Chapter 1

Bufferless and Minimally-Buffered
Deflection Routing

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, Onur Mutlu

Abstract A conventional Network-on-Chip (NoC) router uses input buffers
to store in-flight packets. These buffers improve performance, but consume
significant power. It is possible to bypass these buffers when they are empty,
reducing dynamic power, but static buffer power remains, and when buffers
are utilized, dynamic buffer power remains as well. To improve energy effi-
ciency, bufferless deflection routing removes input buffers, and instead uses
deflection (misrouting) to resolve contention. Bufferless deflection routing is
able to provide similar network performance to conventional buffered routing
when the network carries light to moderate traffic, because deflections are
relatively rare. However, at high network load, deflections cause unnecessary
network hops, wasting power and reducing performance. In order to avoid
some deflections and recover some performance, recent work has proposed to
add a small buffer which holds only flits that contend with others and would
have been deflected. This minimally-buffered deflection (MinBD) router im-
proves performance relative to bufferless deflection routing without incurring
the cost of a large buffer, because it can make more efficient use of a small
buffer. The result is a router design which is more energy-efficient than prior
buffered, bufferless, and hybrid router designs.

Chris Fallin, Greg Nazario, Kevin Chang, Rachata Ausavarungnirun, and Onur Mutlu
Carnegie Mellon University
{cfallin, gnazario, kevincha, rausavar, onur}@cmu. edu

Xiangyao Yu
Massachusetts Institute of Technology
yxy@mit.edu

2 Fallin et al.

1.1 Introduction

A network-on-chip is a first-order component of current and future multi-
core and manycore CMPs (Chip Multiprocessors) [12], and its design can be
critical for system performance. As core counts continue to rise, NoCs with
designs such as 2D-mesh (e.g., Tilera [51] and Intel Terascale [28]) are ex-
pected to become more common to provide adequate performance scaling.
Unfortunately, packet-switched NoCs are projected to consume significant
power. In the Intel Terascale 80-core chip, 28% of chip power is consumed by
the NoC [28]; for MIT RAW, 36% [46]; for the Intel 48-core SCC, 10% [6].
NoC energy efficiency is thus an important design goal [4, 5].

Mechanisms have been proposed to make conventional input-buffered NoC
routers more energy-efficient (i.e., use less energy per unit of performance).
For example, bypassing empty input buffers [37, 50] reduces some dynamic
buffer power, but static power remains.! Such bypassing is also less effective
when buffers are not frequently empty. Bufferless deflection routers [17, 38|
remove router input buffers completely (hence eliminating their static and
dynamic power) to reduce router power. When two flits? contend for a single
router output, one must be deflected to another output. Thus, a flit never
requires a buffer in a router. By controlling which flits are deflected, a buffer-
less deflection router can ensure that all traffic is eventually delivered. Re-
moving buffers yields simpler and more energy-efficient NoC designs: e.g.,
CHIPPER [17] reduces average network power by 54.9% in a 64-node system
compared to a conventional buffered router.

Unfortunately, at high network load, deflection routing reduces perfor-
mance and efficiency. This is because deflections occur more frequently when
many flits contend in the network. Each deflection sends a flit further from
its destination, causing unnecessary link and router traversals. Relative to
a buffered network, a bufferless network with a high deflection rate wastes
energy, and suffers worse congestion, because of these unproductive network
hops. In contrast, a buffered router is able to hold flits (or packets) in its input
buffers until the required output port is available, incurring no unnecessary
hops. Thus, a buffered network can sustain higher performance at peak load,
but at the cost of large buffers, which can consume significant power and die
area.

The best interconnect design would obtain the energy efficiency of the
bufferless approach with the high performance of the buffered approach. Nei-
ther purely bufferless deflection routing nor conventional input-buffered rout-
ing satisfy this goal. Ideally, a router would contain only a small amount of

1 One recent estimate indicates that static power (of buffers and links) could constitute
80-90% of interconnect power in future systems [7].

2 In a conventional bufferless deflection network, flits (several of which make up one packet)
are independently routed, unlike most buffered networks, where a packet is the smallest
independently-routed unit of traffic.

1 Bufferless and Minimally-Buffered Deflection Routing 3

buffering, and would use this buffer space only for those flits that actually
require it, rather than all flits that arrive.
In this chapter, we discuss minimally-buffered deflection routing (MinBD) [20],

a router design which combines both bufferless and buffered paradigms in a
fine-grained and efficient way. MinBD uses deflection routing, but also in-
corporates a small buffer. The router does not switch between modes, but
instead, always operates in a minimally-buffered deflection mode, and can
buffer or deflect any given flit. When a flit first arrives, it does not enter
a buffer, but travels straight to the routing logic. If two flits contend for
the same output, the routing logic chooses one to deflect, as in a bufferless
router. However, the router can choose to buffer up to one deflected flit per
cycle rather than deflecting it. This fine-grained buffering-deflection hybrid
approach significantly reduces deflection rate (by 54% [20]), and improves
performance, as we show. It also incurs only a fraction of the energy cost
of a conventional buffered router, because only a relatively small fraction of
flits are buffered (20% of all flits). MinBD provides higher energy efficiency
while also providing high performance, compared to a comprehensive set of
baseline router designs. In this chapter, we will discuss:

e Bufferless deflection routing [17, 38], which uses deflection in place of
buffering to resolve contention between flits. We will introduce the ba-
sic design of the BLESS [38] and CHIPPER [17] routers, and discuss the
deflection arbitration, livelock freedom, and packet reassembly problems
associated with bufferless routing.

e A new NoC router, MinBD (minimally-buffered deflection routing) [20],
that combines deflection routing with minimal buffering. The router per-
forms deflection routing, but can choose to buffer up to one flit per cycle
in a small side buffer, which significantly reduces deflection rate and en-
hances performance compared to a pure bufferless design while requiring
smaller buffer space than a conventional input-buffered design.

e An evaluation of MinBD against aggressive NoC router baselines: a two-
cycle virtual channel buffered router [11] with empty buffer bypassing [37,
50] at three buffer capacities (with a sensitivity analysis over many more
configurations), CHIPPER [17], and a hybrid bufferless-buffered design,
AFC [29], with SPEC CPU2006 [45] multiprogrammed workloads on 16-
and 64-node CMP systems. From our results, we conclude that MinBD
has the best energy efficiency over all of these prior design points, while
achieving competitive system throughput and logic critical path delay with
the input-buffered router (the best-performing baseline) and competitive
area and power consumption with the pure-bufferless router (the smallest
and most power-efficient baseline).

Fallin et al.

P ——— i R——R——R——
: [Memory Controller | : Eﬁ Qﬁ Qﬁ Eﬁ

|

: Directory i ':' "'_} rl"] r'"] r"]
|| cru DD (D] D
| | I e e e
1 ol RS Vs Vs | =
: Private Cache | ,’, R I) R
| I = =]

| OB ED D B

Fig. 1.1 An example Network-on-Chip (NoC)-based system: an on-chip packet-switched
network connects nodes which often consist of cores, cache slices, and memory controllers.

1.2 Background

This section provides background on NoC-based cache-coherent CMPs, and
on bufferless deflection routing. We assume the reader is familiar with the
basic operation of conventional input-buffered routers. The key idea of such
routers is to buffer every flit that enters the router from an input port before
the flits can arbitrate for output ports. Dally and Towles [11] provide a good
reference on these routers.

NoCs in cache-coherent CMPs: On-chip networks form the backbone of
memory systems in many recently-proposed and prototyped large-scale CMPs
(chip multiprocessors) [46, 28, 51]. Most such systems are cache-coherent
shared memory multiprocessors. Packet-switched interconnect has served as
the substrate for large cache-coherent systems for some time (e.g., for large
multiprocessor systems such as SGI Origin [34]), and the principles are the
same in a chip multiprocessor: each core, slice of a shared cache, or memory
controller is part of one “node” in the network, and network nodes exchange
packets that request and respond with data in order to fulfill memory ac-
cesses. A diagram of a typical system is shown in Fig. 1.1. For example, on a
miss, a core’s private cache might send a request packet to a shared L2 cache
slice, and the shared cache might respond with a larger packet containing
the requested cache block on an L2 hit, or might send another packet to a
memory controller on an L2 miss. CMP NoCs are typically used to implement
such a protocol between the cores, caches and memory controllers.

1 Bufferless and Minimally-Buffered Deflection Routing 5

1.2.1 Bufferless Deflection Routing in NoCs: BLESS

Bufferless Deflection Routers: Bufferless deflection routing was first pro-
posed by Baran [3]. Bufferless deflection routing operates without in-network
buffering. Instead, a unit of traffic continuously moves between network nodes
until it reaches its destination. When contention occurs for a network link, a
bufferless deflection router sends some traffic to another output link instead,
deflecting it. Hence, the use of buffers is replaced by occasional extra link
traversals.

Bufferless deflection routing has found renewed interest in NoC design be-
cause on-chip wires (hence, network links) are relatively cheap, in contrast to
buffers, which consume significant die area and leakage power [4, 5, 7, 29, 38].
Several evaluations of bufferless NoC design [17, 26, 29, 38] have demonstrated
that removing the buffers in NoC routers, and implementing a routing strat-
egy which operates without the need for buffers (such as the one we describe
below), yield energy-efficiency improvements because occasional extra link
traversals due to deflections consume relatively less energy than the dynamic
energy used to buffer traffic at every network hop and the static energy
consumed whenever a buffer is turned on. (Our motivational experiments
in §1.3 demonstrate the performance and energy impact of such a network
design in more detail.) Although other solutions exist to reduce the energy
consumption of buffers, such as dynamic buffer bypassing [37, 50] (which
we also incorporate into our baseline buffered-router design in this chapter),
bufferless deflection routing achieves additional savings in energy and area
by completely eliminating the buffers.

One recent work proposed BLESS [38], a router design that implements
bufferless deflection routing, which we describe here. The fundamental unit
of routing in a BLESS network is the flit, a packet fragment transferred by
one link in one cycle. Flits are routed independently in BLESS.? Because
flits are routed independently, they must be reassembled after they are re-
ceived. BLESS assumes the existence of sufficiently-sized reassembly buffers
at each node in order to reconstruct arriving flits into packets. (Later work,
CHIPPER [17], addresses the reassembly problem explicitly, as we discuss
below.)

Deflection Routing Arbitration: The basic operation of a BLESS buffer-
less deflection router is simple. In each cycle, flits arriving from neighbor
routers enter the router pipeline. Because the router contains no buffers, flits
are stored only in pipeline registers, and must leave the router at the end
of the pipeline. Thus, the router must assign every input flit to some out-
put port. When two flits request the same output port according to their

3 BLESS’ independent flit routing stands in contrast to conventional wormhole or VC
(virtual-channel) routing, in which a packet’s body flits always follow its head flits: because
a deflection can occur in any cycle, any flit in a BLESS network could be separated from
the rest of its packet and must carry its own routing information. This is described more
fully in Moscibroda and Mutlu [38].

