dence chains are generally short, which means that they do
not require large register files. Dependence chains frequently
contain only integer operations, which means that they do
not need a processor with a floating point or vector pipeline.
Dependence chains can also be dynamically identified in the
back-end of an out-of-order core, so a separate front-end that
fetches and decodes instructions is unnecessary.

Therefore, instead of using full thread contexts, we argue
that it is preferable to use specialized hardware to implement
the notion of Continuous Runahead. Prior work exploits the
properties of dependence chains (listed above) to design spe-
cialized compute capability for the memory controller [15].
The memory controller is an advantageous location for ex-
ecuting dependence chains because it provides low-latency
access to main-memory and is centrally located and easily
multiplexed among different cores. Prior work uses this com-
pute capability to accelerate operations that are dependent
on off-chip data. Such acceleration of dependent memory op-
erations in the memory controller is orthogonal to runahead,
as runahead relies on having all source data available to gen-
erate new cache misses (i.e., runahead prefetches independent
cache misses, not dependent cache misses [15,31]).

We propose using such an implementation in the mem-
ory controller to continuously execute runahead dependence
chains. This requires two small modifications over [15]:
1) Slightly larger buffers to hold full runahead dependence
chains (The two 16-uop buffers in [15] become one 32-uop
buffer). 2) Correspondingly, a slightly larger physical register
file to hold the register state for the runahead dependence
chain (The two 16-entry physical register files in [15] become
one 32-entry buffer).

The CRE contains a small data cache (4kB) along with a
32-entry data TLB per core. All memory operations executed
at the CRE are translated using the CRE-TLB. The CRE-TLB
does not handle page faults, instead chain execution is halted.
This allows the CRE-TLB to provide control over inaccurate
dependence chains. The core is responsible for updating
CRE-TLB entries. We add a bit per TLB-entry at the core to
track remote CRE-TLB entries (assisting in shootdowns). The
CRE-TLB is updated in two cases: 1) Every time a dependence
chain is generated, the TLB-entry of the load used to generate
the chain is sent to the CRE. 2) CRE-TLB misses are sent to
the core to be serviced and if the PTE is present in the core
TLB, it is sent to the CRE. Data prefetched by the CRE is
directly installed in the LLC.

The datapath of the Continuous Runahead Engine (CRE)
is shown in Figure 8. Our CRE implementation has the same
area overhead as [15] (2% of total quad-core area, 10.4% of
a full core) because our modifications are area-neutral. The
main evaluation of this paper does not use the dependent
miss acceleration proposed by this prior work [15]. We only
use a similar implementation as [15] to perform runahead
processing. However, we can combine the CRE with depen-
dent miss acceleration (using the same hardware) to achieve
larger benefits. We evaluate this combination in Section 6.5.

Continuous Runahead Engine (CRE)

Runahead
Physical
Register

File

L

ALU O L
Reservation
Station A1 Data

Cache

Result Data

Runahead
Issue Buffer

13

|

Tag Broadcast

Load Store
Queue

Memory Controller

Figure 8: Continuous Runahead Engine datapath.
4. CRE Implementation

Using the Stall policy, Section 4.1 describes how to dynam-
ically identify the dependence chain to use for Continuous
Runahead and rename it to a smaller physical register set so
that it can be executed in a loop at the CRE. Section 4.2 then
develops a mechanism for deciding how long each depen-
dence chain should be executed at the CRE.

Cycle 1 Cycle 2 Cycle 4
0x85: ADD EAX(P7) + 1 -> EAX(P1) 0x85: ADD EAX(P7) + 1 -> EAX(P1) 0x85: ADD EAX(P7) + 1 -> EAX(P1)
> > > ADDE5 +1->E3
0x8F: SHIFT EAX(P1) -> EDX(P9) 0x8F: SHIFT EAX(P1) -> EDX(P9) 0x8F: SHIFT EAX(P1) -> EDX(P9) . .
> > > SHIFT E3 -> E4 Final CRE Chain
0x92: ADD EDX(P9) + EAX(P1) -> EDX(P3) 0x92: ADD EDX(P9) + EAX(P1) -> EDX(P3) 0x92: ADD EDX(P9) + EAX(P1) -> EDX(P3)
> > ADDE4+E3->E2 > ADDE4 + E3-> E2 ADDE5 +1-> E3
0x94: SHIFT EDX(P3) -> EDX(P2) 0x94: SHIFT EDX(P3) -> EDX(P2) 0x94: SHIFT EDX(P3) -> EDX(P2) SHIFT E3 -> E4
C > SHIFTE2 -> E1 > SHIFTE2->E1 - SHIFT E2 -> E1
0x96: MEM_LD [EDX(P2)] -> ECX(P8) 0x96: MEM_LD [EDX(P2)] -> ECX(P8) 0x96: MEM_LD [EDX(P2)] -> ECX(P8) ADD E4 + E3 -> E2
> MEM_LD [E1]-> EQ > MEM_LD [E1] -> EO > MEM_LD [E1] > EO SHIFT E2 -> E1
RRT RRT RRT MEM_LD [E1] -> EO
EAX EBX ECX EDX EAX EBX ECX EDX EAX EBX ECX EDX MAPE3 -> ES
p P8 | P3 P|P1 P8 | P9 p|P7 P8 | P9
Current E E0 | E2 Current E |E3 EO | E4 Current E [E5 EO | E4
First E EO0 | E1 First E [E3 EO0 | E2 First E |E3 EO0 | E2
SRSL: P3 SRSL: P9, P1 SRSL: P7

Figure 9: CRE chain generation process. P: Core Physical Register, E: CRE Physical Register.

