HAT: Heterogeneous Adaptive
Throttling for On-Chip Networks

Kevin Kai-Wei Chang
Rachata Ausavarungnirun
Chris Fallin
Onur Mutlu

Carnegie Mellon University SAFARI

Executive Summary

Problem: Packets contend in on-chip networks (NoCs), causing
congestion, thus reducing system performance

Approach: Source throttling (temporarily delaying packet
injections) to reduce congestion

1) Which applications to throttle?

Observation: Throttling network-intensive applications leads to
higher system performance

=>»Key idea 1: Application-aware source throttling

2) How much to throttle?

Observation: There is no single throttling rate that works well
for every application workload

=>»Key idea 2: Dynamic throttling rate adjustment

Result: Improves both system performance and energy
efficiency over state-of-the-art source throttling policies

Outline

* Background and Motivation

On-Chip Networks

PE

PE

PE

PE

PE

Processing Element

 Connect cores, caches, memory
controllers, etc.

— Buses and crossbars are not scalable

(Cores, L2 Banks, Memory Controllers, etc)

On-Chip Networks

PE

PE

PE

PE

PE PE
R R

PE PE
R R

PE PE
R R
Router

R

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

Connect cores, caches, memory
controllers, etc

— Buses and crossbars are not scalable

Packet switched

2D mesh: Most commonly used
topology

Primarily serve cache misses and
memory requests

Network Congestion Reduces Performance

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

Limited shared resources
(buffers and links)

* due to design constraints:
Power, chip area, and timing

Network congestion:
@system performance

Goal

* Improve system performance in a highly congested
network

* Observation: Reducing network load (humber of
packets in the network) decreases network
congestion, hence improves system performance

e Approach: Source throttling (temporarily delaying
new traffic injection) to reduce network load

Source Throttling

PE PE ces PE

Long network latency when the network is congested

¢ D Network [Packet

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

PE

Source Throttling

* Throttling makes some packets wait longer to inject
* Average network throughput increases, hence higher
system performance

¢ D Network [Packet

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

PE

Key Questions of Source Throttling

* Every cycle when a node has a packet to inject,
source throttling blocks the packet with probability P
— We call P “throttling rate” (ranges from 0 to 1)

* Throttling rate can be set independently on
every node

Two key questions:
1. Which applications to throttle?
2. How much to throttle?

Naive mechanism: Throttle every single node with a
constant throttling rate

Key Observation #1

Throttling network-intensive applications leads to higher
system performance

Configuration: 16-node system, 4x4 mesh network,
8 gromacs (network-non-intensive), and 8 mcf (network-intensive)

gromacs

Throttling gromacs decreases system performance

by 2% due to minimal network load reduction
11

Key Observation #1

Throttling network-intensive applications leads to higher
system performance

Configuration: 16-node system, 4x4 mesh network,
8 gromacs (network-non-intensive), and 8 mcf (network-intensive)

gromacs

Throttling mcf increases system performance by 9%

(gromacs: +14% mcf: +5%) due to reduced congestion
12

Key Observation #1

Throttling network-intensive applications leads to higher
system performance

Configuration: 16-node system, 4x4 mesh network,
8 gromacs (network-non-intensive), and 8 mcf (network-intensive)

gromacs

* Throttling network-intensive applications reduces
congestion

e Benefits both network-non-intensive and
network-intensive applications

13

Key Observation #2

There is no single throttling rate that works well for
every application workload

gromacs Al gIromacs

Network runs best at or below a certain network load

Dynamically adjust throttling rate to avoid overload

and under-utilization
14

Outline
* Background and Motivation
* Mechanism

15

Heterogeneous Adaptive Throttling (HAT)

1. Application-aware throttling:
Throttle network-intensive applications that
interfere with network-non-intensive
applications

2. Network-load-aware throttling rate
adjustment:
Dynamically adjust throttling rate to adapt to
different workloads and program phases

16

Heterogeneous Adaptive Throttling (HAT)

1. Application-aware throttling:
Throttle network-intensive applications that
interfere with network-non-intensive
applications

17

Application-Aware Throttling

1. Measure applications’ network intensity
Use L1 MPKI (misses per thousand instructions) to estimate
network intensity

2. Throttle network-intensive applications

How to select unthrottled applications?

