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Abstract
As Chip Multiprocessors (CMPs) scale to tens or hundreds of

nodes, the interconnect becomes a significant factor in cost, energy
consumption and performance. Recent work has explored many de-
sign tradeoffs for networks-on-chip (NoCs) with novel router archi-
tectures to reduce hardware cost. In particular, recent work proposes
bufferless deflection routing to eliminate router buffers. The high cost
of buffers makes this choice potentially appealing, especially for low-
to-medium network loads.

However, current bufferless designs usually add complexity to
control logic. Deflection routing introduces a sequential dependence
in port allocation, yielding a slow critical path. Explicit mechanisms
are required for livelock freedom due to the non-minimal nature of
deflection. Finally, deflection routing can fragment packets, and the
reassembly buffers require large worst-case sizing to avoid deadlock,
due to the lack of network backpressure. The complexity that arises
out of these three problems has discouraged practical adoption of
bufferless routing.

To counter this, we propose CHIPPER (Cheap-Interconnect Par-
tially Permuting Router), a simplified router microarchitecture that
eliminates in-router buffers and the crossbar. We introduce three key
insights: first, that deflection routing port allocation maps naturally
to a permutation network within the router; second, that livelock
freedom requires only an implicit token-passing scheme, eliminat-
ing expensive age-based priorities; and finally, that flow control can
provide correctness in the absence of network backpressure, avoid-
ing deadlock and allowing cache miss buffers (MSHRs) to be used
as reassembly buffers. Using multiprogrammed SPEC CPU2006,
server, and desktop application workloads and SPLASH-2 multi-
threaded workloads, we achieve an average 54.9% network power
reduction for 13.6% average performance degradation (multipro-
grammed) and 73.4% power reduction for 1.9% slowdown (mul-
tithreaded), with minimal degradation and large power savings at
low-to-medium load. Finally, we show 36.2% router area reduction
relative to buffered routing, with comparable timing.

1. Introduction
In recent years, NoCs have become a focus of intense in-

terest in computer architecture. Moore’s Law compels us to-
ward larger multicore processors. As tiled CMPs [41, 4, 27,
2] are adopted, on-chip interconnect becomes critically im-
portant. Future tiled CMPs will likely contain hundreds of
cores [42, 22, 6], and one current chip already contains 100
cores [51]. At this density, a commonly proposed on-chip in-
terconnect is the 2D mesh: it maps naturally to the tiled CMP
architecture [2] and allows for simple routing algorithms and
low-radix router architectures.

Traditionally, interconnection network designs have been
motivated by and tuned for large, high performance multi-
processors [30, 9]. As interconnects migrate to the on-chip
environment, constraints and tradeoffs shift. Power, die area
and design complexity become more important, and link la-
tencies become smaller, making the effects of router latency
more pronounced. As a consequence, any competitive router
design should have a short critical path, and should simulta-
neously minimize logic and buffer footprint.

Low-cost NoC designs have thus become a strong fo-
cus. In particular, one line of recent work has investigated
how to eliminate in-router buffers altogether [38, 19, 16], or
minimize them with alternative designs [25, 26, 39]. The
completely bufferless designs either drop [19, 16] or mis-

route (deflect) [38] flits when contention occurs. Eliminat-
ing buffers is desirable: buffers draw a significant fraction of
NoC power [21] and area [17], and can increase router latency.
Moscibroda and Mutlu [38] report 40% network energy re-
duction with minimal performance impact at low-to-medium
network load. For a design point where interconnect is not
highly utilized, bufferless routers can yield large savings.

Bufferless deflection routing thus appears to be promis-
ing. However, that work, and subsequent evaluations [36, 19],
note several unaddressed problems and complexities that sig-
nificantly discourage adoption of bufferless designs. First, a
long critical path in port allocation arises because every flit
must leave the router at the end of the pipeline, and because
deflection is accomplished by considering flits sequentially.
Second, livelock freedom requires a priority scheme that is
often more complex than in buffered designs: for example,
in Oldest-First arbitration, every packet carries a timestamp,
and a router must sort flits by timestamps. Finally, packet
fragmentation requires reassembly buffers, and without ad-
ditional mechanisms, worst-case sizing is necessary to avoid
deadlock [36].

In this paper, we propose a new bufferless router archi-
tecture, CHIPPER, that solves these problems through three
key insights. First, we eliminate the expensive port alloca-
tor and the crossbar, and replace both with a permutation
network; as we argue, deflection routing maps naturally to
this arrangement, reducing critical path length and power/area
cost. Second, we provide a strong livelock guarantee through
an implicit token passing scheme, eliminating the cost of a
traditional priority scheme. Finally, we propose a simple
flow control mechanism for correctness with reasonable re-
assembly buffer sizes, and propose using cache miss buffers
(MSHRs [29]) as reassembly buffers. We show that at low-to-
medium load, our reduced-complexity design performs com-
petitively to a traditional buffered router (in terms of appli-
cation performance and operational frequency) with signif-
icantly reduced network power, and very close to baseline
bufferless (BLESS [38]) with a reduced critical path.

Our contributions are:
• Cheap deflection routing by replacing the allocator and

crossbar with a partial permutation network. This de-
sign parallelizes port allocation and reduces hardware
cost significantly.
• A strong livelock guarantee through implicit token pass-

ing, called Golden Packet (GP). By replacing the Oldest-
First scheme for livelock freedom [38], GP preserves
livelock freedom while eliminating the need to assign
and compare timestamps.
• A flow-control scheme, Retransmit-Once, that avoids

worst-case reassembly buffer sizing otherwise necessary
to avoid deadlock. Use of MSHRs as reassembly buffers,
allowing packet fragmentation due to deflection routing
without incurring additional buffering cost.
• Evaluation over multiprogrammed SPEC CPU2006 [49]

and assorted desktop and server (web search, TPC-C)
applications, and multithreaded SPLASH-2 [57] work-
loads, showing minimal performance degradation at low-
to-medium network load with significant power, area and
complexity savings.
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2. Bufferless Deflection Routing
2.1. Why Bufferless? (and When?)

Bufferless1 NoC design has recently been evaluated as an
alternative to traditional virtual-channel buffered routers [38,
19, 16, 31, 52]. It is appealing mainly for two reasons: re-
duced hardware cost, and simplicity in design. As core count
in modern CMPs continues to increase, the interconnect be-
comes a more significant component of system hardware cost.
Several prototype manycore systems point toward this trend:
in MIT RAW, interconnect consumes ∼40% of system power;
in the Intel Terascale chip, 30%. Buffers consume a signifi-
cant portion of this power. A recent work [38] reduced net-
work energy by 40% by eliminating buffers. Furthermore, the
complexity reduction of the design at the high level could be
substantial: a bufferless router requires only pipeline regis-
ters, a crossbar, and arbitration logic. This can translate into
reduced system design and verification cost.

Bufferless NoCs present a tradeoff: by eliminating buffers,
the peak network throughput is reduced, potentially degrad-
ing performance. However, network power is often signifi-
cantly reduced. For this tradeoff to be effective, the power re-
duction must outweigh the slowdown’s effect on total energy.
Moscibroda and Mutlu [38] reported minimal performance re-
duction with bufferless when NoC is lightly loaded, which
constitutes many of the applications they evaluated. Buffer-
less NoC design thus represents a compelling design point for
many systems with low-to-medium network load, eliminating
unnecessary capacity for significant savings.

