
RFVP: Rollback-Free Value
Prediction with Safe to

Approximate Loads
Amir Yazdanbakhsh,

Bradley Thwaites,

Hadi Esmaeilzadeh

Gennady Pekhimenko,
Onur Mutlu,

Todd C. Mowry

Georgia Institute of Technology
Carnegie Mellon University

Executive Summary

2

• Problem: Performance of modern GPUs significantly
limited by the available off-chip bandwidth

• Observations:
– Many GPU applications are amenable to approximation

– Data value similarity allows to efficiently predict values of
cache misses

• Key Idea: Use simple value prediction mechanisms
to avoid accesses to main memory when it is safe

• Results:
– Higher speedup (36% on average) with less than 10%

quality loss

– Lower energy consumption (27% on average)

3

Virtual
Reality

Data
Analytics

Robotics Multimedia

GPU

4

Virtual
Reality

Data
Analytics

Robotics Multimedia

Many GPU applications are
limited by the off-chip

bandwidth

Motivation: Bandwidth Bottleneck

5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

S
p

e
e
d

u
p

0.5x 1x 2x 4x 8x Perfect Memory
13.7 2.5 13.5 2.6 4.0 2.6

Off-chip bandwidth is a major performance bottleneck

Only Few Loads Matters

6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

backprop fastwalsh gaussian heartwall

matrixmul particlefilter reduce similarityscore

srad2 stringmatch

P
e

rc
e

n
ta

ge
 o

f
Lo

ad
 M

is
se

s

Number of LoadsFew GPU instructions generate most of the cache misses

7

Virtual
Reality

Data
Analytics

Robotics Multimedia

Many GPU applications are also
amenable to approximation

Rollback-Free Value Prediction

Key idea:

Predict values for safe-to-approximate loads
when they miss in the cache

Design principles:

1. No rollback/recovery, only value prediction

2. Drop rate is a tuning knob

3. Other requests are serviced normally

4. Providing safety guarantees

8

GPU
RFVP: Diagram

9

Memory
Hierarchy

Cores

L1
Data Cache

RFVP
Value

Predictor

Code Example to Support Intuition

10

float newVal = 0;
for (int i=0; i<N; i++) {

float4 v1 = matrix1[i];
float4 v2 = matrix2[i];
newVal += v1.x * v2.x;
newVal += v1.y * v2.y;
newVal += v1.z * v2.z;
newVal += v1.w * v2.w;

}

Matrixmul:

Code Example to Support Intuition (2)

int d_cN, d_cS, d_cW, d_cE;

d_cN = d_c[ei];

d_cS = d_c[d_iS[row] + d_Nr * col];

d_cW = d_c[ei];

d_cE = d_c[row + d_Nr * d_jE[col]];

11

s.srad2:

Outline

12

• Motivation

• Key Idea

• RFVP Design and Operation

• Evaluation

• Conclusion

RFVP Architecture Design

• Instruction annotations by the programmer

• ISA changes

– Approximate load instruction

– Instruction for setting the drop rate

• Defining approximate load semantics

• Microarchitecture Integration

13

Programmer Annotations

• Safety is a semantic property of the program

• We rely on the programmer to annotate the
code

14

ISA Support

• Approximate Loads

load.approx Reg<id>, MEMORY<address>

is a probabilistic load - can assign precise or
imprecise value to Reg<id>

• Drop rate

set.rate DropRateReg

sets the fraction (e.g., 50%) of the approximate
cache misses that do not initiate memory requests

15

Microarchitecture Integration

16

Memory
Hierarchy

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

SM

Microarchitecture Integration

17

Memory
Hierarchy

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

Memory
Request

All the L1 misses are sent to the memory subsystem

DATA

SM

Microarchitecture Integration

18

Memory
Hierarchy

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

Cores

RFVP
Value

Predictor

L1
Data Cache

Memory
Request

A fraction of the requests will be handled by RFVP

DATA

SM

Language and Software Support

• Targeting performance critical loads

– Only a few critical instructions matter for value
prediction

• Providing safety guarantees

– Programmer annotations and compiler passes

• Drop-rate selection

– A new knob that allows to control quality vs.
performance tradeoffs

19

Base Value Predictor: Two-Delta Stride

20

+

Last Value Stride1 Stride2

Hash (PC)