6 Fallin et al.

ordinary routing function, the router deflects one of them to another port
(this is always possible, as long as the router has as many outputs as inputs).
BLESS performs this router output port assignment in two stages: flit rank-
ing and port selection [38]. In each cycle, the flits that arrive at the router
are first ranked in a priority order (chosen in order to ensure livelock-free
operation, as we describe below). At the same time, the router computes a
list of productive output ports (i.e., ports which would send the flit closer to
its destination) for each flit. Once the flit ranking and each flits’ productive
output ports are available, the router assigns a port to each flit, starting from
the highest-ranked flit and assigning ports to flits one at a time. Each flit ob-
tains a productive output port if one is still available, and is “deflected” to
any available output port otherwise. Because there are as many output ports
as input ports, and only the flits arriving on the input ports in a given cycle
are considered, this process never runs out of output ports and can always
assign each flit to some output. Hence, no buffering is needed, because every
flit is able to leave the router at the end of the router pipeline.
Livelock freedom in BLESS: Although a BLESS router ensures that a flit
is always able to take a network hop to some other router, a deflection takes a
flit further from its destination, and such a flit will have to work its way even-
tually to its destination. In such a network design, explicit care must be taken
to ensure that all flits eventually arrive at their destinations (i.e., that no flit
circles, or gets stuck, in the network forever). This property is called livelock
freedom. Note that conventional virtual channel-buffered routers, which buffer
flits at every network hop, are livelock-free simply because they never deflect
flits: rather, whenever a flit leaves a router and traverses a link, it always
moves closer toward its destination (this is known as minimal routing [11]).
BLESS ensures livelock freedom by employing a priority scheme called
Oldest-First [38]. Oldest-First prioritization is a total order over all flits based
on each flit’s age (time it has spent in the network). If two flits have the same
age (entered the network in the same cycle), then the tie is broken with other
header fields (such as sender ID) which uniquely identify the flit. This total
priority order leads to livelock-free operation in a simple way: there must
be one flit which is the oldest, and thus has the highest priority. This flit
is always be prioritized during flit-ranking at every router it visits. Thus, it
obtains its first choice of output port and is never deflected. Because it is
never deflected, the flit always moves closer toward its destination, and will
eventually arrive. Once it arrives, it is no longer contending with other flits
in the network, and some other flit is the oldest flit. The new oldest flit is
guaranteed to arrive likewise. Inductively, all flits eventually arrive.
Flit injection and ejection: A BLESS router must inject new flits into
the network when a node generates a packet, and it must remove a flit from
the network when the flit arrives at its destination. A BLESS router makes a
local decision to inject a flit whenever, in a given cycle, there is an empty slot
on any of its input ports [38]. The router has an injection queue where flits
wait until this injection condition is met. When a node is not able to inject,

1 Bufferless and Minimally-Buffered Deflection Routing 7

it is starved; injection starvation is a useful proxy for network congestion
which has been used to control congestion-control mechanisms in bufferless
deflection networks [8, 39, 40].

When a flit arrives at its destination router, that router removes the flit
from the network and places it in a reassembly buffer, where it waits for the
other flits from its packet to arrive. Flits in a packet may arrive in any order
because each flit is routed independently, and might take a different path
than the others due to deflections. Once all flits in a packet have arrived
in that packet’s reassembly buffer, the packet is delivered to the local node
(e.g., core, cache, or memory controller). A BLESS router can eject up to
one flit per cycle from its inputs to its reassembly buffer. Fig. 1.2 depicts the
reassembly buffers as well as the injection queue of a node in a BLESS NoC.

Local Node
Reassembly Buffers | Injection
Packet Queue
D Flits
AlAi iAiAs
B|BoiBiiBai
clei icic
D|Doi D1 D>
Ejected Injected \
T Flits Flits
—> |——
— > ——
) Router e
—> ——

Fig. 1.2 Reassembly buffers and injection queue in a BLESS NoC.

1.2.2 Low-complexity Bufferless Deflection Routing:
CHIPPER

CHIPPER |[17], another bufferless deflection router design, was proposed to
address implementation complexities in prior bufferless deflection routers
(e.g., BLESS). The CHIPPER router has smaller and simpler deflection-
routing logic than BLESS, which leads to a shorter critical path, smaller die
area and lower power.

8 Fallin et al.

1.2.2.1 Problems in BLESS

The Oldest-First age-based arbitration in BLESS leads to slow routers with
large hardware footprint [17, 26, 37] for several reasons, which we describe
here.

Deflection arbitration: First, implementing deflection arbitration in the
way that BLESS specifies leads to complex hardware. Routers that use
Oldest-First arbitration must sort input flits by priority (i.e., age) in every
cycle. This requires a three-stage sorting network for four inputs. Then, the
router must perform port assignment in priority order, giving higher-priority
flits first choice. Because a lower-priority flit might be deflected if a higher
priority-flit takes an output port first, flits must be assigned output ports
sequentially. This sequential port allocation leads to a long critical path, hin-
dering practical implementation. This critical path (through priority sort and
sequential port allocation) is illustrated in Fig. 1.3.

Priority Sort Network Sequential Port Allocators

Input 0 —— H
Input 1 —— Routing
\ Decisions
Input 2 — To Crossbar
Input 3——)Y‘ —
P Unallocated
Port Mask

Fig. 1.3 In BLESS, a priority sort network and sequential port allocation are necessary
to implement livelock-free routing, yielding a long critical path.

Packet reassembly: Second, as noted above, BLESS makes use of reassem-
bly buffers to reassemble flits into packets. Reassembly buffers are necessary
because each flit is routed independently and may take a different path than
the others in a packet, arriving at a different time. Moscibroda and Mutlu [38]
evaluate bufferless deflection routing assuming an infinite reassembly buffer,
and report maximum buffer occupancy.

However, with a finite reassembly buffer that is smaller than a certain size,
deadlock will occur in the worst case (when all nodes send a packet simulta-
neously to a single node). To see why this is the case, observe the example
in Fig. 1.4 (figure taken from Fallin et al. [17]). When a flit arrives at the
reassembly buffers in Node 0, the packet reassembly logic checks whether a
reassembly slot has already been allocated to the packet to which this flit
belongs. If not, a new slot is allocated, if available. If the packet already has
a slot, the flit is placed into its proper location within the packet-sized buffer.
When no slots are available and a flit from a new packet arrives, the reassem-
bly logic must prevent the flit from being ejected out of the network. In the
worst case, portions of many separate packets arrive at Node 0, allocating all
its slots. Then, flits from other packets arrive, but cannot be ejected, because

1 Bufferless and Minimally-Buffered Deflection Routing 9

1. A must be
injected to reach

Node 0 & free a
Node 0 Node 1 reassembly slot P Node 3
Reassembly Buffer
T - T—

Al Ao Tain

B|BoiBui: Bz;

c Co; § C Cs Injection Injection Injection

= | Queue Queue Queue

D Do Dl D2: Es
3. Network is full >l< 2 Aicannot be
because E & F lnjected because

; network is full

cannot be ejected E

(no free reassembly

slots) and so flits . .

remain in network Bufferless Deﬂectlon Network

Fig. 1.4 Deadlock due to reassembly-buffer overflow in bufferless routing.

no reassembly slots are free. These flits remain in the network, deflecting and
retrying ejection. Eventually, the network will fill with these flits. The flits
which are required to complete the partially-reassembled packets may have
not yet been injected at their respective sources, and they cannot be injected,
because the network is completely full. Thus, deadlock occurs. Without a dif-
ferent buffer management scheme, the only way to avoid this deadlock is to
size the reassembly buffer at each node for the worst case when all other
nodes in the system send a packet to that node simultaneously. A bufferless
deflection router implementation with this amount of buffering would have
significant overhead, unnecessarily wasting area and power. Hence, an explicit
solution is needed to ensure deadlock-free packet reassembly in practical de-
signs.

1.2.2.2 CHIPPER: A Low-complexity Bufferless Deflection
Router

We now outline the operation of CHIPPER [17], a bufferless deflection router
design which makes bufferless deflection routing practical by providing for
low-cost deflection arbitration and packet reassembly.

Golden Packet-based deflection arbitration: A bufferless deflection
router must ensure that the network has livelock freedom by providing a
strong guarantee that any flit eventually arrives at its destination. BLESS
ensured that any flit arrives by enforcing a total priority order among all
flits, such that the highest-priority (oldest) flit is delivered, then another flit
attains the highest priority (becomes the oldest). However, enforcing a to-
tal priority order creates significant complexity in a BLESS router (as we
described above).

10 Fallin et al.

The CHIPPER router design starts from the observation that minimal
livelock-free routing requires only that one flit is prioritized until it arrives,
and that any flit is eventually chosen to be this specially-prioritized flit if it
remains in the network long enough. This priority scheme is called Golden
Packet, and it allows the CHIPPER router to use a simpler design than the
BLESS router.

The Golden Packet priority scheme globally prioritizes one packet in the
network at a time. Flits in this packet (which we call golden flits) are pri-
oritized over other flits in the network. (Within the packet, ties are broken
by the flit sequence number within the packet.) The prioritization rules are
shown in Ruleset 1. When a packet becomes the Golden Packet, it remains
so for a golden epoch, which is set to a length L that is long enough so that
the packet can reach any destination in the network from any source.

The Golden Packet is chosen implicitly (i.e., without the need for all
routers to explicitly coordinate their choice). The CHIPPER network can
uniquely name any packet with a packet ID (e.g., source ID and cache-miss
MSHR, number, or some other transaction identifier). One packet ID is de-
signed as golden based on a predefined function of the current time (in clock
cycles).* In particular, the packet ID which is currently golden is incremented
once every L cycles (the golden epoch), and wraps around when all possible
packet IDs have each been designated as golden for the length of a golden
epoch. In this way, any packet eventually becomes golden if it remains in the
network long enough.

Ruleset 1 Golden Packet Prioritization Rules
Golden Tie: If two flits are golden, the lower-numbered flit (first in golden packet)
wins.
Golden Dominance: If one flit is golden, it wins over any non-golden flit.
Common Case: Contests between two non-golden flits are decided pseudo-randomly.

The most important consequence of Golden Packet is that each router only
needs to correctly route the highest-priority flit. This is sufficient to ensure
that the first outstanding flit of the Golden Packet is delivered within L
cycles. Because the packet will periodically become Golden until delivered,
all of its flits are guaranteed delivery.