2.2. BLESS: Baseline Bufferless Deflection Routing
Here we briefly introduce bufferless deflection routing in

the context of BLESS [38]. BLESS routes flits, the minimal
routable units of packets, between nodes in a mesh intercon-
nect. Each flit in a packet contains header bits and can travel
independently, although in the best case, all of a packet’s flits
remain contiguous in the network. Each node contains an in-
jection buffer and a reassembly buffer; there are no buffers
within the network, aside from the router pipeline itself. Ev-
ery cycle, flits that arrive at the input ports contend for the out-
put ports. When two flits contend for one output port, BLESS
avoids the need to buffer by misrouting one flit to another port.
The flits continue through the network until ejected at their
destinations, possibly out of order, where they are reassem-
bled into packets and delivered.

Deflection routing is not new: it was first proposed in [3],
and is used in optical networks because of the cost of opti-
cal buffering [8]. It works because a router has as many out-
put links as input links (in a 2D mesh, 4 for neighbors and 1
for local access). Thus, the flits that arrive in a given cycle
can always leave exactly N cycles later, for an N-stage router
pipeline. If all flits request unique output links, then a deflec-
tion router can grant every flit’s requested output. However,
if more than one flit contends for the same output, all but one
must be deflected to another output that is free.

2.2.1. Livelock Freedom Whenever a flit is deflected, it
moves further from its destination. If a flit is deflected con-
tinually, it may never reach its destination. Thus, a routing
algorithm must explicitly avoid livelock. It is possible to

1More precisely, a “bufferless” NoC has no in-router (e.g., virtual chan-
nel) buffers, only pipeline latches. Baseline bufferless designs, such as
BLESS [38], still require reassembly buffers and injection queues. As we
describe in § 4.3, we eliminate these buffers as well.

probabilistically bound network latency in a deflection net-
work [28, 7]. However, a deterministic bound is more desir-
able. BLESS [38] uses an Oldest-First prioritization rule to
give a deterministic bound on network latency. Flits arbitrate
based on packet timestamps. Prioritizing the oldest traffic cre-
ates a consistent total order and allows this traffic to make for-
ward progress. Once the oldest packet arrives, another packet
becomes oldest. Thus livelock freedom is guaranteed induc-
tively. However, this age-based priority mechanism is expen-
sive [36, 19] both in header information and in arbitration crit-
ical path. Alternatively, some bufferless routing proposals do
not provide or explicitly show deterministic livelock-freedom
guarantees [19, 16, 52]. This can lead to faster arbitration if
it allows for simpler priority schemes. However, a provable
guarantee of livelock freedom is necessary to show system
correctness in all cases.

2.2.2. Injection BLESS guarantees that all flits entering a
router can leave it, because there are at least as many output
links as input links. However, this does not guarantee that
new traffic from the local node (e.g., core or shared cache)
can always enter the network. A BLESS router can inject a
flit whenever an input link is empty in a given cycle. In other
words, BLESS requires a “free slot” in the network in order
to insert new traffic. When a flit is injected, it contends for
output ports with the other flits in that cycle. Note that the
injection decision is purely local: that is, a router can decide
whether to inject without coordinating with other routers.

2.2.3. Ejection and Packet Reassembly A BLESS router
can eject one flit per cycle when that flit reaches its destina-
tion. In any bufferless deflection network, flits can arrive in
random order; therefore, a packet reassembly buffer is nec-
essary. Once all flits in a packet arrive, the packet can be
delivered to the local node. Importantly, this buffer must be
managed so that it does not overflow, and in such a way that
maintains correctness. The work in [38] does not consider this
problem in detail. Instead, it assumes an infinite reassembly
buffer, and reports maximum occupancies for the evaluated
workloads. We will return to this point in § 3.3.

3. Deflection Routing Complexities
While bufferless deflection routing is conceptually and al-

gorithmically simple, a straightforward hardware implemen-
tation leads to numerous complexities. In particular, two types
of problem plague baseline bufferless deflection routing: high
hardware cost, and unaddressed correctness issues. The hard-
ware cost of a direct implementation of bufferless deflection
routing is nontrivial, due to expensive control logic. Just as
importantly, correctness issues arise in the reassembly buffers
when they have practical (non-worst-case) sizes, and this fun-
damental problem is unaddressed by current work. Here, we
describe the major difficulties: output port allocation, expen-
sive priority arbitration, and reassembly buffer cost and cor-
rectness. Prior work cites these weaknesses [36, 19]. These
problems directly lead to the three key insights in CHIPPER.
We will describe in each in turn.

3.1. Output Port Allocation
Deflection-routing consists of mapping a set of input flits,

each with a preferred output and some priority, to outputs such
that every flit obtains an output. This computation is funda-
mentally difficult for two reasons: (i) every non-ejected in-
put flit must take some output, since flits are never buffered
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Figure 1: Port allocator structures: deflection routing requires more complex logic with a longer critical path.

or dropped; and (ii) a higher-priority flit might take a lower-
priority flit’s preferred output, so the routing for a given flit
involves an inherently sequential dependence on all higher-
priority flits’ routing decisions (as noted in [36] and [19]). In
other words, the routing decision depends on the earlier port
allocations; furthermore, the notion of “earlier” depends on
the sorted ordering of the inputs. Thus, flits must be sorted by
priority before port allocation. A carry-select-like parallel op-
timization [19] can reduce the critical path by precomputing
deflections (e.g., for all possible permutations of flit priori-
ties), but the sequential dependence for final port allocation
remains a problem, and the area and power cost of the redun-
dant parallel computations is very high with this scheme.

Fig. 1 shows a high-level comparison of the buffered and
bufferless port allocation problems. In a traditional buffered
router, each output port can make its arbitration decision in-
dependently: multiple flits request that output port, the port
arbiter chooses one winner, and the remaining flits stay in
their queues. In contrast, port allocation is inherently more
difficult in a bufferless deflection router than in a buffered
router, because the decision is global over all outputs. The al-
gorithm requires that we obey priority order, and so flits must
pass through a sort network before allocating ports. Then,
port allocation occurs sequentially for each flit in priority or-
der. Because flits that lose arbitration deflect to other ports,
lower-priority flits cannot claim outputs until the deflection is
resolved. Thus, the port allocator for each flit must wait for
the previous port allocator. The sequential dependence cre-
ates a long critical path; the worst case, in which all flits con-
tend for one port, limits router speed. Finding a full permuta-
tion with deflections, in a bufferless router, has inherently less
parallelism, and more computation, than port allocation in a
buffered router.

3.2. Priority Arbitration
The priority arbitration problem – computing a priority or-

der on incoming flits – also becomes more costly in a buffer-
less deflection network. In particular, the network must ex-
plicitly avoid livelock through careful design of its priority
scheme. One option (used in [38]) is an Oldest-First priority
scheme to guarantee flit delivery: the oldest flit will always
make forward progress, and once it is delivered, another flit
becomes the oldest. However, this scheme requires an age
field in every packet header, and the field must be wide enough
to cover the largest possible in-flight window. The arbiter then
needs to sort flits by priorities in every cycle. A bitonic sort
network [5] can achieve this sort in three stages for 4 flits. Un-
fortunately, this is a long critical path in a high-speed router,

especially when combined with the port allocator; alternately,
pipelining the computation yields a longer router latency, im-
pacting performance significantly.

3.3. Reassembly Buffers
A bufferless deflection network must provide buffer space

at network entry and exit: injection and reassembly buffers,
respectively. Injection buffers are necessary because injection
can only occur when there is an empty slot in the network, so
new traffic must wait its turn; reassembly buffers are needed
because deflection routing may fragment packets in transit.
Injection buffers pose relatively little implementation diffi-
culty: a node (e.g., a core or a shared cache) can stall when
its injection FIFO fills, and can generate data on demand (e.g.,
from the cache, in the case of a cache-miss request). However,
reassembly buffers lead to correctness issues that, without a
more complex solution, yield large worst-case space require-
ments to avoid deadlock. Worst-case sizing is impractical for
any reasonable design; therefore, this is a fundamental prob-
lem with bufferless deflection networks that must be solved at
the algorithmic level.