* Leaving too many applications unthrottled overloads the network

=>» Select unthrottled applications so that their total network
intensity is less than the total network capacity

Network-non-intensive Network-intensive

(Unthrottled) (Throttled)
-I.. '.l!
2 MPKI < Threshold Higher L1 MPKI

18

Heterogeneous Adaptive Throttling (HAT)

2. Network-load-aware throttling rate
adjustment:
Dynamically adjust throttling rate to adapt to
different workloads and program phases

19

Dynamic Throttling Rate Adjustment
» Different workloads require different throttling rates
to avoid overloading the network

* But, network load (fraction of occupied buffers/
links) is an accurate indicator of congestion

* Key idea: Measure current network load and
dynamically adjust throttling rate based on load

if network load > target: If network is congested,
throttle more

Increase throttling rate

else: If network is not
]- congested, avoid

unnecessary throttling

Decrease throttling rate

20

Heterogeneous Adaptive Throttling (HAT)

1. Application-aware throttling:
Throttle network-intensive applications that
interfere with network-non-intensive
applications

2. Network-load-aware throttling rate
adjustment:
Dynamically adjust throttling rate to adapt to
different workloads and program phases

21

Epoch-Based Operation

* Application classification and throttling rate
adjustment are expensive if done every cycle

* Solution: recompute at epoch granularity

During epoch: >Beginning of epoch:
Every node: All nodes send measured info
1) Measure L1 MPKI to a central controller, which:

2) Measure network load | 1) Classifies applications
2) Adjusts throttling rate

3) Sends new classification and
throttling rate to each node

e

| C |‘Next Epoch —> Time

urrent Epoch
(100K cycles) (100K cycles) 22

Putting It Together: Key Contributions

1. Application-aware throttling

— Throttle network-intensive applications based on
applications’ network intensities

2. Network-load-aware throttling rate adjustment

— Dynamically adjust throttling rate based on
network load to avoid overloading the network

HAT is the first work to combine application-aware
throttling and network-load-aware rate adjustment

23

Outline

* Background and Motivation
* Mechanism

* Comparison Points

24

Comparison Points

* Source throttling for bufferless NoCs
[Nychis+ Hotnets’10, SIGCOMM’12]

— Throttle network-intensive applications when other
applications cannot inject

— Does not take network load into account
— We call this “Heterogeneous Throttling”

e Source throttling for buffered networks
[Thottethodi+ HPCA’01]

— Throttle every application when the network load exceeds
a dynamically tuned threshold

— Not application-aware
— Fully blocks packet injections while throttling

— We call this “Self-Tuned Throttling”
25

Outline

* Background and Motivation
* Mechanism

* Comparison Points

* Results

26

Methodology

e Chip Multiprocessor Simulator
— 64-node multi-core systems with a 2D-mesh topology
— Closed-loop core/cache/NoC cycle-level model
— 64KB L1, perfect L2 (always hits to stress NoC)

* Router Designs

— Virtual-channel buffered router: 4 VCs, 4 flits/VC
[Dally+ IEEE TPDS’92]

* Input buffers to hold contending packets

— Bufferless deflection router: BLESS [Moscibroda+ ISCA’09]
* Misroute (deflect) contending packets

Methodology

e Workloads
— 60 multi-core workloads of SPEC CPU2006 benchmarks

— 4 network-intensive workload categories based on the
network intensity of applications
(Low/Medium/High)

* Metrics
. . IPCFhared
System performance: weighred Speedup =y, YT
. . IP .alone
Fairness: Maximum Slowdown = max, Cs’hared
IPC:
. WeightedSpeedu
Energy efficiency: PerfPerWart = o<

Power

Performance: Bufferless NoC (BLESS)

50
45
40
35
30
25
20
15
10

5

0

Weighted Speedup

Workload Categories

1. HAT provides better performance improvement than
state-of-the-art throttling approaches
2. Highest improvement on heterogeneous workloads

- L and M are more sensitive to network latency
29

Performance: Buffered NoC

50

a5 E No Throttling
g. _ l_S_eIf-Tuned + 3.5%
o 40 @ Heterogeneous
8 35 - OO HAT
Q
v 30 -
o
E 25 -
20 20 -
S 15

HL HML HM H AVG
Workload Categories

HAT provides better performance improvement than
prior approaches

30

Application Fairness

& i m -
E No Throttling B Heterogeneous No Throttling Self-Tuned

O HAT E Heterogeneous O HAT

c 1.2 1.2
o
E
3 10~ 1.0 -
o
w9
€ £ 08 0.8 -
2 2
E &
-3 = 0.6 - 0.6 -
2 3
S S04 04
N =
©
€ 02 0.2 -
o
2

0.0 - 0.0 -

BLESS Buffered

HAT provides better fairness than prior works

31

Network Energy Efficiency

1.2
E
©
=
S
)
o
¢
S
)
a
o
)
R
©
=
S
o
2

0.0

™ No Throttling

W HAT

1.0 -

0.8 -

0.6

04 -

0.2 -

+ 8.5%

BLESS

+ 5%

Buffered
HAT increases energy efficiency by reducing

network load by 4.7% (BLESS) or 0.5% (buffered)

32

Other Results in Paper

* Performance on CHIPPER [raliin+ HPCA'11]
— HAT improves system performance

e Performance on multithreaded workloads

— HAT is not designhed for multithreaded workloads,
but it slightly improves system performance

* Parameter sensitivity sweep of HAT

— HAT provides consistent system performance
improvement on different network sizes

Conclusions

Problem: Packets contend in on-chip networks (NoCs), causing
congestion, thus reducing system performance

Approach: Source throttling (temporarily delaying packet
injections) to reduce congestion

1) Which applications to throttle?