Because Golden Packet prioritization provides livelock freedom as long as
the highest-priority flit is correctly routed, the deflection routing (arbitration)
logic does not need to sequentially assign each flit to the best possible port,
as the BLESS router’s deflection routing logic does (Fig. 1.3). Rather, it only
needs to recognize a golden flit, if one is present at the router inputs, and
route that flit correctly if present. All other deflection arbitration is best-
effort. Arbitration can thus be performed more quickly with simpler logic.

4 CHIPPER assumes that all routers are in a single clock domain, hence can maintain
synchronized golden packet IDs simply by counting clock ticks.

1 Bufferless and Minimally-Buffered Deflection Routing 11

We now describe the CHIPPER router’s arbitration logic here; the router’s
pipeline is depicted in Fig. 1.5 (see Fallin et al. [17] for more details, includ-
ing the ejection/injection logic which is not described here). The CHIPPER
router’s arbitration logic is built with a basic unit, the two-input arbiter block,
shown on the right side of Fig. 1.5. Each two-input arbiter block receives up
to two flits every cycle and routes these two flits to its outputs. In order to
route its input flits, the two-input arbiter block chooses one winning flit. If a
golden flit is present, the golden flit is the winning flit (if two golden flits are
present, the tie is broken as described by the prioritization rules). If no golden
flit is present, one of the input flits is chosen randomly to be the winning flit.
The two-input arbiter block then examines the winning flit’s destination, and
sends this flit toward the arbiter block’s output which leads that flit closer
to its destination. The other flit, if present, must then take the remaining
arbiter block output.

Arbiter Block
Eject Inject Permute X
N {1 — N — —
Input E h:h';j--g - | x| S Output | 1. pick winner by
Links s = U D = < E Links priority (GP)
W o — Y]
Ejector |Ejector Injector Permuter 2. Send winner to
Tree Kill Muxes Blocks desired port
(@) (b) (c) (d)
. . 3. Send loser to
Eject Inject remaining port

Fig. 1.5 CHIPPER router microarchitecture: router pipeline (left) and detail of a single
arbiter block (right).

The CHIPPER router performs deflection arbitration among 4 input flits
(from the four inputs in a 2D mesh router) using a permutation network of
four arbiter blocks, connected in two stages of two blocks each, as shown
in the permute pipeline stage of Fig. 1.5. The permutation network allows
a flit from any router input to reach any router output. When flits arrive,
they arbitrate in the first stage, and winning flits are sent toward the second-
stage arbiter block which is connected to that flit’s requested router output.
Then, in the second stage, flits arbitrate again. As flits leave the second
stage, they proceed directly to the router outputs via a pipeline register (no
crossbar is necessary, unlike in conventional router designs). This two-stage
arbitration has a shorter critical path than the sequential scheme used by a
BLESS router because the arbiter blocks in each stage work in parallel, and
because (unlike in a BLESS arbiter) the flits need not be sorted by priority
first. The arbiter-block permutation network cannot perform all possible flit
permutations (unlike the BLESS router’s routing logic), but because a golden
flit (if present) is always prioritized, and hence always sent to a router output
which carries the flit closer to its destination, the network is still livelock-

12 Fallin et al.

free. Because the permutation network (i) eliminates priority sorting, and
(ii) partially parallelizes port assignment, the router critical path is improved
(reduced) by 29.1%, performing within 1.1% of a conventional buffered router
design [17].

Addressing packet reassembly deadlock with Retransmit-Once:
Fallin et al. [17] observe that the reassembly deadlock problem is funda-
mentally due to a lack of global flow control. Unlike buffered networks, which
can pass tokens upstream to senders to indicate whether downstream buffer
space is available, a bufferless deflection network has no such backpressure.
Allowing receivers to exert backpressure on senders solves the problem. Thus,
CHIPPER introduces a new low-overhead flow control protocol, Retransmit-
Once, as its second major contribution.

Retransmit-Once opportunistically assumes that buffer space will be avail-
able, imposing no network overhead in the common case. When no space is
available, any subsequent arriving packet is dropped at the receiver. How-
ever, the receiver makes note of this dropped packet. Once reassembly buffer
space becomes available, the reassembly logic in the receiver reserves buffer
space for the previously dropped packet, and the receiver then requests a re-
transmission from the sender. Thus, at most one retransmission is necessary
for any packet. In addition, by dropping only short request packets (which
can be regenerated from a sender’s request state), and using reservations to
ensure that longer data packets are never dropped, Retransmit-Once ensures
that senders do not have to buffer data for retransmission. In our evalu-
ations of realistic workloads, retransmission rate is 0.021% maximum with
16-packet reassembly buffers, hence the performance impact is negligible.
Fallin et al. [17] describe the Retransmit-Once mechanism in more detail and
report that it can be implemented with very little overhead by integrating
with cache-miss buffers (MSHRs) in each node.

1.3 Motivation: Performance at High Load

Previous NoC designs based on bufferless deflection routing, such as BLESS [38]
and CHIPPER [17] which we just introduced, were motivated largely by the
observation that many NoCs in CMPs are over-provisioned for the common-
case network load. In this case, a bufferless network can attain nearly the same
application performance while consuming less power, which yields higher en-
ergy efficiency. We now examine the buffered-bufferless comparison in more
detail. Fig. 1.6 shows (i) relative application performance (weighted speedup:
see §1.5), and (ii) relative energy efficiency (performance per watt), when us-
ing a bufferless network, compared to a conventional buffered network. Both
plots show these effects as a function of network load (average injection rate).
Here we show a virtual channel buffered network (4 VCs, 4 flits/VC) (with

1 Bufferless and Minimally-Buffered Deflection Routing 13

Bufferless Performance Relative to Buffered with Bypassing

8

g 12 I I

:

o

qu 1 LEm s Tioem g o -_._‘.f_ I ’.

(D) - " LI]

> -~ .,

2 08 ' ' o

4 0 0.2 0.4 0.6
_ Injection Rate (flits/node/cycle)

% Bufferless Energy Efficiency Relative to Buffered with Bypassing
% .l I |

> . e TR

20 1 - sa —

Q L
i

é’ 0 I I

= 0 0.2 0.4 0.6
~

Injection Rate (flits/node/cycle)

Fig. 1.6 System performance and energy efficiency (performance per watt) of bufferless
deflection routing, relative to conventional input-buffered routing (4 VCs, 4 flits/VC) that
employs buffer bypassing, in a 4x4 2D mesh. Injection rate (X axis) for each workload is
measured in the baseline buffered network.

buffer bypassing) and the CHIPPER bufferless deflection network [17] in a
4x4-mesh CMP (details on methodology are in §1.5).

For low-to-medium network load, a bufferless network has performance
close to a conventional buffered network, because the deflection rate is low:
thus, most flits take productive network hops on every cycle, just as in the
buffered network. In addition, the bufferless router has significantly reduced
power (hence improved energy efficiency), because the buffers in a conven-
tional router consume significant power. However, as network load increases,
the deflection rate in a bufferless deflection network also rises, because flits
contend with each other more frequently. With a higher deflection rate, the
dynamic power of a bufferless deflection network rises more quickly with load
than dynamic power in an equivalent buffered network, because each deflec-
tion incurs some extra work. Hence, bufferless deflection networks lose their
energy-efficiency advantage at high load. Just as important, the high deflec-
tion rate causes each flit to take a longer path to its destination, and this
increased latency reduces the network throughput and system performance.

Overall, neither design obtains both good performance and good energy
efficiency at all loads. If the system usually experiences low-to-medium net-
work load, then the bufferless design provides adequate performance with low
power (hence high energy efficiency). But, if we use a conventional buffered
design to obtain high performance, then energy efficiency is poor in the low-
load case, and even buffer bypassing does not remove this overhead because

14 Fallin et al.

buffers consume static power regardless of use. Finally, simply switching
between these two extremes at a per-router granularity, as previously pro-
posed [29], does not address the fundamental inefficiencies in the bufferless
routing mode, but rather, uses input buffers for all incoming flits at a router
when load is too high for the bufferless mode (hence retains the relative
energy-inefficiency of buffered operation at high load). We now introduce
MinBD, the minimally-buffered deflection router, which combines bufferless
and buffered routing to reduce this overhead.

1.4 MinBD: Minimally-Buffered Deflection Router

The MinBD (minimally-buffered deflection) router is a new router design
that combines bufferless deflection routing with a small buffer, called the
“side buffer.” We start by outlining the key principles which the design
follows to reduce deflection-caused inefficiency by using buffering:

1. When a flit would be deflected by a router, it is often better to buffer the
flit and arbitrate again in a later cycle. Some buffering can avoid many
deflections.

2. However, buffering every flit leads to unnecessary power overhead and
buffer requirements, because many flits will be routed productively on the
first try. The router should buffer a flit only if necessary.

3. Finally, when a flit arrives at its destination, it should be removed from
the network (ejected) quickly, so that it does not continue to contend with
other flits.

Basic High-Level Operation: The MinBD router does not use input
buffers, unlike conventional buffered routers. Instead, a flit that arrives at
the router proceeds directly to the routing and arbitration logic. This logic
performs deflection routing, so that when two flits contend for an output port,
one of the flits is sent to another output instead. However, unlike a bufferless
deflection router, the MinBD router can also bujffer up to one flit per cycle in
a single FIFO-queue side buffer. The router examines all flits at the output
of the deflection routing logic, and if any are deflected, one of the deflected
flits is removed from the router pipeline and buffered (as long as the buffer
is not full). From the side buffer, flits are re-injected into the network by the
router, in the same way that new traffic is injected. Thus, some flits that
would have been deflected in a bufferless deflection router are removed from
the network temporarily into this side buffer, and given a second chance to
arbitrate for a productive router output when re-injected. This reduces the
network’s deflection rate (hence improves performance and energy efficiency)
while buffering only a fraction of traffic.

1 Bufferless and Minimally-Buffered Deflection Routing 15

Eject/Inject

< Buffering
Side Buffer |

Permute
N g B g = \
Input * Hik o X XHEH P Output
— A m . g
Links sle g 5 Links
va £ Ha n :X: :X: 32 sv
Deflection ~ Elpgll?e
Eject Inject Routing egister

Fig. 1.7 MinBD router pipeline.

Ruleset 2 MinBD Prioritization Rules (based on Golden Packet [17] with new rule 3)

Given: two flits, each Golden, Silver, or Ordinary. (Only one can be Silver.)

1. Golden Tie: Ties between two Golden flits are resolved by sequence number (first in
Golden Packet wins).

2. Golden Dominance: If one flit is Golden, it wins over any Silver or Ordinary flits.
3. Silver Dominance: Silver flits win over Ordinary flits.

4. Common Case: Ties between Ordinary flits are resolved randomly.

We will describe the operation of the MinBD router in stages. First, §1.4.1
describes the deflection routing logic that computes an initial routing decision
for the flits that arrive in every cycle. Then, §1.4.2 describes how the router
chooses to buffer some (but not all) flits in the side buffer. §1.4.3 describes
how buffered flits and newly-generated flits are injected into the network,
and how a flit that arrives at its destination is ejected. Finally, §1.4.4 dis-
cusses correctness issues, and describes how MinBD ensures that all flits are
eventually delivered.