Despite the fundamental nature of this problem in deflec-
tion routing, management of reassembly buffer space has
not yet been considered in existing deflection-routed NoCs.
BLESS [38] assumes infinite buffers, and then gives data for
maximum reassembly buffer occupancy. In a real system,
buffers are finite, and overflow must be handled. Michelo-
giannakis et al. [36] correctly note that in the worst case, a
reassembly buffer must be sized to reassemble all packets in
the system simultaneously.

To see why this is the case, observe the example in Fig. 2.
Assume a simple reassembly-slot allocation algorithm that as-
signs space as flits arrive, and frees a packet’s slot when re-
assembly is completed. The key observation is that a buffer-
less deflection network has no flow control: whereas in a
buffered network, credits flow upstream to indicate free down-
stream buffer space (for both in-network buffers and final end-
point reception), nodes in a bufferless network are free to in-
ject whenever there is a free outbound link at the local node.
Thus, a reassembly buffer-full condition is not transmitted to
potential senders, and it is possible that many packets are sent
to one destination simultaneously. When all packets are sent
to this single node (e.g., Node 0), the first several flits to arrive
will allocate reassembly slots for their packets. Once all slots
are taken, flits from other packets must remain in the network
and deflect until the first packets are reassembled. Eventually,
this deflecting traffic will fill the network, and block further
injections. If some flits constituting the partially reassembled
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packets flits have not been injected yet (e.g., packet A), dead-
lock results. We have observed such deadlock for reasonable
reassembly buffer sizes (up to 4 packet slots) in realistic work-
loads of network-intensive applications.

Fundamentally, this deadlock occurs because of a lack of
backpressure (i.e., buffer credits) in the network. In other
words, reassembly buffers have no way to communicate to
senders that they are full, and so the only way to avoid over-
subscription is worst-case provisioning. A bufferless network
provides backpressure only in local injection decisions [23] –
i.e., when the network is locally busy, a node cannot inject –
which is not sufficient to prevent deadlock, as we just argued.

To build an effective bufferless deflection NoC, we must
guarantee correctness with a reasonable reassembly buffer
size. As argued above, the naı̈ve locally-controlled buffer al-
location leads to worst-case sizing, which can significantly
reduce the area and energy benefits of bufferless routing. Be-
cause reassembly buffers are a necessary mechanism for de-
flection routing, and because the lack of flow control might
allow deadlock unless buffers are unreasonably large, we con-
sider the reassembly-buffer problem to be fundamentally crit-
ical to correctness, just as efficient port allocation and priority
arbitration are fundamental to practicality. These three com-
plexities directly motivate the key insights and mechanisms in
our new router, CHIPPER.

4. CHIPPER: Mechanisms
As we have seen, bufferless deflection routing introduces

several complexities that are not present in traditional buffered
networks. Here, we introduce CHIPPER (Cheap-Interconnect
Partially Permuting Router), a new router microarchitecture
based on the key insight that these complexities are artifacts
of a particular formulation of deflection routing, rather than
fundamental limitations. By introducing a new architecture
based on a permutation network, and two key algorithms,
Golden Packet and Retransmit-Once, we provide a feasible
implementation of bufferless deflection routing. More details
are available in a technical report [15].

4.1. Permutation Network Deflection Routing
Section 3.1 describes how deflection routing can lead to

inefficient port allocation, because of the sequential depen-
dence that deflection implies. We observe that sequential port
allocation is not necessary for ensuring mutual exclusion on

output ports. Instead, the deflection-routing problem can map
to a permutation network. A network composed of 2x2 arbiter
blocks that either pass or swap their arguments will implicitly
give a 1-to-1 mapping of inputs to outputs. In other words, if
we assign the outputs of a permutation network to the output
ports of a router, mutual exclusion naturally arises when flits
contend for an output port, because at the final stage, only one
flit can take the output. This idea leads to a completely new
router organization.

Fig. 3 shows the high-level CHIPPER router architec-
ture. The pipeline contains two stages: eject/inject (parts
(a), (b), (c), described in § 4.1.1 below) and permute. As
shown, the permutation network replaces the control and data
paths in the router: there is no crossbar, as each flit’s data
payload travels with the header bits through the permutation
network. This leads to a more area-efficient design.

A permutation network directs deflected flits to free ports
in an efficiently parallelized way. However, obeying priority
order in port allocation still requires a sequential allocator. To
eliminate this problem, we relax the problem constraints: we
require only that the highest-priority flit obtains its request.
As we will argue below (in § 4.2), this constraint is sufficient
for livelock freedom. This also allows the permutation net-
work to have a simpler design (with fewer stages) that gives
only partial permutability.2 The design is fully connected: if
there is only one input flit, it can route from any input to any
output. However, the single crossover limits the possible turn
configurations. Note that the assignments of input ports rel-
ative to output ports is “twisted”: N and E are paired on in-
put, while N and S are paired on output. This arrangement is
due to the observation that straight-through router traversals
(N ⇐⇒ S, or E ⇐⇒ W ) are more common than turns.3

Our second insight is that the priority sort and port allo-
cation steps can be combined in the permutation network.
(However, note that the permutation network does not need
to perform a full sort, because we only need to determine the
highest-priority flit.) The key to this arrangement is in the
steering function of each 2x2 arbiter block: first, a priority
comparison determines a winning flit; then, the winning flit

2While this increases deflection rate, we show in our evaluations in § 5 that
the impact in the common case is minimal. The critical-path and simplicity
savings thus outweigh this cost.

3[25] also makes use of this observation to obtain a cheap microarchitec-
ture in a different way.
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picks the output that leads to its desired port. The losing flit,
if present, takes the other output. This design preserves prior-
ity enforcement at least for the highest-priority flit, since this
flit will always be a winning flit. In the highest-contention
case, when all four flits request the same output, the arbiter
becomes a combining tree. In the case where every flit re-
quests a different output, the number of correct assignments
depends only on the permutability of the arbiter.

4.1.1. Injection and Ejection We must now consider injec-
tion and ejection in this arbiter. So far, we have assumed four
input ports and four output ports, without regard to the fifth,
local, router port. We could extend the permutation network to
a fifth input and output. However, this has two disadvantages:
it is not a power-of-two size, and so is less efficient in hard-
ware cost; and more importantly, the local port has slightly
different behavior. Specifically, the ejection port can only ac-
cept a flit destined for the local node, and injection can only
occur when there is a free slot (either because of an empty
input link or because of an ejection).

We instead handle ejection and injection as a separate stage
prior to the arbitration network, as shown in Fig. 3. We in-
sert two units, the ejector and the injector, in the datapath.
This allows the stages to insert and remove flits before the
set of four input flits reaches the arbiter. The ejector recog-
nizes locally-destined flits, and picks at most one through the
ejector tree (part (a) in the figure). The ejector tree must re-
spect the priority scheme, but as we will argue in the next
section, our Golden Packet scheme is very cheap. When a
flit is chosen for ejection, the tree directs it to the local ejec-
tion port, and the ejector kill logic (part (b)) removes it from
the pipeline. Finally, when a flit is queued for injection, the
injector finds an empty input link (picking one arbitrarily if
multiple are available, not shown in the figure for simplicity)
and directs the local injection port to this link via the injector
muxes (part (c) in the figure). The resulting flits then progress
down the pipeline into the permute stage. As we note in § 5.7,
the router’s critical path is through the permutation network;
thus, the eject/inject stage does does not impact the critical
path.