Observation: Throttling network-intensive applications leads to
higher system performance

=>»Key idea 1: Application-aware source throttling

2) How much to throttle?

Observation: There is no single throttling rate that works well
for every application workload

=>»Key idea 2: Dynamic throttling rate adjustment

Result: Improves both system performance and energy
efficiency over state-of-the-art source throttling policies

34

HAT: Heterogeneous Adaptive
Throttling for On-Chip Networks

Kevin Kai-Wei Chang
Rachata Ausavarungnirun
Chris Fallin
Onur Mutlu

Carnegie Mellon University SAFARI

Throttling Rate Steps

Algorithm 1 HAT: Application Classification Algorithm

at the beginning of each epoch:
empty the groups
sort NV applications by MPKI measurements M PK I;
for sorted application z in N do
if total MPKI of network-non-intensive group +MPKI; <
NonlIntensiveCap then
Place application % into the network-non-intensive group

else
Place application % into the network-intensive group
end if
end for
Current Throttling Rate | Throttling Rate Step
0% — 70% 10%
70% — 90% 2%
90% — 94% 1%

Table II. Throttling rate adjustment used in each epoch.
36

Network

Weighted Speedup

(Higher is Better)

0
40
30
20
10

0
50

40
30
20
10

0
50
40
30

20

10

Sizes

TO VC-BUFFERED mmmm
HAT /3
— 309 o] —— 3.7% —
b - - - - o - oo - — 111% 49%
| 1.3% B I R I_’ﬂ
caippEr mm |L04%
i 3’.3%’ b HAT I:I
— 509, M| ...
L 20.0%
_ﬁg% N ' 6.0%
6.2% BLESS 9.7%
o - HAT =1
10.4%
— — 17.2%
.] 10.8%
. 7.2% B I I_’
16 64 144 16 64 144

Network Size

Network Size

\9)

)
NS TN

—
=

O N b~ QN X©

o)}

Unfairness
(Lower 1s Better)

Weighted Speedup
(Higher is Better)

Performance on CHIPPER/BLESS

[\
o

—
(@)

—_—
Do

Unfairness
(Lower is Better)

(e)

oS B~

a8 0. 4% 11 5%
44 - - CHIPPER I BLESS D
40 CHIPPER-HETERO. [BLESS-HETERO. = | ------
%g 7 CHIPPER-HAT C——1 BLESS-HAT ——]
28 4 123% .
24 i 25.6% 15.4%
ot (1IN (0TI 0 T (1)1 | ST . | 0%
7 24.49 e
12 d 07%400 P2 1694 W INh 7%
8 —
4 —
0
HML H AVG

Injection rate (number of injected packets / cycle):
+8.5% (BLESS) or +4.8% (CHIPPER)

Multithreaded Workloads

Benchmark fft luc lun cholesky

VC-Buffered || 0.1% | 0.0% | 7.5% -0.1%
BLESS 0.1% | 0.0% | 4.2% 0.0%
CHIPPER 0.1% | -0.1% | 1.0% -0.1%

Table V. Execution time reduction of HAT on multithreaded workloads.

39

Motivation

i — — T\

Weighted Speedup
[N
[
i

Workload 2

9
g —Workload1 | 94% N_
7
6

80 82 84 86 88 90 92 94 96 98 100
Throttling Rate (%)

Sensitivity to Other Parameters

* Network load target: WS peaks at b/w 50% and
65% network utilization

— Drops more than 10% beyond that

* Epoch length: WS varies by less than 1% b/w 20K
and 1M cycles

* Low-intensity workloads: HAT does not impact
system performance

* Unthrottled network intensity threshold:

0 50 100 150 200 250
A WS 8.5% | 10.1% | 10.6% | 10.8% | 10.3% | 9.6%
A Unfairness | -11% | -9.5% | -7.1% | -50% | -2.5% | -2.1%

Table VI. Sensitivity of HAT improvements to NonlIntensiveCap.

Implementation

e L1 MPKI: One L1 miss hardware counter and one
instruction hardware counter

 Network load: One hardware counter to monitor
the number of flits routed to neighboring nodes

 Computation: Done at one central CPU node

— At most several thousand cycles (a few percent
overhead for 100K-cycle epoch)