1.4.1 Deflection Routing

The MinBD router pipeline is shown in Fig. 1.7. Flits travel through the
pipeline from the inputs (on the left) to outputs (on the right). We first discuss
the deflection routing logic, located in the Permute stage on the right. This
logic implements deflection routing: it sends each input flit to its preferred
output when possible, deflecting to another output otherwise.

MinBD uses the deflection logic organization first proposed in CHIP-
PER [17]. The permutation network in the Permute stage consists of two-
input blocks arranged into two stages of two blocks each. This arrangement
can send a flit on any input to any output. (Note that it cannot perform all
possible permutations of inputs to outputs, but as we will see, it is sufficient
for correct operation that at least one flit obtains its preferred output.) In
each two-input block, arbitration logic determines which flit has a higher pri-

16 Fallin et al.

ority, and sends that flit in the direction of its preferred output. The other
flit at the two-input block, if any, must take the block’s other output. By
combining two stages of this arbitration and routing, deflection arises as a
distributed decision: a flit might be deflected in the first stage, or the second
stage. Restricting the arbitration and routing to two-flit subproblems reduces
complexity and allows for a shorter critical path, as demonstrated in [17].

In order to ensure correct operation, the router must arbitrate between flits
so that every flit is eventually delivered, despite deflections. MinBD adapts a
modified version of the Golden Packet priority scheme [17], which solves this
livelock-freedom problem. This priority scheme is summarized in Ruleset 2.
The basic idea of the Golden Packet priority scheme is that at any given time,
at most one packet in the system is golden. The flits of this golden packet,
called “golden flits,” are prioritized above all other flits in the system (and
contention between golden flits is resolved by the flit sequence number). While
prioritized, golden flits are never deflected by non-golden flits. The packet is
prioritized for a period long enough to guarantee its delivery. Finally, this
“golden” status is assigned to one globally-unique packet ID (e.g., source node
address concatenated with a request ID), and this assignment rotates through
all possible packet IDs such that any packet that is “stuck” will eventually
become golden. In this way, all packets will eventually be delivered, and the
network is livelock-free. (See [17] for the precise way in which the Golden
Packet is determined; MinBD uses the same rotation schedule.)

However, although Golden Packet arbitration provides correctness, a per-
formance issue occurs with this priority scheme. Consider that most flits are
not golden: the elevated priority status provides worst-case correctness, but
does not impact common-case performance (prior work reported over 99%
of flits are delivered without becoming golden [17]). However, when no flits
are golden and ties are broken randomly, the arbitration decisions in the two
permutation network stages are not coordinated. Hence, a flit might win arbi-
tration in the first stage, and cause another flit to be deflected, but then lose
arbitration in the second stage, and also be deflected. Thus, unnecessary de-
flections occur when the two permutation network stages are uncoordinated.

In order to resolve this performance issue, we observe that it is enough to
ensure that in every router, at least one flit is prioritized above the others in
every cycle. In this way, at least one flit will certainly not be deflected. To
ensure this when no golden flits are present, MinBD adds a “silver” priority
level, which wins arbitration over common-case flits but loses to the golden
flits. One silver flit is designated randomly among the set of flits that enter
a router at every cycle (this designation is local to the router, and not prop-
agated to other routers). This modification helps to reduce deflection rate.
Prioritizing a silver flit at every router does not impact correctness, because
it does not deflect a golden flit if one is present, but it ensures that at least
one flit will consistently win arbitration at both stages. Hence, deflection rate
is reduced, improving performance.

1 Bufferless and Minimally-Buffered Deflection Routing 17

1.4.2 Using a Small Buffer to Reduce Deflections

The key problem addressed by MinBD is defiection inefficiency at high load:
in other words, when the network is highly utilized, contention between flits
occurs often, and many flits will be deflected. We observe that adding a small
buffer to a deflection router can reduce deflection rate, because the router can
choose to buffer rather than deflect a flit when its output port is taken by
another flit. Then, at a later time when output ports may be available, the
buffered flit can re-try arbitration.

Thus, to reduce deflection rate, MinBD adds a “side buffer” that buffers
only some flits that otherwise would be deflected. This buffer is shown in
Fig. 1.7 above the permutation network. In order to make use of this buffer,
a “buffer ejection” block is placed in the pipeline after the permutation net-
work. At this point, the arbitration and routing logic has determined which
flits to deflect. The buffer ejection block recognizes flits that have been de-
flected, and picks up to one such deflected flit per cycle. It removes a deflected
flit from the router pipeline, and places this flit in the side buffer, as long as
the side buffer is not full. (If the side buffer is full, no flits are removed from
the pipeline into the buffer until space is created.) This flit is chosen randomly
among deflected flits (except that a golden flit is never chosen: see §1.4.4).
In this way, some deflections are avoided. The flits placed in the buffer will
later be re-injected into the pipeline, and will re-try arbitration at that time.
This re-injection occurs in the same way that new traffic is injected into the
network, which we discuss below.

1.4.3 Injection and Ejection

So far, we have considered the flow of flits from router input ports (i.e., ar-
riving from neighbor routers) to router output ports (i.e., to other neighbor
routers). A flit must enter and leave the network at some point. To allow
traffic to enter (be injected) and leave (be ejected), the MinBD router con-
tains injection and ejection blocks in its first pipeline stage (see Fig. 1.7).
When a set of flits arrives on router inputs, these flits first pass through the
ejection logic. This logic examines the destination of each flit, and if a flit is
addressed to the local router, it is removed from the router pipeline and sent
to the local network node.? If more than one locally-addressed flit is present,
the ejection block picks one, according to the same priority scheme used by
routing arbitration.

However, ejecting a single flit per cycle can produce a bottleneck and cause
unnecessary deflections for flits that could not be ejected. In the workloads

5 Note that flits are reassembled into packets after ejection. To implement this reassembly,
we use the Retransmit-Once scheme, as used by CHIPPER and described in §1.2.2.2.

18 Fallin et al.

we evaluate, at least one flit is eligible to be ejected 42.8% of the time. Of
those cycles, 20.4% of the time, at least two flits are eligible to be ejected.
Hence, in ~8.5% of all cycles, a locally-addressed flit would be deflected
rather than ejected if only one flit could be ejected per cycle. To avoid this
significant deflection-rate penalty, MinBD doubles the ejection bandwidth.
To implement this, a MinBD router contains two ejection blocks. Each of
these blocks is identical, and can eject up to one flit per cycle. Duplicating
the ejection logic allows two flits to leave the network per cycle at every
node.®

After locally-addressed flits are removed from the pipeline, new flits are
allowed to enter. There are two injection blocks in the router pipeline shown
in Fig. 1.7: (i) re-injection of flits from the side buffer, and (ii) injection of
new flits from the local node. (The “Redirection” block prior to the injection
blocks will be discussed in the next section.) Each block operates in the same
way. A flit can be injected into the router pipeline whenever one of the four
inputs does not have a flit present in a given cycle, i.e., whenever there is
an “empty slot” in the network. Each injection block pulls up to one flit per
cycle from an injection queue (the side buffer, or the local node’s injection
queue), and places a new flit in the pipeline when a slot is available. Flits from
the side buffer are re-injected before new traffic is injected into the network.
However, note that there is no guarantee that a free slot will be available for
an injection in any given cycle. We now address this starvation problem for
side buffer re-injection.

1.4.4 Ensuring Side Buffered Flits Make Progress

When a flit enters the side buffer, it leaves the router pipeline, and must
later be re-injected. As we described above, flit re-injection must wait for an
empty slot on an input link. It is possible that such a slot will not appear for
a long time. In this case, the flits in the side buffer are delayed unfairly while
other flits make forward progress.

To avoid this situation, MinBD implements buffer redirection. The key
idea of buffer redirection is that when this side buffer starvation problem is
detected, one flit from a randomly-chosen router input is forced to enter the
side buffer. Simultaneously, the flit at the head of the side buffer is injected
into the slot created by the forced flit buffering. In other words, one router
input is “redirected” into the FIFO buffer for one cycle, in order to allow
the buffer to make forward progress. This redirection is enabled for one cycle
whenever the side buffer injection is starved (i.e., has a flit to inject, but

6 For fairness, because dual ejection widens the datapath from the router to the local
node (core or cache), we also add dual ejection to the baseline bufferless deflection network
and input-buffered network when we evaluate performance, but not when we evaluate the
power, area, or critical path of these baselines.

1 Bufferless and Minimally-Buffered Deflection Routing 19

no free slot allows the injection) for more than some threshold Cipreshola
cycles (in our evaluations, Cypreshoida = 2). Finally, note that if a golden flit
is present, it is never redirected to the buffer, because this would break the
delivery guarantee.

1.4.5 Livelock and Deadlock-free Operation

MinBD provides livelock-free delivery of flits using Golden Packet and buffer
redirection. If no flit is ever buffered, then Golden Packet [17] ensures livelock
freedom (the “silver flit” priority never deflects any golden flit, hence does not
break the guarantee). Now, we argue that adding side buffers does not cause
livelock. First, the buffering logic never places a golden flit in the side buffer.
However, a flit could enter a buffer and then become golden while waiting.
Redirection ensures correctness in this case: it provides an upper bound on
residence time in a buffer (because the flit at the head of the buffer will leave
after a certain threshold time in the worst case). If a flit in a buffer becomes
golden, it only needs to remain golden long enough to leave the buffer in the
worst case, then progress to its destination. MinBD chooses the threshold
parameter (Cipreshotd) and golden epoch length so that this is always possible.
More details can be found in our extended technical report [18].

MinBD achieves deadlock-free operation by using Retransmit-Once [17],
which ensures that every node always consumes flits delivered to it by drop-
ping flits when no reassembly/request buffer is available. This avoids packet-
reassembly deadlock (as described in [17]), as well as protocol level deadlock,
because message-class dependencies [25] no longer exist.

1.5 Evaluation Methodology

To obtain application-level performance as well as network performance re-
sults, we use an in-house CMP simulator. This simulator consumes instruc-
tion traces of x86 applications, and faithfully models the CPU cores and the
cache hierarchy, with a directory-based cache coherence protocol (based on
the SGI Origin protocol [9]) running on the modeled NoC. The CPU cores
model stalls, and interact with the caches and network in a closed-loop way.
The modeled network routers are cycle-accurate, and are assumed to run in
a common clock domain. The instruction traces are recorded with a Pin-
tool [36], sampling representative portions of each benchmark as determined
by PinPoints [41]. We find that simulating 25M cycles gives stable results
with these traces. Detailed system parameters are shown in Table 1.1.