4.2. Golden Packet: Cheap Priorities
So far, we have addressed the port allocation problem. An

efficient priority scheme forms the second half of a cheap
router. In our design, each 2x2 arbiter block must take two flits
and decide the winner. The Oldest-First priority scheme used
by BLESS [38] decides this with an age comparison (breaking
ties with other fields). However, this is expensive, because it

requires a wide age field in the packet header, and large com-
parators in the arbiter. We wish to avoid this expense, even if
it may sacrifice a little performance.

We start with the explicit goal of preserving livelock free-
dom, while stripping away anything unnecessary for that
property. We observe that it is sufficient to pick a single
packet, and prioritize that packet globally above all other
packets for long enough that its delivery is ensured. If every
packet in the system eventually receives this special status,
then every packet will eventually be delivered. This consti-
tutes livelock freedom. We call this scheme, which prioritizes
a single packet in the system, Golden Packet.

We will introduce Golden Packet, or GP, in two pieces.
First, GP provides a set of prioritization rules that assume the
golden packet is already known. Then, GP defines an implicit
function of time that rotates through all possible packets to
define which is golden.

Ruleset 1 Golden Packet Prioritization Rules
Golden Tie: If two flits are golden, the lower-numbered flit
(first in the golden packet) wins.
Golden Dominance: If one flit is golden, it wins over any
non-golden flit.
Common Case: Contests between two non-golden flits are
decided pseudo-randomly.

4.2.1. Prioritization Rules The GP prioritization rules are
given in Ruleset 1. These rules are designed to be very sim-
ple. If a flit header already contains a bit indicating golden
status, then a GP arbiter requires only a comparator as wide
as the flit sequence number within a packet – typically 2 or
3 bits – and some simple combinational logic to handle the
two-golden-flit4, one-golden-flit and the most common no-
golden-flit cases. These rules guarantee delivery of the golden
packet: the golden packet always wins against other traffic,
and in the rare case when two flits of the golden packet con-
tend, the Golden Tie rule prioritizes the earlier flit using its
in-packet sequence number. However, since most packets are
not golden, the Common Case (random winner) rule will be
invoked most often. Thus, Golden Packet reduces critical
path by requiring a smaller comparator, and reduces dynamic
power by using that comparator only for the golden packet.

4The two-golden-flit case is only possible when two flits from the single
Golden Packet contend, which happens only if some flits in the packet had
been deflected before becoming golden while in flight: once the packet is
golden, no other traffic can cause its flits to deflect.
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4.2.2. Golden Sequencing We must specify which packet
in the system is golden. All arbiters must have this knowl-
edge, and must agree, for the delivery guarantee to work. This
can be accomplished by global coordination, or by an implicit
function of time computed at each router. We use the latter
approach for simplicity.

We define a golden epoch to be L cycles long, where L is at
least as large as the maximum latency for a golden packet, to
ensure delivery. (This upper bound is precisely the maximum
Manhattan distance times the hop latency for the first flit, and
one more hop latency for each following flit, since the Golden
Packet will never be misrouted and thus will take a minimal
path.) Every router tracks golden epochs independently. In
each golden epoch, either zero or one packet is golden.

The golden packet ID rotates every epoch. We identify
packets by (sender, transaction ID) tuples (in practice, the
transaction ID might be a sender MSHR number). We as-
sume that packets are uniquely identifiable by some such tu-
ple. We rotate through all possible tuples in a static sequence
known to all routers, regardless of packets actually in the net-
work. This sequence nevertheless ensures that every packet is
eventually golden, if it remains in the network long enough,
thereby ensuring its delivery. The golden sequence is given
in Algorithm 2 as a set of nested loops. In practice, if all
loop counts are powers of two, a router can locally determine
the currently-chosen golden packet by examining bitfields in
a free-running internal counter.

In our design, routers determine the golden-status of a
packet in parallel with route computation. This check is
lightweight: it is only an equality test on packet ID. Note
that packets must be checked at least once per epoch while
in transit, because they may become golden after injection.
However, the check can be done off the critical path, if neces-
sary, by checking at one router and forwarding the result in a
header bit to the next router.

Algorithm 2 Golden Epoch Sequencing (implicit algorithm
at each router)

while true do
for t in Ntxn ids do

for n in Nnodes do
packet from transaction id t sent from node n is golden for L cy-
cles

end for
end for

end while

4.3. Retransmit-Once: Flow Control for In-MSHR
Buffering

As we motivated in § 3, reassembly buffers pose signif-
icant problems for bufferless deflection networks. In par-
ticular, because there is no feedback (backpressure [23]) to
senders, correct operation requires that the buffers are sized
for the worst case, which is impractical. However, a separate
mechanism that avoids buffer overflow can enable the use of
a much smaller reassembly space. Along with this insight,
we observe that existing memory systems already have buffer
space that can be used for reassembly: the cache miss buffers
(MSHRs [29] and shared cache request queues/buffers). In
fact, the cache protocol must already allocate from a fixed
pool of request buffers at shared cache nodes and handle the
buffers-full case; thus, our flow control solution unifies this
protocol mechanism with network-level packet reassembly.

4.3.1. Integration with Caches: Request Buffers In a typ-
ical cache hierarchy, buffering exists already in order to sup-

port cache requests. At private (L1) caches, MSHRs [29]
(miss-status handling registers) track request status and buffer
data as it is read from or written to the cache data array. This
data buffer is ordinarily accessible at the bus-width granularity
in order to transfer data to and from the next level of hierar-
chy. Similarly, at shared (L2) cache banks, an array of buffers
tracks in-progress requests. These buffers hold request state,
and also contain buffering for the corresponding cache blocks,
for the same reasons as above. Because both L1 and L2-level
buffers are essentially the same for flow control purposes, we
refer to both as “request buffers” in this discussion.

We observe that because these request buffers already exist
and are accessible at single-flit granularity, they can be used
for reassembly and injection buffering at the NoC level. By
considering the cache hierarchy and NoC designs together,
we can eliminate the redundancy inherent in separate NoC
reassembly and injection buffers. In particular, an injection
queue can be constructed simply by chaining MSHRs together
in injection order. Similarly, a reassembly mechanism can
be implemented by using existing data-steering logic in the
MSHRs to write arriving flits to their corresponding locations,
thereby reassembling packets (cache blocks) in-place. By im-
plementing separate injection and reassembly buffers in this
way, we can truly call the network bufferless.

4.3.2. Flow Control: Retransmit-Once The lack of flow
control in a bufferless deflection network can lead to deadlock
in worst-case situations. We showed in § 3.3 that deadlock oc-
curs when reassembly buffers (or request buffers) are all allo-
cated and additional traffic requires more buffers. § 3.3 shows
that a simple mechanism to handle overflow based on local
router decisions can lead to deadlock. Therefore, an explicit
flow control mechanism is the most straightforward solution
to allow for non-worst-case buffering.

The design space for managing request buffers is charac-
terized by two design extremes. First, a flow control scheme
could require a sender to obtain a buffer reservation at a re-
ceiver before sending a packet that requires a request buffer.
This scheme can be implemented cheaply as a set of counters
that track reservation tokens. However, reservation requests
are now on the critical path for every request.

Alternately, a flow control scheme could operate oppor-
tunistically: it could assume that a buffer will always be avail-
able without a reservation, and recover in the uncommon case
when this assumption fails. For example, a receiver might be
allowed to drop a request or data packet when it does not have
an available buffer. The system can then recover either by im-
plementing retransmit timeouts in senders or by sending a re-
transmit request from receiver to sender (either immediately
or when the space becomes available). This scheme has no
impact on the critical path when a request buffer is available.
However, recovery imposes additional requirements. In par-
ticular, senders must buffer data for possible retransmission,
and possibly wait for worst-case timeouts.

