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Flash Challenges: Reliability and F

NAND Flash Memory Endurance Properties
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NAND Flash Memory 1s Increasingly Noisy
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Future NAND Flash-based Storage Architecture
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Our Goals:
Model NAND Flash as a digital communication channel

Design efficient reliability mechanisms based on the model
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NAND Flash Channel Model
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Simplified NAND Flash channel model based on dominant errors
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How Current Flash Cells are Programmed

Programming 2-bit MLC NAND flash memory in two steps
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Basics of Program Interterence
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Traditional model of victim cell threshold voltage changes
when neighbor cells are programmed
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Previous Work Summary

No previous work experimentally characterized and
modeled threshold voltage distributions under program
interference

Previous modeling work

o Assumes linear correlation between the program interference
induced threshold voltage change of the victim cell and the
threshold voltage changes of the aggressor cells

o Coupling capacitance and total capacitance of each flash cell
are the key coefficients of the model, which are process and
design dependent random variables

o Their exact capacitance values are difficult to determine

o Previously proposed model cannot be realistically applied in
flash controller
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Characterization Hardware Platform
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Characterization Studies

Bitline to bitline program interference
Wordline to wordline program interference
a Program in page order

o Program out of page order
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Bitline to Bitline Program Interference
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WL to WL Interference with In-Page-Order Programming
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Program interference increases the threshold voltage of victim cells and causes
threshold voltage distributions shift to the right and become wider

Program interference depends on the locations of aggressor cells in a block

o Direct neighbor wordline program interference is the dominant source of
interference

o Neighbor bitline and far-neighbor wordline interference are orders of magnitude
lower
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WL to WL Intertference with Out-of-Page-Order Programming
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= The amount of program interference depends on the programming order of
pages in a block
o In-page-order programming likely causes the least amount of interference
o Out-of-page-order programming causes much more interference
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Comparison under Various Program Interference

= Signal-to-noise ratio comparison
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Data Value Dependence of Program Interference

MSB Page programmed in aggressor cell
M Victim <10> M Victim <00> = Victim <01>

0]
o

o))
o

AN
o

N
o

Victim Vth Increase

o
|

aggressor <11> aggressor<10> aggressor<00> aggressor <01>

= The amount of program interference depends on the values of both the
aggressor cells and the victim cells
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Linear Regression Model

Feature extraction for V,, changes based on characterization
o Threshold voltage changes on aggressor cell
o  Original state of victim cell

Enhanced linear regression model
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y=j-K x=n+1

Y = Xa+ € < (vector expression)

Maximum likelihood estimation of the model coefficients

argmin(| X x o — YHz +Al|)
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Model Coetficient Analysis
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Model Accuracy Evaluation
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Distribution of Program Interference Noise

=== When direct neighbor changes from Erased — Erased
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= Program interference noise follows multi-modal Gaussian-mixture
distribution

22
Carnegie Mellon

SAFARI



Program Interference vs P/E Cycles

0.04

== 50k P/E Cycles |
== 35k P/E Cycles

== 17k P/E Cycles
0.025+ .

0.035F
0.03F

0.02+ .
0.015F .
0.01F .

Probability density function

0.005- .

00 10 20 30 40 50 60 70 80 90 100

Normalized threshold voltage change of victim cell

= Program interference noise distribution does not change significantly
with P/E cycles
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Optimum Read Reference for Flash Memory

Read reference voltage can affect the raw bit error rate
f(x) + 9(x)

| f(x) i g(x)
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BER1 = f " f(x)dx + f " o (x)dx BER?2 = f Too f(x)dx + f o g(x)dx
Vref —® Viref =

There exists an optimal read reference voltage

o Predictable if the statistics (i.e. mean, variance) of threshold
voltage distributions are characterized and modeled
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Optimum Read Reference Voltage Prediction
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Learning function (periodically, every ~1k P/E cycles)
o Program known data pattern and test Vth
o Program aggressor neighbor cells and test victim Vth after interference

Optimum read reference voltage prediction
0 Default read reference voltage + Program interference noise mean
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Evaluation Results
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Read reference voltage prediction can reduce raw BER and
increase the P/E cycle lifetime
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Key Findings and Contributions

Methodology: Extensive experimentation with real 2Y-nm
MLC NAND Flash chips

Amount of program interference is dependent on
o Location of cells (programmed and victim)

o Data values of cells (programmed and victim)

o Programming order of pages

Our new model can predict the amount of program
interference with 96.8% prediction accuracy

Our new read reference voltage prediction technique can
improve flash lifetime by 30%
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