4.1. Dependence Chain Generation

The Stall policy from Section 3.1 tracks the 32 PCs that have
caused the most full-window stalls. We propose that if the
processor is in a memory-intensive phase (i.e., the miss rate
per thousand instructions (MPKI) is greater than 5 in our
implementation), the core marks the PC that has caused the
highest number of full-window stalls (using the 32-entry PC-
stall cache). The next time a matching PC is issued into the
back-end and the core is stalled, we begin a dependence chain
generation process using a backwards dataflow walk.

This dataflow walk requires four modifications to the
pipeline. First, it requires that all ROB destination register IDs
and PCs be searchable. We model this using a CAM. However,
there are other ways to associate destination physical regis-
ters to ROB entries, including an Intel P6 style-ROB design
[17]. Second, we require a Register Remapping Table (RRT).
The RRT is functionally similar to a Register Alias Table and
is used to rename the dependence chain to a smaller set of
physical registers since the CRE has far fewer physical reg-
isters than the core. Renaming the dependence chain at the
core is advantageous as the chain has to be renamed only
once instead of for every iteration at the CRE. Third, we re-
quire a 32-uop buffer to hold the last generated dependence
chain along with its renamed source registers. Fourth, we
maintain a source register search list (SRSL) to conduct the
backwards dataflow walk. This additional harware adds an
estimated 1kB of additional storage per core. The specifics
of this dataflow walk are similar to the algorithm outlined
by prior work [16], with the exception that operations are
renamed to use the smaller physical register set of the CRE.

Figure 9 provides an example of the chain generation pro-
cess using the code from Figure 4. In Figure 9, the load at PC
0x96 has been marked for dependence chain generation. Core
physical registers are denoted with a ‘P’ while CRE physical
registers use an ‘E’ and are allocated sequentially. In cycle
0 (not shown in Figure 9), the load at PC 0x96 is identified
and the destination register P8 is mapped to E0 in the RRT.

Source register P2 is mapped to E1 and enqueued to the SRSL.
The RRT has three fields for each architectural register, the
current renamed core physical register, the current renamed
CRE physical register and the first CRE physical register that
was mapped to the architectural register. This last entry is
used to re-map the live-outs of each architectural register
back to live-ins at the end of dependence chain generation,
using a special MAP instruction (described below). The intu-
ition, and the prediction we make, is that the register outputs
of one iteration are potentially used as inputs for the next
iteration (without any intervening code that changes the out-
puts). This is necessary to allow the dependence chain to
execute as if it were in a loop. We limit chain length to a
maximum of 32 operations.

In cycle 1, the core searches all older destination registers
for the producer of P2. If an eligible operation is found, it
is marked to be included in the dependence chain and its
source registers are enqueued into the SRSL. An operation is
eligible if it is an integer operation that the CRE can execute
(Table 1, Row 6), its PC is not already in the chain, and it is
not a call or return. Note that conditional branches do not
propagate register dependencies and therefore do not appear
in backwards dataflow walks.

The result of the search in cycle 1 is found to be a SHIFT
and the source register of the shift (P3) is remapped to E2 and
enqueued in the SRSL. This process continues until the SRSL
is empty. In cycle 2, P9 and P1 are remapped to E4 and E3
respectively. In cycle 3 (not shown in Figure 9), the SHIFT
at address 0x8F is remapped. In cycle 4, the ADD at address
0x85 is remapped and enqueues P7 into the SRSL.

In cycle 5 (not shown in Figure 9), P7 does not find any
older producers. This means that architectural register EAX
is a live-in into the chain. To be able to speculatively execute
this dependence chain as if it were in a loop, a new operation
is inserted at the end of the final dependence chain. This
“MAP” operation moves the last live-out for EAX (E3) into
the live-in for EAX (E5), thereby propagating data from one

dependence chain iteration to the next. Semantically, MAP
also serves as a dataflow barrier and denotes the boundary
between dependence chain iterations. MAP cannot be issued
at the CRE until all prior operations are issued. Every live-in
register to the chain generates a MAP operation.

In cycle 6, the SRSL is empty. The chain generation process
is complete and the dependence chain has been identified.
The entire chain can now be sent to the CRE along with a
copy of the core physical registers that were renamed to CRE
physical registers in the RRT.

4.2. CRE Dependence Chain Execution

When a dependence chain is sent to the Continuous Runa-
head Engine (CRE), it executes continuously as if in a loop.
Executing the dependence chain in this fashion is speculating
that since these instructions have caused a critical LLC miss
in the past, they are likely to do so again in the future. How-
ever, we find that a dependence chain can not be executed
indefinitely, as the application may move to a different phase
where the selected dependence chain is not relevant. In this
section, we identify how long to execute each dependence
chain at the CRE and when to replace it.