Instead, we propose a hybrid of these two schemes, shown
in Fig. 4, called Retransmit-Once. The key idea is that the
opportunistic approach can be used to establish a reservation
on a request buffer, because the sender can usually regener-
ate the initial request packet easily from its own state. The
remainder of the transaction then holds this reservation, re-
moving the need to retransmit any data. This combination
attains the main advantage of the opportunistic scheme – zero
critical-path overhead in the common case – while also re-
moving retransmit-buffering overhead in most cases. In other
words, there is no explicit retransmit buffer, because only the
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initial request packet can be dropped and the contents of this
packet is implicitly held by the sender.
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Figure 4: Retransmit-Once flow control scheme.

We will examine the operation of Retransmit-Once in the
context of a simple transaction between a private L1 cache
(the requester) and a shared L2 cache slice (the receiver).
The L1 requests a cache block from the L2; the L2 sends
the data, and then, after performing a replacement, the L1
sends a dirty writeback to the L2 in another data packet. Re-
quest buffers are needed at both nodes. However, the requester
(L1) initiates the request, and so it can implicitly allocate a re-
quest buffer at its own node (and stall if no buffer is available).
Thus, we limit our discussion to the request buffer at the re-
ceiver (L2). Note that while we discuss only a simple three-
packet transaction, any exchange that begins with a single-flit
request packet can follow this scheme5.

In the common case, a request buffer is available and the
opportunistic assumptions hold, and Retransmit-Once has no
protocol overhead. The scheme affects operation only when
a buffer is unavailable. Such an example is shown in Fig. 4.
The L1 (sender) initially sends a single-flit request packet to
the L2 (receiver), at 1 . The packet has a special flag, called
the start-bit, set to indicate that the transaction requires a new
request buffer (this can also be implicit in the packet type). In
this example, the L2 has no request buffers available, and so
is forced to drop the packet at 2 . It records this drop in a
retransmit-request queue: it must remember the sender’s ID
and the request ID (e.g., MSHR index at the sender) in order
to initiate a retransmit of the proper request. (In practice, this
queue can be a bitfield with one bit per private MSHR per
sender, since ordering is not necessary for correctness.)

Some time later, a buffer becomes available, because an-
other request completes at 3 . The receiver (L2) then finds
the next retransmit in its retransmit-request queue, and sends
a packet to initiate the retransmit. It also reserves the avail-
able buffer resource for the sender (L1). This implies that
only one retransmit is necessary, because the request buffer is
now guaranteed to be reserved. The L1 retransmits its orig-
inal request packet from its request state at 4 . The L2’s re-

5For more complex protocols that may send a data packet to a third party
(e.g., more complex cache mapping schemes where writebacks may go to dif-
ferent L2 banks/slices than where the replacement data came from), a separate
control packet can make a reservation at the additional node(s) in parallel to
the critical path of the request.

quest buffer is reserved for the duration of the request at 5 ,
and the transaction continues normally: the L2 processes the
request and sends a data response packet. Finally, in this ex-
ample, the L1 sends a dirty writeback packet. This last packet
has a special end-bit set that releases the request buffer reser-
vation. Importantly, during the remainder of the sequence,
the L1 never needs to retransmit, because the L2 has reserved
a request buffer with reassembly space. Thus, no retransmit
buffering is necessary. Accordingly, when the L1 sends its
dirty writeback, it can free all resources associated with the
transaction at 6 , because of this guarantee.

Algorithms 3 and 4 specify flow-control behavior at the re-
ceiver for the first and last packets in a transaction. A counter
tracks available buffers.

4.3.3. Interaction with Golden Packet Finally, we note
that Retransmit-Once and Golden Packet coexist and mutually
maintain correctness because they operate at different proto-
col levels. Golden Packet ensures correct flit delivery without
livelock. Retransmit-Once takes flits that are delivered, and
provides deadlock-free packet reassembly and request buffer
management, regardless of how flit delivery operates and de-
spite the lack of backpressure. In particular, Golden Packet
always dictates priorities at the network router level: a packet
that has a reserved buffer slot destination is no different from
any other packet from the router’s point of view. In fact,
golden flits may contend with flits destined to reserved buffer
spaces, and cause them to be deflected or to not be ejected in
some cycle. However, correctness is not violated, because the
deflected flits will eventually be delivered (as guaranteed by
Golden Packet) and then reassembled (by Retransmit-Once).

Algorithm 3 Receiving a packet with the start-bit
if slots > 0 then

slots⇐ slots−1
allocate buffer slot and return

else
set retransmit bit for sender (node, transactionID)
drop packet

end if

Algorithm 4 Receiving a packet with the end-bit
if pending retransmits then

send retransmit request indicated by next set retransmit bit
else

slots⇐ slots+1
end if

5. Evaluation
Our goal is to build a cheap, simple bufferless deflection

router while minimally impacting performance for our target,
low-to-medium-load applications. We evaluate two basic met-
rics: performance (application-level, network-level, and op-
erational frequency), and hardware cost (network power and
area). We compare CHIPPER to a traditional buffered NoC,
as well as a baseline bufferless NoC, BLESS [38]. We will
show performance results from simulation, and hardware cost
results (including per-workload power) from RTL synthesis of
BLESS and CHIPPER models, as well as ORION [55].

5.1. Methodology
We evaluate our proposed design using an in-house cycle-

accurate simulator that runs both multiprogrammed and mul-
tithreaded workloads. For multiprogrammed runs, we col-
lect instruction traces from SPEC CPU2006 [49] applications,
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Parameter Setting
System topology 8x8 mesh, dense configuration (core + shared cache at every node); 4x4 for multithreaded
Core model Out-of-order x86, 128-entry instruction window, 16 MSHRs
Private L1 cache 64 KB, 4-way associative, 64-byte block size
Shared L2 cache perfect (always hits), distributed (S-NUCA [24]), 16 request buffers (reassembly/inject buffers) per slice
Coherence protocol Simple directory-based, based on SGI Origin [30], perfect directory
Interconnect Links 1-cycle latency, 128-bit flit width (4 flits per cache block)
Baseline buffered router 2-cycle latency, 4 VCs/channel, 8 flits/VC
Baseline BLESS router 2-cycle latency, FLIT-BLESS [38]

Table 1: System parameters used in our evaluation.

as well as several real-world desktop and server applications
(including two commercial web-search traces). We use Pin-
Points [43] to select representative phases from each applica-
tion, and then collect instruction traces using a custom Pin-
tool [32]. For multithreaded workloads, we collect instruction
traces from SPLASH-2 [57], annotated with lock and barrier
information to retain proper thread synchronization. Power,
area and timing cost results come from hardware models, de-
scribed in § 5.7. Power results in this section are based on
cycle-accurate statistics from workload simulations and rep-
resent total network power, including links.

Each multiprogrammed simulation includes a 40M cycle
warmup, and then runs until every core has retired 10M in-
structions. Applications freeze statistics after 10M instruc-
tions but continue to run to exert pressure on the system. We
found that warmup counters on caches indicate that caches
are completely warm after 40M cycles for our workloads, and
10M instructions is long enough for the interconnect to reach
a steady-state. Each multithreaded simulation is run until a
certain number of barriers (e.g., main loop iterations).

5.2. System Design and Parameters
We model an 8x8-mesh CMP for our multiprogrammed

evaluations and a 4x4-mesh CMP for our multithreaded evalu-
ations. Detailed cache, core and network parameters are given
in Table 1. The system is a shared-cache hierarchy with a dis-
tributed shared cache. Each node contains a compute core,
a private cache, and a slice of shared cache. Addresses are
mapped to cache slices with the S-NUCA scheme [24]: the
lowest-order bits of the cache block number determine the
home node. The system uses a directory-based coherence pro-
tocol based on the SGI Origin [30]. We also evaluate sensitiv-
ity to cache mapping with a locality-aware scheme.