Note that we make use of a perfect shared cache to stress the network,
as was done in the CHIPPER [17] and BLESS [38] bufferless router evalu-

20 Fallin et al.

Table 1.1 Simulated baseline system parameters.

CPU cores Out-of-order, 3-wide issue and retire (1 memory
op/cycle), 16 MSHRs [33]

L1 caches 64 KB, 4-way associative, 32-byte blocks

L2 (shared) cache Distributed across nodes; perfect (always hits) to penalize

our design conservatively & isolate network performance
from memory effects

Shared cache mapping Consecutive cache blocks striped across L2 cache slices

Cache coherence scheme Directory-based, perfect directory (SGI Origin proto-
col [34])

Data packet sizes 1-flit request packets, 4-flit data packets

Network Links 1-cycle latency (separate pipeline stage), 2.5mm, 128 bits
wide

Baseline bufferless router CHIPPER [17], 2-cycle router latency; 64-cycle Golden
Epoch; Retransmit-Once [17]

Baseline buffered router (m VCs, n flits/VC): (8,8), (4,4), (4,1); 2-cycle latency,

buffer bypassing [37, 50]; Additional configurations eval-
uated in Fig. 1.9.
AFC (Adaptive Flow Control)[As described in [29]: 4 VCs/channel, 4 flits/VC. 2-cycle
latency (buffered & bufferless modes). Implements buffer
bypassing as well.

MinBD 2-cycle latency (§1.4); 4-flit side buffer (single FIFO);
Cihreshold = 2; 64-cycle Golden Epoch; Retransmit-
Once [17]

ations. In this model, every request generated by an L1 cache miss goes to
a shared cache slice, and the request is always assumed to hit and return
data. This potentially increases network load relative to a real system, where
off-chip memory bandwidth can also be a bottleneck. However, note that this
methodology is conservative: because MinBD degrades performance relative
to the buffered baseline, the performance degradation that we report is an
upper bound on what would occur when other bottlenecks are considered.
We choose to perform our evaluations this way in order to study the true
capacity of the evaluated networks (if network load is always low because
system bottlenecks such as memory latency are modeled, then the results do
not give many insights about router design). Note that the cache hierarchy
details (L1 and L2 access latencies, and MSHRs) are still realistic. We remove
only the off-chip memory latency/bandwidth bottleneck.

Baseline Routers: We compare MinBD to a conventional input-buffered
virtual channel router [11] with buffer bypassing [37, 50|, a bufferless de-
flection router (CHIPPER [17]), and a hybrid bufferless-buffered router
(AFC [29]). In particular, we sweep buffer size for input-buffered routers.
We describe a router with m virtual channels (VCs) per input and n flits of
buffer capacity per VC as an (m, n)-buffered router. We compare to a (8, 8),
(4,4), and (4, 1)-buffered routers in our main results. The (8, 8) point repre-
sents a very large (overprovisioned) baseline, while (4,4) is a more reason-
able general-purpose configuration. The (4, 1) point represents the minimum
buffer size for deadlock-free operation (two message classes [25], times two to
avoid routing deadlock [10]). Furthermore, though 1-flit VC buffers would re-
duce throughput because they do not cover the credit round-trip latency, we
optimistically assume zero-latency credit traversal in our simulations (which

1 Bufferless and Minimally-Buffered Deflection Routing 21

benefits the baseline design, hence is conservative for our claims). Finally,
we simulate smaller (non-deadlock-free) designs with 1 and 2 VCs per input
for our power-performance tradeoff evaluation in §1.6.2 (Fig. 1.9), solely for
completeness (we were able to avoid deadlock at moderate loads and with
finite simulation length for these runs).

Application Workloads: We use SPEC CPU2006 [45] benchmarks (26 ap-
plications”) to construct 75 multiprogrammed workloads (which consist of
many single-threaded benchmark instances that run independently). Each
workload consists of 16 or 64 randomly-selected applications which are
randomly mapped onto the mesh. Workloads are categorized by average
network injection rate in the baseline (4,4)-buffered system (measured in
flits/cycle/node). For 4x4 workloads, these injection rate categories are
(0,0.15), (0.15,0.3), (0.3,0.4), (0.4,0.5), and > 0.5; for 8x8 workloads,
(0,0.05), (0.05,0.15), (0.15,0.25), and > 0.25 (an 8x8 mesh saturates at a
lower load than a 4x4 mesh, due to limited bisection bandwidth). Each cat-
egory contains 15 workloads.

Synthetic-Traffic Workloads: To show robustness under various traf-
fic patterns, we evaluate 4x4 and 8x8 networks with uniform-random, bit-
complement, and transpose synthetic traffic [11] in addition to application
workloads. For each pattern, network injection rate is swept from zero to
network saturation.

Performance Metrics: To measure system performance, we use the well-

. . N [pCshared alone
known Weighted Speedup metric [44]: WS = .7 | S5z All IPCS

values are measured on the baseline bufferless network. Weighted speedup
correlates to system throughput [16] and is thus a good general metric for
multiprogrammed workloads.

Power Modeling: We use a modified and improved version of ORION
2.0 [49] (configured for 65nm), as developed by Grot et al. [24], as well as
Verilog models synthesized with a commercial 65nm design library. We use
Verilog models of router control logic, and add datapath area and power using
ORION models for crossbars, buffers, links, and pipeline registers. CHIPPER,
and MinBD do not use a conventional crossbar, instead decoupling the cross-
bar into a permutation network, which we model using muxes. We rely on
ORION’s modeling for the baseline input-buffered router’s control logic (e.g.,
arbitration). This hybrid synthesis / ORION approach models each portion
of the router in a way that captures its key limitations. The control logic
is logic- rather than wiring-dominated, and its arbitration paths determine
the critical path; hence, standard-cell synthesis will model area, power and
timing of MinBD and CHIPPER control logic with reasonable accuracy. The
router datapath is wiring-dominated and relies on heavily-optimized compo-
nents with custom layouts such as large crossbars and wide muxes, pipeline
registers and memories. ORION explicitly models such router components.

7 410.bwaves, 416.gamess and 434.zeusmp were excluded because we were not able to
collect representative traces from these applications.

22 Fallin et al.

We report energy efficiency as performance-per-watt, computed as weighted
speedup divided by average network power.

1.6 Evaluation

In this section, we evaluate MinBD against a bufferless deflection router [17]
and an input-buffered router with buffer bypassing [37, 50], as well as a
hybrid of these two, AFC [29], and demonstrate that by using a combination
of deflection routing and buffering, MinBD achieves performance competitive
with the conventional input-buffered router (and higher than the bufferless
deflection router), with a smaller buffering requirement, and better energy
efficiency than all prior designs.

1.6.1 Application Performance

Fig. 1.8 (top pane) shows application performance as weighted speedup for
4x4 (16-node) and 8x8 (64-node) CMP systems. The plots show average re-
sults for each workload category, as described in §1.5, as well as overall av-
erage results. Each bar group shows the performance of three input-buffered
routers: 8 VCs with 8 flits/VC, 4 VCs with 4 flits/VC, and 4 VCs with
1 flit/VC. Next is CHIPPER, the bufferless deflection router, followed by
AFC [29], a coarse-grained hybrid router that switches between a bufferless
and a buffered mode. MinBD is shown last in each bar group. We make
several observations:

1. MinBD improves performance relative to the bufferless deflection router
by 2.7% (4.9%) in the 4x4 (8x8) network over all workloads, and 8.1% (15.2%)
in the highest-intensity category. Its performance is within 2.7% (3.9%) of
the (4,4) input-buffered router, which is a reasonably-provisioned baseline,
and within 3.1% (4.2%) of the (8,8) input-buffered router, which has large,
power-hungry buffers. Hence, adding a side buffer allows a deflection router
to obtain significant performance improvement, and the router becomes more
competitive with a conventional buffered design.

2. Relative to the 4-VC, 1-flit/VC input-buffered router (third bar), which
is the smallest deadlock-free (i.e., correct) design, MinBD performs nearly the
same despite having less buffer space (4 flits in MinBD vs. 16 flits in (4, 1)-
buffered). Hence, buffering only a portion of traffic (i.e., flits that would have
been deflected) makes more efficient use of buffer space.

3. AFC, the hybrid bufferless/buffered router which switches modes at
the router granularity, performs essentially the same as the 4-VC, 4-flit/VC
input-buffered router, because it is able to use its input buffers when load

23

AVG

>0.50

AFC (4,4) ===
MinBD-4 —

4x4
Pure Bufferless (CHIPPER) E=mmmm

.15-0.30 0.30-0.40 0.40-0.50

8)
4)
)

0

5

8
4
4
5

Buffered (8,

Buffered (

Buffered (4,
0.00-0.1

1 Bufferless and Minimally-Buffered Deflection Routing

BN ISR pragun [T T T Tt T pragupn | TTTT]
Lo o Av YOIV | : L #$)DdvV o

- AL = | YHddIHO | | !

- yy)ng = W (I'p)ng

- g9)ng | 0 — : (' p)nd

C @w_vwmw - m b-QEuIN

- I.yung i : (r'7)OdV

- yp)ng | 0 = | ¥AddIHD

R g‘9)Ing a -~ ” inw:m

PoiT A - (Fp)nd

I : L-AqUIA L X

- | (rP)0AY , (8'9)ng

— | VHAJdIHD = m

SLI - N iy UL o o

— " wy — i

—8E5 8'gind £ o F5E B AHJdTHD

| =€ w > ' FE=ES (T'p)ng

Bo0°: 7-dduiIN < n 3505 (b

FoES drpody 5 3 R b rand

S 58 MAJdIHD | B3 o E% (8'8)ng

LEES n = SE |

S = i : 4

SN n = m P-aguIN

R g8ind 3 =N (FP)OdV

= | P-aguIN P - m YdddIHD

— : Q 7)0AV = - : (I'p)ng

- | Tl | - |F | B

- : o] : ‘Q)jn

- W prnd o ——— ——— swnd

\rkr | 8°8)ind E | : w.om:_:z

8% 5! P agUIN | o -5 b v'POdV [

FEES K YOIV [= R YAddIHD | © ¢ ¢

F23.09: YIddIHD | 250 (I'p)jng .

Fog.8 1'¥)ng o889 Fy)mg L
IR | - R ypng | oo A 285! (g'g)n D
L |FETE . e Gwind)| o rETE A R
L 111 [L ||| L 11 S L1 L]
dnpoadg (M) Jomod (M/312d) dnpoads () 1omog (M/312d)
PaIYSToM Kouaroryyg AS1oug pPaIySIo M Kouaroryyg ASioug

network power, and energy efficiency (perfor-

Network Intensity
)-node CMP systems.

weighted speedup),
and 64 (8x8

in 16 (4x4)

)

Fig. 1.8 Performance (

mance per watt

24 Fallin et al.

increases. However, as we will see, this performance comes at an efficiency
cost relative to our hybrid design.