When a dependence chain is constructed and sent to the
CRE, a copy of the core physical registers that are required
to execute the first iteration of the dependence chain are also
sent. This serves to reset runahead at the CRE. For example,
if the core sends a new dependence chain to the CRE at every
full window stall, the runahead interval length at the CRE for
each dependence chain is simply the average time between
full-window stalls. At every new full window stall, the core
will replace the dependence chain at the CRE (using the al-
gorithm from Section 4.1) and reset the CRE to run ahead
with the new dependence chain. Therefore, we define the
CRE update interval as the time between dependence chain
updates from the core.?

We find that CRE request accuracy (and correspondingly
CRE performance) can be managed by the update interval
that the core uses to send dependence chain updates to the
CRE. Figure 10 explores how modifying the update interval
impacts performance and runahead request accuracy. The
x-axis varies the update interval based on the number of in-
structions retired at the core from one thousand instructions
to 2 million instructions. There are two bars, the first bar is
the average geometric mean performance gain of the mem-
ory intensive SPEC CPU2006 benchmarks. The second bar is
the request accuracy defined as the percentage of total lines
fetched by the CRE that are touched by the core before being
evicted from the LLC.

Figure 10 shows that both average performance and CRE re-
quest accuracy plateau between the 5k update interval and the
100k update interval. Between the 250k update interval and

ZWhile the CRE could execute multiple dependence chains from one
application, for SPEC CPU2006, we find that executing one dependence chain
per interval increases runahead distance, maximizing performance [14].

100%

X X X X
n o n o
- o n

Update Interval (Instructions Retired)

l- GMean Performance Gain I Continuous Runahead Request Accuracyl

Figure 10: Continuous Runahead performance/accuracy sen-
sitivity to CRE update interval.

the 2M instruction interval, both request accuracy and per-
formance decrease. Average Continuous Runahead request
accuracy in the plateau of the chart is at about 85%, roughly
10% less than original runahead request accuracy (Figure 1).
As both accuracy and performance gain decrease above the
250k update interval, it is clear that allowing the CRE to run
ahead for too long without an update has a negative effect
on performance as the application can move to a different
phase. Yet, the 1k update interval also reduces performance
without a large effect on runahead request accuracy. This oc-
curs because frequently resetting the CRE reduces runahead
distance, causing a decrease in CRE effectiveness. To reduce
communication overhead, it is advantageous to control the
CRE at the coarsest interval possible while maintaining high
performance. Therefore, based on Figure 10 we choose a 100k
instruction update interval for runahead at the CRE.

5. Methodology

To simulate our proposal, we use an execution-driven, cycle-
level x86 simulator. The front-end of the simulator is based
on Multi2Sim [49]. The simulator faithfully models core mi-
croarchitectural details, the cache hierarchy, wrong-path exe-
cution, and includes a detailed non-uniform access latency
DDR3 memory system. We evaluate on a single-core system
in Section 6.1 and a quad-core system in Section 6.2. Each
core has a 256 entry reorder buffer along with a cache hier-
archy containing 32KB of instruction/data cache and a 1IMB
slice of shared last level cache (LLC) per core. The cores are
connected with a bi-directional address/data ring. Each core
has a ring-stop that is shared with its LLC slice. The memory
controller has its own ring stop. Two prefetchers are modeled:
a stream prefetcher [45,48] and a global history buffer (GHB)
prefetcher [36]. We find the GHB prefetcher to outperform
other address correlation prefetchers with lower bandwidth
overhead. We also compare against a system that uses the
Runahead Buffer, the state-of-the-art runahead technique
[16]. Table 1 describes our system.

The Continuous Runahead Engine (CRE) is located at the
memory controller (and shares a ring-stop with the memory
controller) in both the single and quad-core configurations.
The CRE can execute only a subset of integer operations and
has a 2-wide issue width with a small 4kB data cache. These

1: Core

4-Wide Issue, 256-Entry ROB, 92-Entry Reservation Station, Hybrid Branch Predictor, 3.2 GHz

2: L1 Caches

32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports, 3 Cycle Latency, 8-Way, Write-Through.

3: L2 Cache

Distributed, Shared, 1MB 8-Way Slice per Core, 18-Cycle Latency, Write-Back. Single-Core: 1MB
Total. Quad-Core: 4 MB Total.

4: Interconnect

2 Bi-Directional Rings, Control (8 Bytes) and Data (64 Bytes). 1-Cycle Core to LLC Slice Bypass. 1
Cycle Latency between Ring-Stops. Single-Core: 2 Total Ring-Stops. Quad-Core: 5 Total Ring-Stops.

5: CRE

2-Wide Issue. 8-Entry Reservation Stations. 4KB Data Cache 4-Way, 2-Cycle Access, 1-Port. 32-
Entry TLB per Core. 1 Continuous Runahead Dependence Chain Context with 32-Entry uop Buffer,
32-Entry Physical Register File. Micro-op Size: 8 Bytes.

6: CRE Instructions

Integer: add/subtract/move/load/store. Logical: and/or/xor/not/shift/sign-extend.

7: Memory Controller

Single-Core: 64-Entry Memory Queue. Quad-Core: 8: Batch Scheduling [35], 256-Entry Queue.

8: Prefetchers

Stream: 32 Streams, Distance 32. GHB G/DC [36]: 1k Entry Buffer, 12KB Total Size. All Configurations:
FDP [45], Dynamic Degree: 1-32, Prefetch into Last Level Cache.