Importantly, we model a perfect shared cache in order to
stress the interconnect: every access to a shared cache slice
is a hit, so that no requests go to memory. This isolates the
interconnect to provide an upper bound for our performance
degradation – in other words, to report conservative results.

5.3. Workloads
Multiprogrammed: We run 49 multiprogrammed work-
loads, each consisting of 64 independent programs. 39 of
these workloads are homogeneous, consisting of 64 copies
of one application. The remaining 10 are randomly-chosen
mixes from our set of 39 applications. Our application set
consists of 26 SPEC CPU2006 benchmarks (including two
traces of mcf), three SPEC CPU2000 benchmarks (vpr, art,
crafty), and 10 other server and desktop traces: health (from
the Olden benchmarks [45]), matlab [33], sharepoint.1, share-
point.2 [37], stream [34], tpcc [1], xml (an XML-parsing ap-
plication), search-1, search-2 (web-search traces from a com-
mercial search engine).

Multithreaded: We run five applications from the SPLASH-
2 [57] suite: fft, luc, lun, radix and cholesky. As
described in § 5.1, we delineate run lengths by barrier counts:
in particular, we run cholesky for 3 barriers, fft for 5,
luc for 20, lun for 10, and radix for 10 barriers.

5.4. Application-Level Performance
In multiprogrammed workloads, we measure application-

level performance using the weighted speedup metric [48]:

WS =
N

∑
i=1

IPCshared

IPCalone
(1)

We compute weighted speedup in all workloads using a
buffered-network system as the baseline (IPCalone values).
This allows direct comparison of the networks. In multi-
threaded workloads, we compare execution times directly by
normalizing runtimes to the buffered-network baseline.
Overall results: For our set of multiprogrammed workloads,
CHIPPER degrades weighted speedup by 13.6% on average
(49.8% max in one workload) from the buffered network,
and 9.6% on average (29.9% max) from BLESS. For our set
of multithreaded workloads, CHIPPER degrades performance
(increases execution time) by 1.8% on average (3.7% max).
As described above, these results are pessimistic, obtained
with perfect shared cache in order to stress the interconnect.
Additionally, for the least intensive third of multiprogrammed
workloads, and for the multithreaded workloads we evaluate,
performance impact is completely negligible.
Per-workload results: However, average performance degra-
dation does not tell the whole story. Examining degrada-
tion by workload intensity yields more insight. Fig. 5 shows
weighted speedup (for multiprogrammed) and normalized
runtime (for multithreaded), as well as network power, for a
representative subset of all multiprogrammed workloads (for
space reasons) and all multithreaded workloads. Behavior can
be classified into two general trends. First, for workloads that
are not network-intensive, CHIPPER experiences very little
degradation relative to both buffered and BLESS networks.
This is the best case for a cheap interconnect, because the ap-
plication load is low, requiring much less than the peak ca-
pacity of the baseline buffered network. As workloads be-
gin to become more network-intensive, moving to the right in
Fig. 5, both bufferless networks (BLESS and CHIPPER) gen-
erally degrade relative to the buffered baseline. We note in
particular that the SPLASH-2 multithreaded workloads expe-
rience very little degradation because of low network traffic.
As described in [38], bufferless routing is a compelling op-
tion for low-to-medium load cases. We conclude that at low
load, CHIPPER is effective at preserving performance while
significantly reducing NoC power.
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Figure 5: Application performance and network power comparisons.

5.5. Power and Energy Efficiency
Power: Figure 5 shows average network power for each eval-
uated workload. These results demonstrate the advantage of
bufferless routing at low-to-medium load. Both CHIPPER
and BLESS have a lower power ceiling than the buffered
router, due to the lack of buffers. Thus, in every case, these
router designs consume less power than a buffered router.
In multiprogrammed workloads, CHIPPER consumes 54.9%
less power on average than buffered and 8.8% less than
BLESS; with multithreaded workloads, CHIPPER consumes
73.4% less than buffered and 10.6% less than BLESS.
System energy efficiency: The discussion above evaluates
efficiency only within the context of network power. We note
that when full-system power is considered, slowdowns due to
interconnect bottlenecks can have significant negative effects
on total energy. A full evaluation of this tradeoff is outside the
scope of this work. However, the optimal point depends en-
tirely on the fraction of total system power consumed by the
NoC. If this fraction is sufficiently large, the energy tradeoffs
shown here apply. For low-to-medium intensity loads, mini-
mal performance loss coupled with significant router power,
area and complexity reduction make CHIPPER a favorable
design tradeoff regardless of the fraction of system power con-
sumed by the NoC.

5.6. Network-Level Performance
We present latency and deflection as functions of injection

rate for uniform random traffic in Figures 6a and 6b respec-
tively. We show in Fig. 6a that CHIPPER saturates more
quickly than BLESS, which in turn saturates more quickly
than a buffered interconnect. Furthermore, CHIPPER clearly
has a higher deflection rate for a given network load, which
follows from the less exhaustive port allocator.
Sensitivity: We evaluate sensitivity to two network parame-
ters: golden epoch length, and reassembly buffer size. For
the former, we observe that as epoch length sweeps from 8
(less than the minimum required value for a livelock free-
dom guarantee) to 8192, and synthetic injection rate sweeps
from 0 to network saturation, IPC varies by 0.89% maximum.
This small effect is expected because golden flits comprise

0.37% on average (0.41% max) of router traversals over these
sweeps. The epoch length is thus unimportant for throughput.

The reassembly buffer size can have a significant effect if it
is too small for the presented load. When reassembly buffers
are too small, they become the interconnect bottleneck: the
opportunistic assumption of available receiver space fails, and
most requests require retransmits. With a 25 MPKI synthetic
workload and only one buffer per node, the retransmit rate is
72.4%, and IPC drops by 56.7% from the infinite-buffer case.
However, IPC reaches its ideal peak with 8 buffers per node
at this workload intensity, and is flat beyond that; for a less-
intensive 10 MPKI synthetic workload, performance reaches
ideal at 5 buffers per node. In the application workloads, with
16 buffers per node, the retransmit rate is 0.0016% on average
(0.021% max). Thus, we conclude that when buffers are sized
realistically (16 buffers per node) the overhead of Retransmit-
Once is negligible.

Effect of Locality-Aware Data Mapping: Finally, we evalu-
ate the effects of data locality on network load, and thus, the
opportunity for a cheaper interconnect design. We approxi-
mate a locality-aware cache mapping scheme by splitting the
8x8-mesh into sixteen 2x2 neighborhoods or four 4x4 neigh-
borhoods: for each node, its cache blocks are striped statically
across only its neighborhood. This is a midpoint between one
extreme, in which every node has its entire working set in its
local shared-cache slice (and thus has zero network traffic)
and the other extreme, S-NUCA over the whole mesh, imple-
mented in our evaluations above.

We find that for the set of 10 random-mix workloads
on an 8x8-mesh (11.7% weighted speedup degradation from
buffered to CHIPPER), modifying cache mapping to use
4x4 neighborhoods reduces weighted speedup degradation to
6.8%, and using 2x2 neighborhoods reduces degradation to
1.1%. This result indicates that mechanisms that increase lo-
cality in NoC traffic can significantly reduce network load,
and provide further motivation for cheap interconnects such
as CHIPPER.
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Figure 6: Network-level evaluations: latency and deflection
with synthetic traffic.