Predicted Value

Designing RFVP predictor for GPUs

+

Last Value Stride1 Stride2

Hash (PC)

Predicted Value

How to design a predictor for GPUs with,
for example, 32 threads per warp?

21

GPU Predictor Design and Operation

22

+

Last Value Stride1 Stride2

Hash (PC)

++ +

1 2 … 16 17 18 … 32

Last Value Stride1 Stride2

Predicted
Value

Predicted
Value

warp
(32 threads)

Outline

23

• Motivation

• Key Idea

• RFVP Design and Operation

• Evaluation

• Conclusion

Methodology

24

• Simulator

GPGPU-Sim simulator (cycle-accurate) ver. 3.1

• Workloads

GPU benchmarks from Rodinia, Nvidia SDK, and Mars
benchmark suites

• System Parameters

GPU with 15 SMs, 32 threads/warp, 6 memory channels,

48 warps/SM, 32KB shared memory, 768KB LLC, GDDR5

177.4 GB/sec off-chip bandwidth

RFVP Performance

25

S
p

e
e

d
u

p

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Error < 1% Error < 3% Error < 5% Error < 10%
2.2 2.4

Significant speedup for various acceptable quality rates

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Error < 1% Error < 3% Error < 5% Error < 10%

RFVP Bandwidth Consumption

26

B
W

 C
o

n
s

u
m

p
ti

o
n

 R
e
d

u
c

ti
o

n

1.9 2.0

Reduction in consumed bandwidth (up to 1.5X average)

2.3

1.0

1.1

1.2

1.3

1.4

Error < 1% Error < 3% Error < 5% Error < 10%

RFVP Energy Reduction

27

E
n

e
rg

y
 R

e
d

u
c
ti

o
n

1.9 2.0

Reduction in consumed energy (27% on average)

1.6

Sensitivity to the Value Prediction

28
Two-Delta predictor was the best option

1

1.1

1.2

1.3

1.4

1.5

1.6

Null Predictor Last-Value Predictor Two-Delta Predictor

S
p

e
e
d

u
p

2.2 2.4

Other Results and Analyses in the Paper

• Sensitivity to the drop rate (energy and quality)

• Precise vs. imprecise value distributions

• RFVP for memory latency wall

– CPU performance

– CPU energy reduction

– CPU quality vs. performance tradeoff

29

Conclusion

30

• Problem: Performance of modern GPUs significantly
limited by the available off-chip bandwidth

• Observations:
– Many GPU applications are amenable to approximation

– Data value similarity allows to efficiently predict values of
cache misses

• Key Idea: Use simple rollback-free value prediction
mechanism to avoid accesses to main memory

• Results:
– Higher speedup (36% on average) with less than 10%

quality loss

– Lower energy consumption (27% on average)

RFVP: Rollback-Free Value
Prediction with Safe to

Approximate Loads
Amir Yazdanbakhsh,

Bradley Thwaites,

Hadi Esmaeilzadeh

Gennady Pekhimenko,
Onur Mutlu,

Todd C. Mowry

Georgia Institute of Technology
Carnegie Mellon University

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Drop Rate = 12.5% Drop Rate = 25% Drop Rate = 50%

Drop Rate = 75% Drop Rate = 80% Drop Rate = 90%

Sensitivity to the Drop Rate

32

S
p

e
e

d
u

p

Speedup varies significantly with different drop rates

Pareto Analysis

33

Pareto-optimal is the configuration with 192 entries
and 2 independent predictors for 32 threads