9: DRAM

DDR3 [26], 1 Rank of 8 Banks/Channel, 8KB Row-Size. Single-Core: 1-Channel, Quad-Core: 2-
Channels. CAS 13.75ns, CAS = tgrp = trcp = CL. Other Modeled DDR3 Constraints: BL, CWL,
tRC,RAS,RTP,CCD,RRD,FAW,WTR,wR. $00 MHz Bus, Width: 8 B.

Table 1: System Configuration.

values have been determined via sensitivity analysis. CRE
requests that miss in the CRE data cache query the LLC. We
maintain coherence for the CRE data cache via the inclusive
LLC for CRE loads. Instruction supply for the CRE consists
of a 32-entry buffer which stores decoded dependence chains.
The total quad-core storage overhead of the CRE is 10kB.
To allow each core to use the Continuous Runahead Engine
(CRE), dependence chain generation hardware is added to
each core.

We divide the SPEC CPU2006 benchmarks into three cate-
gories in Table 2: high, medium, and low memory intensity.
The evaluation concentrates on the memory intensive work-
loads since runahead has little performance impact on low
memory intensity workloads [16,29]. From the high-memory
intensity workloads, we randomly generate a set of quad-core
workloads, shown in Table 3. We also evaluate the multi-core
system on a set of workloads consisting of 4 copies of each
of the high memory intensity workloads. We call these the
“Homogeneous” workloads. We simulate each workload un-
til every application in the workload completes at least 50
million instructions from a representative SimPoint [42].

High Intensity omnetpp, milc, soplex, sphinx3, bwaves,

(MPKI >= 10) libquantum, Ibm, mcf

Medium Intensity zeusmp, cactusADM, wrf, leslie3d,

(MPKI >=5) GemsFDTD

Low Intensity calculix, povray, namd, gamess, perlbench,

(MPKI <5) tonto, gromacs, gobmk, dealll, sjeng, gcc,
hmmer, h264ref, bzip2, astar, xalancbmk

Table 2: SPEC CPU2006 Classification by Memory Intensity.

We model chip energy with McPAT 1.3 [23], and DRAM
power with CACTI 6.5 [27]. Dynamic counters stop updating
once each benchmark completes. Shared structures dissipate
static power until the completion of the entire workload. We
model the CRE as a 2-wide back-end without certain struc-
tures such as a front-end, floating point pipeline, or register
renaming hardware. Communication between the CRE and
the core is modeled using extra messages on the address/data

H1 omnetpp+libq+sphinx3+milc
H2 soplex+milc+bwaves+libq
H3 bwaves+mcf+lbm-+sphinx3
H4 mcf+milc+lbm+soplex

H5 libq+sphinx3+bwaves+lbm
Ho6 bwaves+sphinx3+libq+lbm
H7 soplex+bwaves+lbm+mcf
H8 mcf+soplex+omnetpp+lbm
H9 soplex+omnetpp+mcf+milc
H10 milc+libq+bwaves+mecf

Table 3: Quad-Core Workloads.

rings. We model the chain generation hardware at each core
using additional energy events. Each operation included in
the chain requires a CAM on destination register IDs to locate
producer operations and extra ROB and physical register file
reads. Each source register in every uop requires an RRT read.
A destination register requires at least one RRT write. A MAP
operation requires two RRT reads. We maintain a 32-entry
buffer to store the last generated dependence chain. Opera-
tions are written into this buffer during chain generation and
read from the buffer and packed into a data message when it
is time to transmit the chain to the CRE.

6. Results

We use instructions per cycle (IPC) as the performance metric
for our single-core evaluation in Section 6.1. For the multi-
core evaluation in Section 6.2 we use weighted speedup as
the performance metric [11,43].

6.1. Single-Core
Figure 11 shows the single-core performance results for the
Continuous Runahead Engine (CRE). We compare six con-
figurations against a no-prefetching baseline. We update the
Runahead Buffer to use the Stall policy developed in Section
3.1 instead of the original policy [16]. As we have shown in
Section 3.1, the Stall policy leads to a 7.5% performance gain
over the original policy.

By continuously running ahead with the CRE, we observe
a 14.4% performance gain over the system that uses only

140

€ 120 -

o

£ 100

$

o 80 1 —

<%

£ 60 = fl

g 40 i

* =i Raallalidd it

0 1
Q u [] o U x x 0 g £ L =2
> = [oX = [J] = v Kol
§ 8 =5 3 § E 2 £ z 2 2 € §
> © o - c o oz =
% (S E 0) 2 [G]
o

[Runahead Buffer + Stall Policy B CRE [Stream

I GHB [Stream+CRE [l GHB+CRE

Figure 11: Single-core performance.

the Runahead Buffer, an 11.9% gain over the GHB prefetcher,
and a 34.4% performance gain over the no-prefetching base-
line. The CRE provides a performance win on all of the eval-
uated benchmarks and outperforms both the stream/GHB
prefetchers. When the CRE is combined with prefetching, the
CRE+GHB system (right-most bars) is the highest performing
system, with a 36.4% average performance gain over the GHB
prefetcher alone. The reason behind this performance gain is
that the CRE is able to prefetch 70% of the runahead-reachable
requests on average, as shown in Figure 12.

o 100%
Qo
238 80%
S <
e
9P o,
< 60%
B
Ly 40%
© n
c
35 20%
2 o
e v ¢ v 90 a Y x x o o°o £ Y =Z
S = g = @ c 9 2o g <
§ 8 * 5§ 3 §E 3 £ 3z 2 2 € &
> 8 o = c 8 % ES =
I £ 2
o
Figure 12: Percentage of runahead-reachable misses

prefetched by the CRE.