5.7. Hardware Complexity
In order to obtain area and timing results, and provide

power estimates for workload evaluations, we use RTL (Ver-
ilog) models of CHIPPER and BLESS, synthesized with the
Synopsys toolchain using a commercial 65nm process. We
model the buffered baseline timing with a publicly avail-
able buffered NoC model from Stanford [50]. However, be-
cause of an inadequate wire model, we were not able to ob-
tain adequate area/power estimates for the flit datapath; for
this reason, we used ORION [55] to obtain estimates for the
buffered baseline area/power. For both bufferless routers, we
synthesized control logic, and then added crossbar area and
power estimates from ORION. CHIPPER is also conserva-
tively modeled by including crossbar area/power, and shrink-
ing the permutation network to only the control-path width;
further gains should be possible with a realistic layout that
routes the datapath through the permutation network. For both
bufferless models, we synthesize a single router, with param-
eters set for an 8x8-mesh. Finally, for all three networks, we
model link power with ORION assuming 2.5mm links (likely
conservative for an 8x8-mesh). We do not model reassembly
buffers, since we use MSHRs for this purpose.

Table 2 shows area and timing results for CHIPPER,
BLESS and traditional buffered routers. The reduction in area
from buffered to either of the bufferless designs is signifi-
cant; this gap is dominated by buffers (35.3% of the buffered
router’s area). The additional reduction from BLESS to

CHIPPER is due to simpler control logic. Altogether, CHIP-
PER has 36.2% less area than the buffered baseline. Addition-
ally, the critical path delays are comparable for both designs:
CHIPPER’s critical path, which is through the sort network, is
only 1.1% longer than the critical path in the buffered model.
We conclude that CHIPPER can attain nearly the same operat-
ing frequency as a buffered router while reducing area, power
(as shown in § 5.5) and complexity significantly.

6. Related Work
Deflection routing: Deflection routing was first introduced
as hot-potato routing in [3]. It has found use in optical net-
works [8], where deflection is cheaper than buffering. Re-
cently, bufferless routing has received renewed interest in in-
terconnect networks. BLESS [38] motivates bufferless deflec-
tion routing in on-chip interconnect for cost reasons. How-
ever, it does not consider arbitration hardware costs, and it
does not solve the reassembly-buffer problem. The Chaos
router [28] is an earlier example of deflection routing. The
router is not bufferless; rather, it uses a separate deflection
queue to handle contention. The HEP multiprocessor [47]
and the Connection Machine [20] used deflection networks.
Finally, [31, 52] evaluate deflection routing in several NoC
topologies and with several deflection priority schemes. How-
ever, [31] does not evaluate application-level performance
or model hardware complexity, while [52] does not show
livelock freedom nor does it consider hardware cost of the
deflection router control logic. Neither work examines the
reassembly-buffer problem that we solve.
Drop-based bufferless routing: BLESS [38] is bufferless as
well as deflection-based. However, several networks elimi-
nate buffers without deflection. BPS [16] proposes bufferless
routing that drops packets under contention. SCARAB [19]
builds on BPS by adding a dedicated circuit-switched NACK
network to trigger retransmits. This work evaluates hardware
cost with detailed Verilog models. However, neither BPS nor
SCARAB rigorously prove livelock freedom. Furthermore,
the separate NACK network increases link width and requires
a separate circuit-switching crossbar.
Other bufferless alternatives: Ring-based interconnects [46,
44] are particularly well-suited for bufferless operation, be-
cause no routing is required once a flit enters the ring: it
simply travels until it reaches its destination. Rings have
low complexity and cost, but scale worse than meshes, tori
and other topologies beyond tens of nodes. Hierarchical
bus topologies [53] offer another alternative, especially com-
pelling when traffic exhibits locality. Both of these non-mesh
topologies are outside the scope of this work, however.
Reducing cost and complexity in buffered routers: Elas-
tic Buffer Flow Control [35] makes use of the buffer space
inherent in pipelined channels to reduce buffer cost. The
iDEAL router [26] reduces buffering by using dual-function
links that can act as buffer space when necessary. The ViChaR
router [39] dynamically sizes VCs to make more efficient use
of a buffer budget, allowing reduced buffer space for equiva-
lent performance. In all these cases, the cost of VC buffers
is reduced, but buffers are not completely eliminated as in
bufferless deflection routing. Going further, Kim [25] elimi-
nates VC buffers while still requiring intermediate buffers (for
injection and for turning). The work shares our goal of sim-
ple microarchitecture. Routing logic is simpler in [25] than in
our design, because of buffering; however, [25] does not use
adaptive routing, and requires flow control on a finer grain
than Retransmit-Once to control injection fairness. [56] pro-
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Buffered BLESS CHIPPER % ∆ Buffered→ CHIPPER % ∆ BLESS→ CHIPPER
Area 480174 µm2 311059 µm2 306165 µm2 36.2% reduction 1.6% reduction
Timing (crit path) 1.88ns 2.68 ns 1.90 ns 1.1% increase 29.1% reduction

Table 2: Hardware cost comparisons for a single router in a 65nm process.

poses buffer bypassing to reduce dynamic power and latency
in a buffered router, and [36] evaluates such a router against
BLESS. The paper’s evaluation shows that with a custom
buffer layout (described in [2]), an aggressive buffered design
can have slightly less area and power cost than a bufferless de-
flection router, due to the overhead of BLESS arbitration and
port allocation. However, our goal is specifically to reduce
these very costs in bufferless deflection routing; we believe
that by addressing these problems, we show bufferless deflec-
tion routing to be a practical alternative.
Improving performance and efficiency of bufferless NoCs:
Several works improve on a baseline bufferless design for bet-
ter performance, energy efficiency, or both. Jafri et al. in [23]
propose a hybrid NoC that switches between bufferless deflec-
tion routing and buffered operation depending on load. Ny-
chis et al. in [40] investigate congestion control for buffer-
less NoCs that improves performance under heavy load. Both
mechanisms are orthogonal to our work, and CHIPPER could
be combined with either or both techniques to improve per-
formance under heavy load.
Permutation network: Our permutation network is a 2-ary
2-fly Butterfly network [12]. The ability of indirect networks
to perform permutations is well-studied: [54] shows a lower
bound on the number of cells required to configure any per-
mutation. (For our 4-input problem, this bound is 5, thus our
design is only partially permutable.) Rather, the new contribu-
tion of the CHIPPER deflection-routing permutation network
is the realization that the deflection-routing problem maps
naturally to an indirect network, with the key difference that
contention is resolved at each 2x2 cell by misrouting rather
than blocking. CHIPPER embeds these permutation networks
within each node of the overall mesh network. To our knowl-
edge, no other deflection router has made this design choice.
Livelock: Livelock freedom guarantees can be classified into
two categories: probabilistic and deterministic. BLESS [38]
proposes Oldest-First (as discussed in § 2.2.1), which yields
an inductive argument for deterministic livelock freedom.
Busch et al. [7] offer a routing algorithm with a probabilis-
tic livelock guarantee, in which packets transition between
a small set of priorities with certain probabilities. [28] also
provides a probabilistic guarantee. Golden Packet provides a
deterministic guarantee, but its key difference from [7, 28] is
its end goal: it is designed to be as simple as possible, with
hardware overhead in mind.
Deadlock: Deadlock in buffered networks is well-known [11]
and usually solved by using virtual channels [10]. However,
our reassembly-buffer deadlock is a distinct issue. Hans-
son et al. [18] observe a related problem due to inter-packet
(request-response) dependencies in which deadlock can occur
even when the interconnect itself is deadlock-free. Like the
reassembly-buffer deadlock problem described in this paper,
this occurs due to ejection backpressure: responses to pre-
vious requests cannot be injected, and so new requests can-
not be ejected. However, our problem differs because it ex-
ists independently of inter-packet dependencies (i.e., could
happen with only one packet class), and happens at a lower
level (packet reassembly). [18] proposes end-to-end flow con-
trol with token passing as a solution to message-dependent

deadlock, but assumes a window-based buffering scheme.
Our flow-control scheme is distinguished by its opportunistic
common-case, lack of explicit token passing, and lack of an
explicit retransmit window due to integration into MSHRs.