1.6.2 Network Power and Energy Efficiency

Network Power: Fig. 1.8 (middle pane) shows average total network power,
split by component and type (static/dynamic), for 4x4 and 8x8 networks
across the same workloads. Note that static power is shown in the bottom
portion of each bar, and dynamic power in the top portion. Each is split into
buffer power, link power, and other power (which is dominated by datap-
ath components, e.g., the crossbar and pipeline registers). We make several
observations:

1. Buffer power is a large part of total network power in the input-buffered
routers that have reasonable buffer sizes, i.e., (4,4) and (8, 8) (VCs, flits/VC),
even with empty-buffer bypassing, largely because static buffer power (bot-
tom bar segment) is significant. Removing large input buffers reduces static
power in MinBD as well as the purely-bufferless baseline, CHIPPER.® Be-
cause of this reduction, MinBD’s total network power never exceeds that of
the input-buffered baselines, except in the highest-load category in an 8x8-
mesh (by 4.7%).

2. Dynamic power is larger in the baseline deflection-based router, CHIP-
PER, than in input-buffered routers: CHIPPER has 31.8% (41.1%) higher
dynamic power than the (4, 4)-buffered router in the 4x4 (8x8) networks in
the highest-load category. This is because bufferless deflection-based rout-
ing requires more network hops, especially at high load. However, in a 4x4
network, MinBD consumes less dynamic power (by 8.0%) than the (4,4)-
buffered baseline in the highest-load category because reduced deflection rate
(by 58%) makes this problem relatively less significant, and allows savings
in buffer dynamic energy and a simplified datapath to come out. In an 8x8
network, MinBD’s dynamic power is only 3.2% higher.

3. MinBD and CHIPPER, which use a permutation network-based dat-
apath rather than a full 5x5 crossbar, reduce datapath static power (which
dominates the “static other” category) by 31.0%: the decoupled permuta-
tion network arrangement has less area, in exchange for partial permutabil-
ity (which causes some deflections). Input-buffered routers and AFC require
a full crossbar because they cannot deflect flits when performing buffered
routing (partial permutability in a non-deflecting router would significantly
complicate switch arbitration, because each output arbiter’s choice would be
limited by which other flits are traversing the router).

8 Note that network power in the buffered designs takes buffer bypassing into account,
which reduces these baselines’ dynamic buffer power. The (4,4)-buffered router bypasses
73.7% (83.4%) of flits in 4x4 (8x8) networks. Without buffer bypassing, this router has
7.1% (6.8%) higher network power, and 6.6% (6.4%) worse energy-efficiency.

1 Bufferless and Minimally-Buffered Deflection Routing 25

4. AFC, the coarse-grained hybrid, has nearly the same network power as
the (4, 4) buffered router at high load: 0.6% (5.7%) less in 4x4 (8x8). This is
because its buffers are enabled most of the time. At low load, when it can
power-gate its buffers frequently, its network power reduces. However, AFC’s
network power is still higher than the pure bufferless router (CHIPPER)
or MinBD because (i) it still spends some time in its buffered mode, and
(ii) its datapath power is higher, as described above. On average, AFC still
consumes 36.8% (18.1%) more network power than CHIPPER, and 33.5%
(33.0%) more than MinBD, in the lowest-load category.

Energy efficiency: Fig. 1.8 (bottom pane) shows energy efficiency. We make
two key observations:

1. MinBD has the highest energy efficiency of any evaluated design: on
average in 4x4 (8x8) networks, 42.6% (33.8%) better than the reasonably-
provisioned (4,4) input-buffered design. MinBD has 15.9% (8.7%) better
energy-efficiency than the most energy-efficient prior design, the (4, 1)-buffered
router.

2. At the highest network load, MinBD becomes less energy-efficient com-
pared to at lower load, and its efficiency degrades at a higher rate than the
input-buffered routers with large buffers (because of deflections). However,
its per-category energy-efficiency is still better than all baseline designs, with
two exceptions. In the highest-load category (near saturation) in an 8x8-
mesh, MinBD has nearly the same efficiency as the (4,1)-buffered router
(but, note that MinBD is much more efficient than this baseline router at
lower loads). In the lowest-load category in a 4x4 mesh, the purely-bufferless
router CHIPPER is slightly more energy-efficient (but, note that CHIPPER’s
performance and efficiency degrade quickly at high loads).

16 : —
15 + . od o * 1.8 2.8
! e 4,1 14 ° Y ° °
5 u é@&i‘i AMinBD, % 2' ‘2'_2 S o 34 48 %o 8.4 8.8
& 2101

g 13 o °L Buffered
3 @6\& CHIPPER
ED 11 o«
2 10

9 L

8 L L L L L L L

1 12 14 1.6 1.8 2 22 24 2.6

Power (W)

Fig. 1.9 Power (X) vs. application performance (Y) in 4x4 networks. The line represents
all points with equivalent performance-per-watt to MinBD.

We conclude that, by achieving competitive performance with the buffered
baseline, and making more efficient use of a much smaller buffer capacity
(hence reducing buffer power and total network power), MinBD provides bet-
ter energy efficiency than prior designs. To summarize this result, we show a
2D plot of power and application performance in Fig. 1.9 for 4x4 networks,

26 Fallin et al.

and a wider range of buffered router designs, as well as MinBD and CHIP-
PER. (Recall from §1.5 that several of the baseline input-buffered designs are
not deadlock free (too few VCs) or have a buffer depth that does not cover
credit round-trip latency, but we evaluate them anyway for completeness.)
In this plot, with power on the X axis and application performance on the Y
axis, a line through the origin represents a fixed performance-per-watt ratio
(the slope of the line). This equal-efficiency line is shown for MinBD. Points
above the line have better efficiency than MinBD, and points below have
worse efficiency. As shown, MinBD presents the best energy efficiency among
all evaluated routers. The trend in an 8x8 network (not shown for space) is
similar (see technical report [18]).

1.6.3 Performance Breakdown

To understand the observed performance gain in more detail, we now break
down performance by each component of MinBD. Fig. 1.10 shows perfor-
mance (for 4x4 networks) averaged across all workloads for eight deflection
systems, which constitute all possible combinations of MinBD’s mechanisms
added to the baseline (CHIPPER) router: dual-width ejection (D), silver-
flit prioritization (S), and the side buffer (B), shown with the same three
input-buffered configurations as before. The eighth bar (D+S+B), which
represents all three mechanisms added to the baseline deflection network,
represents MinBD. Table 1.2 shows deflection rate for the same set of sys-
tems.

Baseline (CHIPPER) mm—

o, D (Dual-Eject) mmmm— |
9.9% g (Silver Flits) e
B (Side-Buf) —
D+S X=Xzsd

D+B

S+B

D+S+B (MinBD) ——1

| +3.7% +4.5% +6.6%

Weighted Speedup

Buffered (4,1) vz |
Buffered (4,4) |
Buffered (8,8) =—2

Average (All Workloads)

Fig. 1.10 Breakdown of performance gains for each mechanism in MinBD.

Table 1.2 Average deflection rates for deflection-based routers.

Baseline D S B D+S |D+B [S+B |D+S+B
(CHIPPER) (MinBD)
0.28 0.22 10.27 |0.17]0.22 [0.11 [0.16 (0.10

1 Bufferless and Minimally-Buffered Deflection Routing 27

Table 1.3 Normalized router area and critical path for bufferless and buffered baselines,
compared to MinBD.

Router Design CHIPPER|MinBD|Buffered (8, 8)|Buffered (4, 4)|Buffered (4, 1)
Normalized Area 1.00 1.03 2.06 1.69 1.60
Normalized Critical{|1.00 1.07 0.99 0.99 0.99

Path Length

We draw three main conclusions:

1. All mechanisms individually contribute to performance and reduce de-
flection rate. Dual ejection (D) increases performance by 3.7% over baseline
CHIPPER.® Adding silver-flit prioritization (D+S) increases performance by
0.7% over dual-ejection alone. Adding a side buffer to the other two mecha-
nisms (D4S+B) increases performance by 2.0% on average.

2. Adding a side buffer by itself (B) is not sufficient to attain the per-
formance that MinBD achieves. In fact, when only the side buffer is added,
performance drops by 4.3% relative to baseline CHIPPER. The degradation
occurs primarily because the increased in-network throughput (enabled by
a reduced deflection rate) in the network with side buffers places more ejec-
tion pressure on nodes, which exacerbates the ejection bottleneck that we
observed in §1.4.1. This performance reduction comes despite a reduced de-
flection rate: even though flits are not deflected as frequently, they must still
be removed from the network efficiently for performance to increase.

3. Adding dual ejection to the side buffered system (D+B) to address
the ejection bottleneck increases performance to 5.8% above baseline. Silver-
flit prioritization in addition to this configuration point yields the MinBD
router (eighth bar), which attains 6.6% performance above baseline (2.7%
above dual-ejection alone) on average for all workload intensities. Overall,
deflection rate reduces by 64% from baseline CHIPPER to MinBD (and 54%
from CHIPPER with dual-ejection (D) to MinBD, as shown in our primary
results).

1.6.4 Synthetic Traffic Performance

We study the network-level performance of MinBD and baseline designs by
applying synthetic traffic patterns: uniform random, bit-complement, and
transpose [11]. Fig. 1.11 shows latency curves with injection rate swept from
zero to saturation for the bufferless deflection router, MinBD, and the (4, 1)
and (8, 8) input-buffered router (other input-buffered routers are omitted for
clarity; these are the smallest and largest evaluated input-buffered routers,
to show lower and upper bounds). Latency curves are shown for uniform

9 The main results presented in Fig. 1.8 use this data point (with dual ejection) in order
to make a fair (same external router interface) comparison.

Fallin et al.

Latency

Uniform Random Bit Complement
5]]]]]]]
0 0.2 0.4 0.6 0 01 02 03 04 05
4x4
>
Q
[
Q
|
— .
5]]]]]]]]
0 0.1 02 03 04 0 01 02 03 04 05
Uniform Random Bit Complement
| I |
% ———————————— Gl —
Q
=
S 15kl -
=
N 0 b _
5 | | | | |
0 0.1 0.2 0 005 01 015 02
8x8
>
Q
=
Q
=
’J -
5 | | | | | |
0 005 01 015 0 005 01 015 02
Injection Rate Injection Rate
CHIPPER - - - Buffered (4,1) -
MinBD -—--—: Buffered (8,8) ——

Fig. 1.11 Synthetic traffic evaluations for MinBD, CHIPPER and input-buffered routers

(with small and large input buffers), in 4x4 and 8x8 meshes.