Figure 13 shows that the CRE achieves this perfomance
advantage with lower memory bandwidth overhead than the
stream/GHB prefetchers. These prefetchers result in large
bandwidth overheads on applications such as omnetpp, where
they perform poorly. The CRE is more accurate than prefetch-
ing, especially on these applications, with a 7% average band-
width overhead (vs. 11% and 22% overheads respectively for
the stream and GHB prefetchers).

6.2. CRE Multi-Core Policies

While the CRE outperforms traditional pattern matching
prefetchers in a single-core setting, it also requires additional
hardware complexity (although the 10 kB storage overhead
is less than the GHB prefetcher). The area overhead of the
CRE is estimated at 10.4% of a full core and 7.8% of the total
single-core chip area (based on McPAT area estimates). This
overhead is more attractive when viewed in a multi-core set-
ting where one CRE is shared among many different cores.
We evaluate a quad-core system, where one CRE is located at
the memory controller. We estimate the area overhead of the
CRE in this configuration at 2% of total chip area.

=

=

s 2.0

©

5 1.5

&1

he]

g10

©

Eos

[}

=

0.0 Q %) = [0 Q Q L X X 7 o £ ‘5 2
E 2 = E T &£ F 2 £ ¢ 2 5 g F
® 9} [] t] 0] Q < o w
=1 S o = c 8 % 2 =
4 1S a

o
[Em CRE 3 Stream @ GHB|

Figure 13: Single-core memory bandwidth consumption nor-
malized to the no-prefetching system.

However, adding a single CRE to a quad-core processor
means that the CRE is now a shared resource for which differ-
ent cores contend. In this section, we evaluate three policies
for determining which dependence chain to use at the CRE
for a given interval. All three policies are interval based with
an interval length of 100k instructions retired by the core that
has provided a runahead dependence chain (Section 4.2). At
the end of each interval, the CRE selects a new dependence
chain to use for runahead. Dependence chains are generated
by each core as described in Section 4.1.

The first policy is a round-robin policy. At the beginning
of each interval, this policy chooses an eligible core in a round
robin fashion. An eligible core has an MPKI above the thresh-
old (MPKI > 5). The chosen core then provides the CRE with
a dependence chain to use during Continuous Runahead. As
explained above, this scheduling is repeated after the core
that generated the dependence chain notifies the CRE that it
has retired the threshold number of instructions.

The second policy is called the IPC policy. This policy uses
the CRE to accelerate the application that is performing the
worst. Therefore, at the beginning of each interval, the CRE
schedules a dependence chain for Continuous Runahead from
an eligible core with the lowest IPC in the workload.

The third policy is the Score policy. In this policy, we
prioritize accelerating the dependence chain that is causing
the workload to stall most. Recall from Section 3.1 that the
Stall policy counts the number of times that each PC blocks
retirement. At the beginning of each interval, the maximum
stall count from each core is sent to the CRE and the CRE
notifies the core with the highest stall count (or Score) to
send a dependence chain for Continuous Runahead.

Figure 14 shows the performance results for these three
policies for the heterogeneous workloads (H1-H10) and Fig-
ure 15 shows the results for the homogeneous workloads
vs. a no-prefetching baseline. From this study, we find that
the round-robin policy is the highest performing policy on
average, across both the heterogeneous and the homoge-
neous workloads. Examining the homogeneous workloads in
more detail, the round-robin policy is the highest performing
policy on all workloads except for 4xlibquantum where the
Score policy performs best. The Score policy also comes close

to matching round-robin performance on 4xbwaves. Both
libquantum and bwaves have a very small number of PCs that
cause full-window stalls (Figure 6). This indicates that the
Score policy works best when there is a clear choice as to the
dependence chain that is causing the workload to stall most.

w
o

o

N W B
o o

% Weighted Speedup
Improvement
-
o

o

B Round Robin [Score

== Ir]

l- Runahead Buffer + Stall Policy

Figure 14: Heterogeneous workload policy evaluation.

80— T T T T T T T T T T

70 I
60

50 | I
40 n | [|

% Weighted Speedup
Improvement

il

=N W
o O O o
4xzeusmpt #
|
4xgems| \#.
4xlesliet ‘AF-

n = o O x x 0 T £ 5 =2
=] = = 8}
= 2 8 2 £ 2 2 5 g g
% = 9] 5 g— -g © Ed X X s
S < E < 9 9 2 ¥ 5 5 57
X € X X o
< o < < x
X <
<
[E=3 Runahead Buffer + Stall Policy BB Round Robin =1 Score [IPC|

Figure 15: Homogeneous workload policy evaluation.

The Runahead Buffer + Stall policy results show that adding
a Runahead Buffer to each core does not match the perfor-
mance gains of the CRE policies. The Runahead Buffer is not
able to run ahead for very long periods of time, reducing its
performance impact. The IPC policy performs poorly. This
is because it accelerates the benchmark with the smallest
IPC. By doing this every interval, the IPC policy lengthens
the number of cycles that the CRE executes a particular de-
pendence chain. This interval is statically set to 100k retired
instructions. A benchmark with a very low IPC takes longer
to reach this threshold relative to the rest of the multi-core
system. This means that the CRE runs ahead for more cycles
than it would with a dependence chain from a different core,
generating more runahead requests and resulting in a lower
average runahead request accuracy.

