Application Slowdown Model

Quantifying and Controlling Impact of **Interference at Shared Caches and Main Memory**

Lavanya Subramanian, Vivek Seshadri,

Arnab Ghosh, Samira Khan, Onur Mutlu

Carnegie Mellon

Problem: Interference at Shared Resources

- 1. High application slowdowns
- 2. Unpredictable application slowdowns

Problem: Interference at Shared Resources

Our Goal: Achieve high and predictable performance

Our Approach

1. Build a model to accurately estimate slowdowns

2. Use slowdown estimates to build slowdownaware resource management mechanisms

Challenge in Estimating Slowdown

$$Slowdown = \frac{Performance_{Alone}}{Performance_{Shared}}$$

Challenge in Estimating Slowdown

Challenge in Estimating Slowdown

Our Model

Our model overcomes this challenge

Our estimation error: 10%

Best previous model's error: 30%

Leveraging Our Slowdown Estimates

Leveraging Our Slowdown Estimates

Slowdown-aware cache capacity partitioning

Leveraging Our Slowdown Estimates

Slowdown-aware memory bandwidth partitioning

Talk at 2:40pm in Tapa Ballroom 2

Application Slowdown Model

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, Onur Mutlu

SAFARI

Carnegie Mellon