1 Bufferless and Minimally-Buffered Deflection Routing 29

random, bit complement, transpose, and hotspot patterns. In the “hotspot”
pattern, nodes send requests to a single node at the center of the mesh with
20% probability and to random locations otherwise. (Under a 100% hotspot
pattern, the performance of all designs converges because the receiving node’s
ejection bandwidth is the bottleneck. A 20% skewed hotspot pattern is more
realistic because it tests the network’s capacity to handle unbalanced load.)

Under uniform random traffic (which most closely resembles our multi-
programmed application workloads with striped data mapping), MinBD per-
forms better than the bufferless baseline, with a higher saturation point.
MinBD has a lower network saturation point than the input-buffered net-
work with large input buffers, but very similar saturation point to the small
(4, 1) input-buffered router, as our earlier results indicated. We conclude that
with only 4 flits of buffering per router, MinBD closes nearly half of the gap
in network saturation throughput between the bufferless router (CHIPPER)
and the largest input-buffered router (with 256 flits of total buffer space),
and performs similarly to a smaller input-buffered router with 16 flits of
total buffer space.

In addition, non-uniform traffic patterns demonstrate the robustness and
adaptivity of deflection routing: in particular, the transpose traffic pattern
demonstrates a lower saturation point in the input-buffered router than ei-
ther deflection-based router (MinBD or CHIPPER). This advantage occurs
because deflection routing is adaptive (a flit’s path can change based on net-
work conditions). Deflections spread traffic away from hotspots and balance
load in unbalanced traffic patterns. While adaptive routing is also possible
in input-buffered routers, it is more complex because it requires the router
to track network load or congestion (locally or globally) and make decisions
accordingly. In contrast, deflection routing provides adaptivity by virtue of
its ordinary operation.

1.6.5 Sensitivity to Parameters

Side Buffer Size: As side buffer size is varied from 1 to 64 flits, mean
weighted speedup (application performance) changes only 0.2% on average
across all workloads (0.9% in the highest-intensity category) in 4x4 networks.
We conclude that the presence of the buffer (to buffer at least one deflected
flit) is more important than its size, because the average utilization of the
buffer is low. In a 4x4 MinBD network with 64-flit side buffers at saturation
(61% injection rate, uniform random), the side buffer is empty 48% of the
time on average; 73% of the time, it contains 4 or fewer flits; 93% of the
time, 16 or fewer. These measurements suggest that a very small side buffer
captures most of the benefit. Furthermore, total network power increases by
19% (average across all 4x4 workloads) when a 1-flit buffer per router is

30 Fallin et al.

increased to a 64-flit buffer per router. Hence, a larger buffer wastes power
without significant performance benefit.

We avoid a 1-flit side buffer because of the way the router is pipelined:
such a single-flit buffer would either require for a flit to be able to enter, then
leave, the buffer in the same cycle (thus eliminating the independence of the
two router pipeline stages), or else could sustain a throughput of one flit only
every two cycles. (For this sensitivity study, we optimistically assumed the
former option for the 1-flit case.) The 4-flit buffer we use avoids this pipelining
issue, while increasing network power by only 4% on average over the 1-flit
buffer.

Note that although the size we choose for the side buffer happens to be

the same as the 4-flit packet size which we use in our evaluations, this need
not be the case. In fact, because the side buffer holds deflected flits (not
packets) and deflection decisions occur at a per-flit granularity, it is unlikely
that the side buffer will hold more than one or two flits of a given packet
at a particular time. Hence, unlike conventional input-buffered routers which
typically size a buffer to hold a whole packet, MinBD’s side buffer can remain
small even if packet size increases.
Packet Size: Although we perform our evaluations using a 4-flit packet size,
our conclusions are robust to packet size. In order to demonstrate this, we also
evaluate MinBD, CHIPPER, and the (4, 4)- and (8, 8)-input-buffered routers
in 4x4 and 8x8 networks using a data packet size of 8 flits. In a 4x4 (8x8)
network, MinBD improves performance over CHIPPER by 17.1% (22.3%),
achieving performance within 1.2% (8.1%) of the (4, 4)-input-buffered router
and within 5.5% (12.8%) of the (8, 8)-input-buffered router, while reducing
average network power by 25.0% (18.1%) relative to CHIPPER, 16.0% (9.4%)
relative to the (4,4)-input-buffered router, and 40.3% (34.5%) relative to the
(8, 8)-input-buffered router, respectively. MinBD remains the most energy-
efficient design as packet size increases.

1.6.6 Hardware Cost: Router Area and Critical Path

We present normalized router area and critical path length in Table 1.3.
Both metrics are normalized to the bufferless deflection router, CHIPPER,
because it has the smallest area of all routers. MinBD adds only 3% area
overhead with its small buffer. In both CHIPPER and MinBD, the datapath
dominates the area. In contrast, the large-buffered baseline has 2.06x area,
and the reasonably-provisioned buffered baseline has 1.69x area. Even the
smallest deadlock-free input-buffered baseline has 60% greater area than the
bufferless design (55% greater than MinBD). In addition to reduced buffering,
the reduction seen in CHIPPER and MinBD is partly due to the simplified
datapath in place of the 5x5 crossbar (as also discussed in §1.6.2). Overall,
MinBD reduces area relative to a conventional input-buffered router both

1 Bufferless and Minimally-Buffered Deflection Routing 31

by significantly reducing the required buffer size, and by using a more area-
efficient datapath.

Table 1.3 also shows the normalized critical path length of each router
design, which could potentially determine the network operating frequency.
MinBD increases critical path by 7% over the bufferless deflection router,
which in turn has a critical path 1% longer than an input-buffered router. In
all cases, the critical path is through the flit arbitration logic (the permuta-
tion network in MinBD and CHIPPER, or the arbiters in the input-buffered
router). MinBD increases critical path relative to CHIPPER by adding logic
in the deflection-routing stage to pick a flit to buffer, if any. The buffer re-
injection and redirection logic in the first pipeline stage (ejection/injection)
does not impact the critical path because the permutation network pipeline
stage has a longer critical path.

1.7 Related Work

To our knowledge, MinBD is the first NoC router design that combines de-
flection routing with a small side buffer that reduces deflection rate. Other
routers combine deflection routing with buffers, but do not achieve the effi-
ciency of MinBD because they either continue to use input buffers for all flits
(Chaos router) or switch all buffers on and off at a coarse granularity with a
per-router mode switch (AFC), in contrast to MinBD’s fine-grained decision
to buffer or deflect each flit.

Buffered NoCs that also use deflection: Several routers that primarily
operate using buffers and flow control also use deflection routing as a sec-
ondary mechanism under high load. The Chaos Router [32] deflects packets
when a packet queue becomes full to probabilistically avoid livelock. However,
all packets that pass through the router are buffered; in contrast, MinBD per-
forms deflection routing first, and only buffers some flits that would have been
deflected. This key aspect of our design reduces buffering requirements and
buffer power. The Rotary Router [1] allows flits to leave the router’s inner
ring on a non-productive output port after circulating the ring enough times,
in order to ensure forward progress. In this case, again, deflection is used as
an escape mechanism to ensure probabilistic correctness, rather than as the
primary routing algorithm, and all packets must pass through the router’s
buffers.

Other bufferless designs: Several prior works propose bufferless router
designs [17, 21, 26, 38, 48]. We have already extensively compared to
CHIPPER [17], from which we borrow the deflection routing logic design.
BLESS [38], another bufferless deflection network, uses a more complex de-
flection routing algorithm. Later works showed BLESS to be difficult to imple-
ment in hardware [17, 26, 37], thus we do not compare to it in this work. Other
bufferless networks drop rather than deflect flits upon contention [21, 26].

32 Fallin et al.

Some earlier large multiprocessor interconnects, such as those in HEP [42] and
Connection Machine [27], also used deflection routing. The HEP router com-
bined some buffer space with deflection routing [43]. However, these routers’
details are not well-known, and their operating conditions (large off-chip net-
works) are significantly different than those of modern NoCs.

More recently, Fallin et al. [19] applied deflection routing to a hierarchical
ring topology, allowing most routers (those that lie within a ring) to be de-
signed without any buffering or flow control, and using only small buffers to
transfer between rings. The resulting design, HiRD, was shown to be more
energy-efficient than the baseline hierarchical ring with more buffering. HiRD
uses many of the same general ideas as MinBD to ensure forward progress,
e.g., enforcing explicit forward-progress guarantees in the worst case without
impacting common-case complexity.

Improving high-load performance in bufferless networks: Some work
has proposed congestion control to improve performance at high network load
in bufferless deflection networks [8, 39, 40]. Both works used source throttling:
when network-intensive applications cause high network load which degrades
performance for other applications, these intensive applications are prevented
from injecting network traffic some of the time. By reducing network load,
source throttling reduces deflection rate and improves overall performance
and fairness. These congestion control techniques and others (e.g., [47]) are
orthogonal to MinBD, and could improve MinBD’s performance further.
Hybrid buffered-bufferless NoCs: AFC [29] combines a bufferless deflec-
tion router based on BLESS [38] with input buffers, and switches between
bufferless deflection routing and conventional input-buffered routing based
on network load at each router. While AFC has the performance of buffered
routing in the highest-load case, with better energy efficiency in the low-load
case (by power-gating buffers when not needed), it misses opportunity to im-
prove efficiency because it switches buffers on at a coarse granularity. When
an AFC router experiences high load, it performs a mode switch which takes
several cycles in order to turn on its buffers. Then, it pays the buffering en-
ergy penalty for every flit, whether or not it would have been deflected. It also
requires buffers as large as the baseline input-buffered router design in order
to achieve equivalent high-load performance. As a result, its network power
is nearly as high as a conventional input-buffered router at high load, and
it requires fine-grained power gating to achieve lower power at reduced net-
work load. In addition, an AFC router has a larger area than a conventional
buffered router, because it must include both buffers and buffered-routing
control logic as well as deflection-routing control logic. In contrast, MinBD
does not need to include large buffers and the associated buffered-mode con-
trol logic, instead using only a smaller side buffer. MinBD also removes the
dependence on efficient buffer power-gating that AFC requires for energy-
efficient operation at low loads. We quantitatively compared MinBD to AFC
in §1.4 and demonstrated better energy efficiency at all network loads.

1 Bufferless and Minimally-Buffered Deflection Routing 33

Reducing cost of buffered routers: Empty buffer bypassing [50, 37] re-
duces buffered router power by allowing flits to bypass input buffers when
empty. However, as our evaluations (which faithfully model the power re-
ductions due to buffer bypassing) show, this scheme reduces power less than
our new router design: bypassing is only effective when buffers are empty,
which happens more rarely as load increases. Furthermore, buffers continue to
consume static power, even when unused. Though both MinBD and empty-
buffer-bypassed buffered routers avoid buffering significant traffic, MinBD
further reduces router power by using much smaller buffers.