Figure 16 shows the average performance improvement
if the static 100k instruction interval length is changed to a
dynamic interval length (called “throttled” in the Figure). To
accomplish this, we track runahead request accuracy, similar
to FDP [45]. Runahead fills set an extra-bit in the tag-store
of each LLC cache line and MSHR entry. Upon eviction from
the LLC, the CRE is notified (and increments a counter) if a
runahead-fetched line was touched by the core. The counter
is reset at the beginning of each runahead interval. Based on
the counter, the CRE dynamically determines the length of

10

the next runahead interval for that core. If request accuracy
is above 95%, a 100k retired instruction interval is used. If
it is greater than 90% or 85%, a 50k or 20k interval length is
used respectively. Accuracy below 85% leads to a 10k interval
length.

HENNWWS
ocuUuouwouowuo

GMean % Weighted Speedup
Improvement

&

Throttled = Hom =T is Throttled |

Figure 16: CRE performance using dynamic throttling.

Using a dynamic runahead interval length, the low-
performing IPC policy shows the largest improvement, with
a performance increase from 6% on the homogeneous work-
loads to 15%. On the heterogeneous workloads, IPC policy
performance increases from 11% to 29%. However, the round-
robin policy is still the highest performing policy with a 44%
gain on the heterogeneous workloads and a 35% gain on the
homogeneous workloads. Since a dynamic interval length
provides negligible performance gain for the round-robin
policy, we use the static 100k instruction threshold with the
round-robin policy for the remainder of this evaluation.

6.3. Multi-Core Performance
Figures 17 and 18 show the performance results of a quad-core
system (Table 1) using the CRE with a round-robin policy.

»—lwwhmm\:oog

O OO0 0000 oo

% Weighted Speedup
Improvement

o m n o ~ © (=2}
T T T I ju g T T

H10

~ <
T T

GMEAN

[EE CRE [Stream M GHB [0 Stream+CRE EEE GHB+CRE|

Figure 17: Heterogeneous workload performance.

The CRE results in a 35.5% performance gain on the homo-
geneous workloads and a 43.3% gain on the heterogeneous
workloads over the no-prefetching baseline. The stream
prefetcher results in a 23.9%/29.8% gain respectively. The
GHB prefetcher gains 45% on the homogeneous workloads,
due to large performance gains on cactusADM and 30.1% on
the heterogeneous workloads. The highest performing sys-
tem in both Figure 17 and 18 is the GHB + CRE configuration
with a 55.8%/63.9% gain over the no-prefetching baseline.

Many of the trends from the single-core evaluation in
Figure 11 hold on the quad-core homogeneous workloads.
The CRE outperforms prefetching on 4xzeusmp, 4xomnetpp,

160

2 140

Q= 120

QJE

o ¥ 100 H

0 E

¢ 80

L35 60 1

Sa

g 40 -

vE

= 2Ll T H

E 0 - il

_20 L L L L L L L L L L L L L L
o %) Y= 0 (V] o v x X w0 o %= =2
£ 25 e 2 38 38 £ ¢ 8 E ¢ 2
s ¢ %X o §§ © E @ £ 3 X % wi
S [o - c X o [} & x =
o o M X £ < a @ 2 < < o
§F S E T FZog
< X <
<

[CRE =1 Stream W GHB [Stream+CRE NN GHB-+CRE|

Figure 18: Homogeneous workload performance.

4xsphinx, and 4xmcf. These are applications with low av-
erage prefetch accuracy and larger code footprints (Figure
6). The CRE outperforms or roughly matches prefetching
performance on all heterogeneous workloads (Figure 17).

6.4. Multi-Core Energy and Overhead

Figure 19/20 show the energy results for the quad-core system
running the heterogeneous/homogeneous workloads normal-
ized to a no-prefetching baseline. Each bar is split into two
components, showing static energy and dynamic energy.
1.2, T T T T T T T T

510
08
0.6
0.4
S 02

0.0

lized Ener

]

m

=] N) < n © ~ © o o
T T I I T I T T T E‘

GMean

Bl GHB+CRE
3 GHB+CRE

Il GHB
30 GHB

3 Stream+CRE
[Stream+CRE

3 Stream
[Stream

3 Baseline
[Baseline

I CRE

Static:
3 CRE

Dynamic:

Figure 19: Heterogeneous workload energy consumption.

- n 0 o U x x o o 3

e 2 S E 2 8z 38 £ ¢ 8 E ¢ %

a O x 9o g @ S £ & X X S

2 8§ YT 2§ x £ % 3§z v % 3 3

N X s < E X X 2 o

X < o < < x

< X <

<

Static: [0 Baseline WM CRE [Stream [GHB [Stream+CRE WM GHB+CRE
Dynamic: [Baseline [CRE [Stream [GHB [Stream+CRE [EEE GHB+CRE

Figure 20: Homogeneous workload energy consumption.

