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Executive Summary
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• Problem: Performance of modern GPUs significantly 
limited by the available off-chip bandwidth

• Observations: 
– Many GPU applications are amenable to approximation

– Data value similarity allows to efficiently predict values of 
cache misses

• Key Idea: Use simple value prediction mechanisms 
to avoid accesses to main memory when it is safe

• Results:
– Higher speedup (36% on average) with less than 10% 

quality loss

– Lower energy consumption (27% on average)
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Motivation: Bandwidth Bottleneck
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Only Few Loads Matters
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Rollback-Free Value Prediction

Key idea:

Predict values for safe-to-approximate loads 
when they miss in the cache

Design principles:

1. No rollback/recovery, only value prediction

2. Drop rate is a tuning knob

3. Other requests are serviced normally

4. Providing safety guarantees 
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GPU
RFVP: Diagram

9

Memory
Hierarchy

Cores

L1
Data Cache

RFVP
Value 

Predictor



Code Example to Support Intuition
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float newVal = 0;                 
for (int i=0; i<N; i++) {

float4 v1 = matrix1[i];
float4 v2 = matrix2[i];
newVal += v1.x * v2.x;
newVal += v1.y * v2.y;
newVal += v1.z * v2.z;
newVal += v1.w * v2.w;

}

Matrixmul:



Code Example to Support Intuition (2)

int d_cN, d_cS, d_cW, d_cE; 

d_cN = d_c[ei];

d_cS = d_c[d_iS[row] + d_Nr * col];

d_cW = d_c[ei];

d_cE = d_c[row + d_Nr * d_jE[col]];
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s.srad2:



Outline
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• Motivation

• Key Idea

• RFVP Design and Operation

• Evaluation

• Conclusion



RFVP Architecture Design

• Instruction annotations by the programmer

• ISA changes

– Approximate load instruction

– Instruction for setting the drop rate

• Defining approximate load semantics

• Microarchitecture Integration
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Programmer Annotations

• Safety is a semantic property of the program

• We rely on the programmer to annotate the 
code
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ISA Support

• Approximate Loads

load.approx Reg<id>, MEMORY<address>

is a probabilistic load - can assign precise or   
imprecise value to Reg<id>

• Drop rate

set.rate DropRateReg

sets the fraction (e.g., 50%) of the approximate 
cache misses that do not initiate memory requests
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Microarchitecture Integration
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Microarchitecture Integration
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Microarchitecture Integration
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Language and Software Support

• Targeting performance critical loads

– Only a few critical instructions matter for value 
prediction

• Providing safety guarantees

– Programmer annotations and compiler passes

• Drop-rate selection

– A new knob that allows to control quality vs. 
performance tradeoffs
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Base Value Predictor: Two-Delta Stride
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Designing RFVP predictor for GPUs
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How to design a predictor for GPUs with, 
for example, 32 threads per warp?
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GPU Predictor Design and Operation
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Outline
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Methodology
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• Simulator

GPGPU-Sim simulator (cycle-accurate) ver. 3.1

• Workloads

GPU benchmarks from Rodinia, Nvidia SDK, and Mars
benchmark suites

• System Parameters

GPU with 15 SMs, 32 threads/warp, 6 memory channels,

48 warps/SM, 32KB shared memory, 768KB LLC, GDDR5

177.4 GB/sec off-chip bandwidth



RFVP Performance
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Sensitivity to the Value Prediction
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Two-Delta predictor was the best option
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Other Results and Analyses in the Paper

• Sensitivity to the drop rate (energy and quality)

• Precise vs. imprecise value distributions

• RFVP for memory latency wall

– CPU performance

– CPU energy reduction

– CPU quality vs. performance tradeoff
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Conclusion
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• Problem: Performance of modern GPUs significantly 
limited by the available off-chip bandwidth

• Observations: 
– Many GPU applications are amenable to approximation

– Data value similarity allows to efficiently predict values of 
cache misses

• Key Idea: Use simple rollback-free value prediction 
mechanism to avoid accesses to main memory

• Results:
– Higher speedup (36% on average) with less than 10% 

quality loss

– Lower energy consumption (27% on average)
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Pareto Analysis
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Pareto-optimal is the configuration with 192 entries 
and 2 independent predictors for 32 threads