Kim [30] proposed a low-cost buffered router design in which a packet
uses a buffer only when turning, not when traveling straight along one di-
mension. Unlike our design, this prior work does not make use of deflection,
but uses deterministic X-Y routing. Hence, it is not adaptive to different
traffic patterns. Furthermore, its performance depends significantly on the
size of the turn-buffers. By using deflection, MinBD is less dependent on
buffer size to attain high performance, as we argued in §1.6.5. In addition,
[30] implements a token-based injection starvation avoidance scheme which
requires additional communication between routers, whereas MinBD requires
only per-router control to ensure side buffer injection.

1.8 Conclusion

In this chapter, we introduced deflection routing and discussed two buffer-
less deflection routers, BLESS [38] and CHIPPER [17]. We then described
MinBD [20], a minimally-buffered deflection router design. MinBD combines
deflection routing with a small buffer, such that some network traffic that
would have been deflected is placed in the buffer instead. Previous router
designs which use buffers typically place these buffers at the router inputs.
In such a design, energy is expended to read and write the buffer for every
flit, and buffers must be large enough to efficiently handle all arriving traffic.
In contrast to prior work, a MinBD router uses its buffer for only a fraction
of network traffic, and hence makes more efficient use of a given buffer size
than a conventional input-buffered router. Its average network power is also
greatly reduced: relative to an input-buffered router, buffer power is much
lower, because buffers are smaller. Relative to a bufferless deflection router,
dynamic power is lower, because deflection rate is reduced with the small
buffer.

We evaluate MinBD against a comprehensive set of baseline router de-
signs: three configurations of an input-buffered virtual-channel router [11], a
bufferless deflection router, CHIPPER [17], and a hybrid buffered-bufferless
router, AFC [29]. Our evaluations show that MinBD performs competitively
and reduces network power: on average in a 4x4 network, MinBD performs
within 2.7% of the input-buffered design (a high-performance baseline) while

34 Fallin et al.

consuming 31.8% less total network power on average relative to this input-
buffered router (and 13.4% less than the bufferless router, which performs
worse than MinBD). Finally, MinBD has the best energy efficiency among
all routers which we evaluated. We conclude that a router design which aug-
ments bufferless deflection routing with a small buffer to reduce deflection
rate is a compelling design point for energy-efficient, high-performance on-
chip interconnect.

1.9 Future Work

We believe promising future research directions exist in bufferless and minimally-
buffered deflection routers. One promising direction is to develop more effec-
tive packet prioritization mechanisms that are applicable to such routers. For
example, to improve system performance and fairness, mechanisms have been
proposed to perform packet prioritization in a manner that is aware of appli-
cation characteristics [13] or packet latency slack [14]. Similarly, mechanisms
have been proposed to provide quality of service to different applications in
buffered routers (e.g., [23, 24, 35]). Development of similar mechanisms for
bufferless and minimally buffered routers is an open research problem. An-
other promising direction is to develop techniques to increase the applicability
of bufferless and minimally buffered deflection routing to different topologies,
such as express cube topologies [22, 31] and hybrid and hierarchical topolo-
gies [2, 15, 24]. Adaptation of bufferless and minimally-buffered deflection
routing in a manner that guarantees correctness in different topologies, and
the evaluation of resulting techniques is an important area for future work.
As a first step, our recent research [19] has developed new techniques to use
deflection routing in hierarchical ring topologies, with promising results that
show that a minimally-buffered hierarchical ring design significantly improves
system energy efficiency. We intend to explore these research directions in the
future and hope that this chapter serves as an inspiration to other researchers
as well.

Acknowledgments

We thank the anonymous reviewers of our conference papers CHIPPER [17]
and MinBD [20] for their feedback. We gratefully acknowledge members of the
SAFARI group and Michael Papamichael at CMU for feedback. Chris Fallin
is currently supported by an NSF Graduate Research Fellowship (Grant No.
0946825). Rachata Ausavarungnirun is currently supported by the Royal Thai
Government Scholarship. Greg Nazario and Xiangyao Yu were undergradu-
ate research interns while this work was done. We acknowledge the generous

1 Bufferless and Minimally-Buffered Deflection Routing 35

support of our industrial partners, including AMD, HP Labs, IBM, Intel,
NVIDIA, Oracle, Qualcomm, and Samsung. This research was partially sup-
ported by grants from NSF (CAREER Award CCF-0953246, CCF-1147397
and CCF-1212962). This article is a significantly extended and revised ver-
sion of our previous conference papers that introduced CHIPPER [17] and

MinBD [20].
References
[1] Abad, P., et al.: Rotary router: an efficient architecture for CMP inter-
connection networks. ISCA-34 (2007)
[2] Balfour, J., Dally, W.J.: Design tradeofs for tiled CMP on-chip networks.
ICS (2006)
[3] Baran, P.: On distributed communications networks. IEEE Transactions
on Communication Systems (1964)
[4] Borkar, S.: Thousand core chips: a technology perspective. DAC-44
(2007)
[5] Borkar, S.: Future of interconnect fabric: a contrarian view. SLIP ’10
(2010)
[6] Borkar, S.: NoCs: What’s the point? NSF Workshop on Emerging Tech.
for Interconnects (WETT), Feb. 2012 (2012)
[7] Bose, P.: The power of communication: Trends, challenges (and account-
ing issues). NSF WETI, Feb. 2012 (2012)
[8] Chang, K., et al.: HAT: Heterogeneous adaptive throttling for on-chip
networks. SBAC-PAD (2012)
[9] Culler, D.E., et al.: Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann (1999)
[10] Dally, W., Seitz, C.: Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Trans. Comp. (1987)
[11] Dally, W., Towles, B.: Principles and Practices of Interconnection Net-
works. Morgan Kaufmann (2004)
[12] Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnec-
tion networks. DAC-38 (2001)
[13] Das, R., Mutlu, O., Moscibroda, T., Das, C.: Application-aware priori-
tization mechanisms for on-chip networks. MICRO-42 (2009)
[14] Das, R., et al.: Aérgia: exploiting packet latency slack in on-chip net-
works. ISCA-37 (2010)
[15] Das, R., et al.: Design and evaluation of hierarchical on-chip network
topologies for next generation CMPs. HPCA-15 (2011)
[16] Eyerman, S., Eeckhout, L.: System-level performance metrics for multi-
program workloads. IEEE Micro 28, 42-53 (2008)
[17] Fallin, C., et al.: CHIPPER: A low-complexity bufferless deflection

router. HPCA-17 (2011)

36

[18]

[19]

Fallin et al.

Fallin, C., et al.: MinBD: Minimally-buffered deflection routing for
energy-efficient interconnect. SAFARI technical report TR-2011-008:
http://safari.ece.cmu.edu/tr.html (2011)

Fallin, C., et al.: HIRD: A low-complexity, energy-efficient hierarchi-
cal ring interconnect. SAFARI technical report TR-2012-004: http:
//safari.ece.cmu.edu/tr.html (2012)

Fallin, C.; et al.: MinBD: Minimally-buffered deflection routing for
energy-efficient interconnect. NOCS-4 (2012)

Gomez, C., et al.: Reducing packet dropping in a bufferless noc. Euro-
Par-14 (2008)

Grot, B., Hestness, J., Keckler, S., Mutlu, O.: Express cube topologies
for on-chip interconnects. HPCA-15 (2009)

Grot, B., Keckler, S., Mutlu, O.: Preemptive virtual clock: A flexible,
efficient, and cost-effective qos scheme for networks-on-chip. MICRO-42
(2009)

Grot, B., et al.: Kilo-NOC: A heterogeneous network-on-chip architec-
ture for scalability and service guarantees. ISCA-38 (2011)

Hansson, A., et al.: Avoiding message-dependent deadlock in network-
based systems-on-chip. VLSI Design (2007)

Hayenga, M., et al.. SCARAB: A single cycle adaptive routing and
bufferless network. MICRO-42 (2009)

Hillis, W.: The Connection Machine. MIT Press (1989)

Hoskote, Y., et al.: A 5-GHz mesh interconnect for a teraflops processor.
IEEE Micro (2007)

Jafri, S.A.R., et al.: Adaptive flow control for robust performance and
energy. MICRO-43 (2010)

Kim, J.: Low-cost router microarchitecture for on-chip networks.
MICRO-42 (2009)

Kim, J., Balfour, J., Dally, W.: Flattened butterfly topology for on-chip
networks. MICRO-40 (2007)

Konstantinidou, S., Snyder, L.: Chaos router: architecture and perfor-
mance. ISCA-18 (1991)

Kroft, D.: Lockup-free instruction fetch/prefetch cache organization.
ISCA-8 (1981)

Laudon, J., Lenoski, D.: The SGI Origin: a ccNUMA highly scalable
server. ISCA-24 (1997)

Lee, J., Ng, M., Asanovic, K.: Globally-synchronized frames for guaran-
teed quality-of-service in on-chip networks. ISCA-35 (2008)

Luk, C.K., et al.: Pin: building customized program analysis tools with
dynamic instrumentation. PLDI (2005)

Michelogiannakis, G., et al.: Evaluating bufferless flow-control for on-
chip networks. NOCS (2010)

Moscibroda, T., Mutlu, O.: A case for bufferless routing in on-chip net-
works. ISCA-36 (2009)

1 Bufferless and Minimally-Buffered Deflection Routing 37

[39]
[40]
[41]

[42]

Nychis, G., et al.: Next generation on-chip networks: What kind of con-
gestion control do we need? Hotnets-IX (2010)

Nychis, G., et al.: On-chip networks from a networking perspective: Con-
gestion and scalability in many-core interconnects. SIGCOMM (2012)
Patil, H., et al.: Pinpointing representative portions of large Intel Ita-
nium programs with dynamic instrumentation. MICRO-37 (2004)
Smith, B.: Architecture and applications of the HEP multiprocessor com-
puter system. SPIE (1981)

Smith, B.: Personal communication (2008)

Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous
multithreaded processor. ASPLOS-9 (2000)

Standard Performance Evaluation Corporation: SPEC CPU2006. http:
//wwu . spec.org/cpu2006 (2006)

Taylor, M., et al.: The Raw microprocessor: A computational fabric for
software circuits and general-purpose programs. IEEE Micro (2002)
Thottethodi, M., Lebeck, A., Mukherjee, S.: Self-tuned congestion con-
trol for multiprocessor networks. HPCA-7 (2001)

Tota, S., et al.: Implementation analysis of NoC: a MPSoC trace-driven
approach. GLSVLSI-16 (2006)

Wang, H., et al.: Orion: a power-performance simulator for interconnec-
tion networks. MICRO-35 (2002)

Wang, H., et al.: Power-driven design of router microarchitectures in
on-chip networks. MICRO-36 (2003)

Wentzlaff, D., et al.: On-chip interconnection architecture of the tile
processor. IEEE Micro 27(5), 15-31 (2007)