As the evaluated workloads are all memory intensive, they
all have low dynamic activity factors and run for longer than
the single-core workloads due to contention in the memory
system [35]. For example, the multi-core run of 4xmcf runs
for 42% more cycles than the single core run of mcf (Sec-
tion 6.1). This causes energy consumption to be dominated
by static energy. For 4xmcf, static energy is 76.9% of total
system energy consumption. These large static energy contri-
butions relative to the small static energy cost of the CRE (2%
of chip area in the multi-core case) mean that the large per-
formance improvements from Section 6.3 translate to large
energy reductions. We find that the system with the CRE

11

reduces energy consumption by 22% on the homogeneous
workloads and 30% on the heterogeneous workloads. These
reductions correlate well to the relative performance gains of
each workload. Overall, the GHB + CRE system is the highest
performing and the most energy efficient.

The dynamic overhead of the CRE can be broken up into
two components: shipping dependence chains to the CRE for
execution and the increased pressure that CRE memory re-
quests place on the LLC. Since CRE dependence chain updates
occur at a coarse interval and we find that CRE dependence
chains are short (14.5 uops long on average), the interconnect
overhead of sending instructions to the CRE is low, under
.01% of total data ring activity on average. However, the CRE
causes an appreciable increase in the average number of LLC
requests since CRE loads that miss in the CRE data cache
query the LLC. We observe an average CRE data cache hit
rate of 56%, leading to a 35% average increase in LLC requests.

6.5. Dependent Miss Acceleration

Prior work has proposed using compute hardware at the
memory controller to reduce latency for cache misses that
are dependent on off-chip data [15]. This is orthogonal to
runahead execution, as runahead relies on having all source
data available on-chip to generate new cache misses (i.e., runa-
head prefetches independent cache misses). Therefore, adding
the prior dependent cache miss acceleration proposal to the
CRE results in additional performance benefit. Dependent
miss acceleration requires only the addition of two 16-uop
dependent miss contexts to hold chains of operations that
contain dependent cache misses. The total additional storage
cost is 384 bytes over the CRE.

Figure 21 shows the performance benefits of the CRE and
dependent miss acceleration on the homogeneous workloads.
Overall, combining the CRE with dependent miss acceleration
outperforms either mechanism alone, showing that the two
techniques provide complimentary benefits.

80
[=%
2. 00 I
[T I
& E 50
3850 i I
£530 | il Inr
9E 5 i (WM NN | |
il | I N |
I IR N A
< X <
<
|- CRE [Dependent Miss Acceleration [CRE + Dependent Miss Acceleration|

Figure 21: CRE + dependent miss acceleration on the homo-
geneous workloads.

7. Conclusion

We introduce the notion of Continuous Runahead to over-
come a fundamental limitation of runahead execution: short
runahead distance. We develop a low-cost implementation
of this notion with two key ideas. First, we show that the

most critical dependence chain to accelerate with Continuous
Runahead can be dynamically identified with low cost at run-
time. Second, we show that this critical dependence chain can
be repeatedly executed to generate new cache misses with
a specialized Continuous Runahead Engine (CRE) located
at the memory controller. Our results demonstrate that the
CRE increases runahead prefetch coverage from 13% of all
runahead-reachable cache misses (with traditional runahead)
to 70%. This leads to a 21.9% performance gain over the state-
of-the-art runahead mechanism on a single-core system. In a
quad-core system, the CRE increases performance by 43.3%
over a no-prefetching baseline and by 13.2% over the highest
performing prefetcher (a GHB prefetcher) on a set of hetero-
geneous, memory intensive workloads. We conclude that
Continuous Runahead is an effective hardware mechanism
that transparently accelerates memory intensive applications.

Acknowledgments

We wish to thank the anonymous reviewers and Carlos
Villavieja for valuable suggestions and feedback. We thank
the members of the HPS Research Group for contributing to
our working environment. We wish to thank Intel, Oracle,
and Microsoft for their generous financial support. Onur
Mutlu acknowledges support from Google, Intel, and Seagate.

References
(1]
(2]
(3]
[4]
(5]
(6]
(7]
(8]
[9]

M. Annavaram et al., “Data prefetching by dependence graph precom-
putation,” in ISCA-29, 2001.

R. D. Barnes et al., “Beating in-order stalls with flea-flicker two-pass
pipelining,” in MICRO-36, 2003.

J. A. Brown et al., “Speculative precomputation on chip multiproces-
sors,” in MTEAC-6, 2001.

R. S. Chappell et al, “Simultaneous subordinate microthreading
(SSMT),” in ISCA-26, 1999.

M. J. Charney and A. P. Reeves, “Generalized correlation-based hard-
ware prefetching,” Cornell Univ., Tech. Rep. EE-CEG-95-1, 1995.

J. D. Collins et al., “Dynamic speculative precomputation,” in MICRO-
34, 2001.

J. D. Collins et al., “Speculative precomputation: long-range prefetch-
ing of delinquent loads,” in ISCA-28, 2001.

R. Cooksey et al., “A stateless, content-directed data prefetching mech-
anism,” in ASPLOS-10, 2002.

J. Dundas and T. Mudge, “Improving data cache performance by pre-
executing instructions under a cache miss,” in ICS-11, 1997.

E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching
systems,” in HPCA-15, 2009.

S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE MICRO, no. 3, pp. 42-53, 2008.