7. Other Applications and Future Work
While CHIPPER’s design point is appealing for its sim-

plicity, there is a large design space that spans the gap be-
tween large, traditional buffered routers and simple deflec-
tion routers. Several directions are possible for future work.
First, the mechanisms that comprise CHIPPER are not lim-
ited to the specific design shown here, nor are they mutu-
ally dependent, and extensions of these techniques to other
networks might allow for hardware cost reduction at other
design points. Golden Packet can be extended to any non-
minimal adaptive interconnect in order to provide livelock
freedom. Likewise, the basic permutation-network structure
can be used with other priority schemes, such as Oldest-First
or an application-aware scheme [14, 13], by modifying the
comparators in each arbiter block. Finally, Retransmit-Once
offers deadlock freedom in any deflection network that re-
quires reassembly buffers. In fact, it can also be extended
to provide flow control for other purposes, such as congestion
control; in general, it allows receivers to throttle senders when
necessary, in a way that is integrated with the basic functional-
ity of the network. Additionally, we have shown only one per-
mutation network topology. A more detailed study of the ef-
fect of partial permutability on network-level and application-
level performance would allow for optimizations that take ad-
vantage of properties of the presented traffic load. In partic-
ular, heterogeneity in the permutation network with regard to
the more likely flit permutations (at center, edge and corner
routers) might increase efficiency.

8. Conclusions
We presented CHIPPER, a router design for bufferless de-

flection networks that drastically reduces network power and
hardware cost with minimal performance degradation for sys-
tems with low-to-medium network load. CHIPPER (i) re-
places the router core with a partial permutation network;
(ii) employs Golden Packet, an implicit token-passing scheme
for cheap livelock freedom; and (iii) introduces Retransmit-
Once, a flow-control scheme that solves the reassembly-buffer
backpressure problem and allows use of MSHRs for packet
reassembly, making the network truly bufferless. Our tech-
niques reduce router area by 36.2% from a traditional buffered
design and reduce network power by 54.9% (73.4%) on aver-
age, in exchange for 13.6% (1.9%) slowdown, with multipro-
grammed (multithreaded) workloads. In particular, slowdown
is minimal and savings are significant at low-to-medium load.
We thus present a cheap and practical design for a bufferless
interconnect – an appealing design point for vastly reduced
cost. It is our hope that this will inspire more ideas and fur-
ther work on cheap interconnect design.
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[16] C. Gómez et al. Reducing packet dropping in a bufferless noc.
Euro-Par-14, 2008.

[17] P. Gratz, C. Kim, R. McDonald, and S. Keckler. Implemen-
tation and evaluation of on-chip network architectures. ICCD,
2006.

[18] A. Hansson, K. Goossens, and A. Radulescu. Avoiding
message-dependent deadlock in network-based systems-on-
chip. VLSI Design, 2007.

[19] M. Hayenga, N. Jerger, and M. Lipasti. Scarab: A single cycle
adaptive routing and bufferless network. MICRO-42, 2009.

[20] W. Hillis. The Connection Machine. MIT Press, 1989.
[21] Y. Hoskote et al. A 5-GHz mesh interconnect for a teraflops

processor. IEEE Micro, 2007.
[22] W. W. Hwu et al. Implicitly parallel programming models for

thousand-core microprocessors. DAC-44, 2007.
[23] S. A. R. Jafri et al. Adaptive flow control for robust perfor-

mance and energy. MICRO-43, 2010.
[24] C. Kim, D. Burger, and S. Keckler. An adaptive, non-uniform

cache structure for wire-dominated on-chip caches. ASPLOS-
10, 2002.

[25] J. Kim. Low-cost router microarchitecture for on-chip net-
works. MICRO-42, 2009.

[26] A. Kodi, A. Sarathy, and A. Louri. iDEAL: Inter-router dual-
function energy and area-efficient links for network-on-chip
(NoC) architectures. ISCA-35, 2008.

[27] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded SPARC processor. IEEE Micro, 25(2):21–

29, 2005.
[28] S. Konstantinidou and L. Snyder. Chaos router: architecture

and performance. ISCA-18, 1991.
[29] D. Kroft. Lockup-free instruction fetch/prefetch cache organi-

zation. ISCA-8, 1981.
[30] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly

scalable server. ISCA-24, 1997.
[31] Z. Lu, M. Zhong, and A. Jantsch. Evaluation of on-chip net-

works using deflection routing. GLSVLSI-16, 2006.
[32] C.-K. Luk et al. Pin: building customized program analysis

tools with dynamic instrumentation. PLDI, 2005.
[33] MathWorks. MATLAB. http://www.mathworks.com/

products/matlab/.
[34] J. McCalpin. STREAM: sustainable memory bandwidth

in high performance computers. http://www.cs.
virginia.edu/stream/.

[35] G. Michelogiannakis et al. Elastic-buffer flow control for on-
chip networks. HPCA-15, 2009.

[36] G. Michelogiannakis et al. Evaluating bufferless flow-control
for on-chip networks. NOCS, 2010.

[37] Microsoft Corporation. Microsoft SharePoint. http:
//sharepoint.microsoft.com/en-us/Pages/
default.aspx.

[38] T. Moscibroda and O. Mutlu. A case for bufferless routing in
on-chip networks. ISCA-36, 2009.

[39] C. Nicopoulos et al. ViChaR: A dynamic virtual channel regu-
lator for on-chip networks. MICRO-39, 2006.

[40] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu. Next gen-
eration on-chip networks: What kind of congestion control do
we need? Hotnets-IX, 2010.

[41] K. Olukotun et al. The case for a single-chip multiprocessor.
ASPLOS, 1996.

[42] J. Owens et al. Research challenges for on-chip interconnection
networks. IEEE Micro, 2007.

[43] H. Patil et al. Pinpointing representative portions of large Intel
Itanium programs with dynamic instrumentation. MICRO-37,
2004.

[44] D. Pham et al. Overview of the architecture, circuit design, and
physical implementation of a first-generation cell processor. J.
Solid-State Circuits, 41(1):179–196, Jan 2006.

[45] A. Rogers et al. Supporting dynamic data structures on dis-
tributed shared memory machines. ACM Trans. Prog. Lang.
and Sys., 17(2):233–263, Mar 1995.

[46] L. Seiler et al. Larrabee: a many-core x86 architecture for vi-
sual computing. SIGGRAPH, 2008.

[47] B. Smith. Architecture and applications of the HEP multipro-
cessor computer system. SPIE, 1981.

[48] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. ASPLOS-9, 2000.

[49] Standard Performance Evaluation Corporation. SPEC
CPU2006. http://www.spec.org/cpu2006.

[50] Stanford CVA Group. Network-on-Chip project router model.
http://nocs.stanford.edu/.

[51] Tilera Corporation. Tilera announces the world’s first
100-core processor with the new TILE-Gx family.
http://www.tilera.com/news_&_events/
press_release_091026.php.

[52] S. Tota et al. Implementation analysis of NoC: a MPSoC trace-
driven approach. GLSVLSI-16, 2006.

[53] A. Udipi et al. Towards scalable, energy-efficient, bus-based
on-chip networks. HPCA-16, 2010.

[54] A. Waksman. A permutation network. JACM, 15:159–163, Jan
1968.

[55] H. Wang et al. Orion: a power-performance simulator for inter-
connection networks. MICRO-35, 2002.

[56] H. Wang, L. Peh, and S. Malik. Power-driven design of router
microarchitectures in on-chip networks. MICRO-36, 2003.

[57] S. Woo et al. The SPLASH-2 programs: characterization and
methodological considerations. ISCA-22, 1995.

12