A. Garg and M. C. Huang, “A performance-correctness explicitly-
decoupled architecture,” in MICRO-41, 2008.

J. D. Gindele, “Buffer block prefetching method,” IBM Technical Disclo-
sure Bulletin, vol. 20, no. 2, pp. 696-697, Jul. 1977.

M. Hashemi, “On-chip mechanisms to reduce effective memory access
latency,” Ph.D. dissertation, The University of Texas at Austin, 2016.

M. Hashemi et al., “Accelerating dependent cache misses with an
enhanced memory controller,” in ISCA-43, 2016.

M. Hashemi and Y. N. Patt, “Filtered runahead execution using a
runahead buffer,” in MICRO-48, 2015.

G. Hinton et al., “The microarchitecture of the Pentium® 4 processor,”
in Intel Technology Journal, Q1, 2001.

D. Joseph and D. Grunwald, “Prefetching using Markov predictors,”
in ISCA-24, 1997.

[10]

(1]
[12]
[13]
[14]
[15]
[16]
(17]

(18]

12

(19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]
(30]

(31]

(32]
(33]
(34]

(35]

N. Jouppi, “Improving direct-mapped cache performance by the addi-
tion of a small fully-associative cache and prefetch buffers,” in ISCA-17,
1990.

M. Kamruzzaman et al., “Inter-core prefetching for multicore proces-
sors using migrating helper threads,” in ASPLOS-16, 2011.

D. Kim and D. Yeung, “Design and evaluation of compiler algorithms
for pre-execution,” in ASPLOS-10, 2002.

A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction and dead-
block correlating prefetchers,” in ISCA-28, 2001.

S.Li et al., “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO-42,
2009.

J. Lu et al,, “Dynamic helper threaded prefetching on the Sun Ultra-
SPARC CMP Processor,” in MICRO-38, 2005.

C.-K. Luk, “Tolerating memory latency through software-controlled
pre-execution in simultaneous multithreading processors,” in ISCA-28,
2001.

“Micron Technology MT41J512M4 DDR3 SDRAM Datasheet Rev. K,
April 2010, http://download.micron.com/pdf/datasheets/dram/ddr3/
2Gb_DDR3_SDRAM.pdf.

N. Muralimanohar and R. Balasubramonian, “CACTI 6.0: A tool to
model large caches,” in HP Laboratories, Tech. Rep. HPL-2009-85, 2009.
O. Mutlu, “Efficient runahead execution processors,” Ph.D. dissertation,
The University of Texas at Austin, 2006.

O. Mutlu et al.,, “Runahead execution: An alternative to very large
instruction windows for out-of-order processors,” in HPCA-9, 2003.
O. Mutlu et al., “Runahead execution: An effective alternative to large
instruction windows,” IEEE MICRO, vol. 23, no. 6, pp. 20-25, 2003.

O. Mutlu et al., “Address-value delta (AVD) prediction: Increasing the
effectiveness of runahead execution by exploting regular memory
allocation patterns,” in MICRO-38, 2005.

O. Mutlu et al,, “On reusing the results of pre-executed instructions in
a runahead execution processor,” Computer Architecture Letters, 2005.
O. Mutlu et al., “Techniques for efficient processing in runahead exe-
cution engines,” in ISCA-32, 2005.

O. Mutlu et al,, “Efficient runahead execution: Power-efficient memory
latency tolerance,” IEEE MICRO, vol. 26, no. 1, pp. 10-20, 2006.

O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems,”
in ISCA-35, 2008.

K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in HPCA-10, 2004.

S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a sec-
ondary cache replacement,” in ISCA-21, 1994.

M. K. Qureshi et al., “A case for MLP-aware cache replacement,” in
ISCA-33, 2006.

T. Ramirez et al., “Runahead threads to improve SMT performance,”
in HPCA-14, 2008.

T. Ramirez et al., “Efficient runahead threads,” in PACT-19, 2010.

A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based prefetching
for linked data structures,” in ASPLOS-8, 1998.

T. Sherwood et al., “Automatically characterizing large scale program
behavior,” in ASPLOS-10, 2002.

A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for a simul-
taneous multithreading processor,” in ASPLOS-9, 2000.

S. Somogyi et al., “Spatial memory streaming,” in ISCA-33, 2006.

S. Srinath et al., “Feedback directed prefetching: Improving the perfor-
mance and bandwidth-efficiency of hardware prefetchers,” in HPCA-13,
2007.

S. T. Srinivasan et al., “Continual flow pipelines,” in ASPLOS-11, 2004.
K. Sundaramoorthy et al., “Slipstream processors: improving both
performance and fault tolerance,” in ASPLOS-9, 2000.

J. M. Tendler et al., “POWER4 system microarchitecture,” IBM Technical
White Paper, Oct. 2001.

R. Ubal et al., “Multi2Sim: a simulation framework for cpu-gpu com-
puting,” in PACT-21, 2012.

K. Van Craeynest et al., “MLP-aware runahead threads in a simultane-
ous multithreading processor,” in HiPEAC-17, 2009.

W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating and adapting
precomputation threads for effcient prefetching,” in HPCA-13, 2007.
H. Zhou, “Dual-core execution: Building a highly scalable single-
thread instruction window,” in PACT-14, 2005.

C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” in ISCA-28, 2001.

