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An Asymmetric Multi-core Architecture for Accelerating Cr itical Sections

M. Aater Suleman Onur Mutlu Moinuddin Qureshi Yale N. Patt

Abstract

To improve the performance of a single application on Chigtidwcessors (CMPs), the application must
be split intothreadswhich execute concurrently on multiple cores. In multetided applications, critical
sections are used to ensure that only one thread accessexddiata at any given time. Critical sections can
serialize the execution of threads, which significantlyus performance and scalability.

This paper proposeAccelerated Critical Sections (ACS) technique that leverages the high-performance
core(s) of an Asymmetric Chip Multiprocessor (ACMP) to éarete the execution of critical sections. In ACS,
selected critical sections are executed by a high-perfoiceacore, which can execute the critical section faster
than the other, smaller cores. As a result, ACS reduceslegimn: it lowers the likelihood of threads waiting
for a critical section to finish. Our evaluation on a set of Ir#tical-section-intensive workloads shows that
ACS reduces the average execution time by 34% compared tquat@&ea 32-core symmetric CMP and by
23% compared to an equal-area ACMP. Moreover, for 7 out oflthevorkloads, ACS improves scalability by
increasing the number of threads at which performance sadgr

1. Introduction
It has become difficult to build large monolithic procesdoesause of their excessive design complexity and

high power consumption. Consequently, industry has shifteChip-Multiprocessor (CMP) architectures [23,
46, 43] that provide multiple processing cores on a singip.cfo extract high performance from such architec-
tures, an application must be divided into multiple ergiti@lledthreads In such multi-threaded applications,
threads operate on different portions of the same problethcammunicate via shared memory. To ensure
correctness, multiple threads are not allowed to updatedidata concurrently, known as tireitual exclusion
principle [26]. Instead, accesses to shared data are arlatgr$in regions of code guarded by synchronization
primitives (e.g. locks). Such guarded regions of code altectaritical sections

The semantics of a critical section dictate that only oneatircan execute it at a given time. Any other thread
that requires access to shared data must wait for the culmeratd to complete the critical section. Thus, when
there is contention for shared data, execution of threatts sgzialized, which reduces performance. As the
number of threads increases, the contention for criticetices also increases. Therefore, in applications that
have significant data synchronization (e.g. Mozilla FirefblySQL [1], and operating system kernels [38]),
critical sections limit both performance (at a given numbkthreads) and scalability (the number of threads at
which performance saturates). Techniques to acceleratexticution of critical sections can reduce serializa-
tion, thereby improving performance and scalability.

Previous research [25, 15, 32] proposed Asymmetric Chip Multiprocessor (ACMRBjchitecture to effi-
ciently execute program portions that are not parallelidged, Amdahl's “serial bottleneck” [6]). An ACMP
consists of at least one large, high-performance core aretaesmall, low-performance cores. Serial program

portions execute on a large core to reduce the performanpadnof the serial bottleneck. The parallelized
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portions execute on the small cores to obtain high throughpu

We propose théccelerated Critical Sections (AC8j)echanism, in which selected critical sections execute
on the large coreof an ACMP. In traditional CMPs, when a core encounters @calisection, it acquires the
lock associated with the critical section, executes thicatisection, and releases the lock. In ACS, when a
core encounters a critical section, it requests the large mexecute that critical section. The large core
acquires the lock, executes the critical section, and eetifie requesting small core when the critical section
is complete.

To execute critical sections, the large core may requireesminate datafrom the small core e.g. the input
parameters on the stack. Such data is transferred on dem@ndtie cache of the small core via the regular
cache coherence mechanism. These transfers may increcise mésses. However, executing the critical
sections exclusively on the large core has the advantagéhthlack andshared dataalways stays in the cache
hierarchy of the large core rather than constantly movingvben the caches of different cores. This improves
locality of lock and shared data, which can offset the add#l misses incurred due to the transfer of private
data. We show, in Section 6, that critical sections oftereasenore shared data than private data. For example,
a critical section that inserts a single node of private dtat sorted linked list (shared data) accesses several
nodes of the shared list. For the 12 workloads used in ouuatiah, we find that, on average, ACS reduces the
number of L2 cache misses inside the critical sections by.20%

On the other hand, executing critical sections exclusieela large core of an ACMP can have a negative
effect. Multi-threaded applications often try to improvencurrency by using data synchronization at a fine
granularity. This is done by having multiple critical sects, each guarding a disjoint set of the shared data
(e.g., a separate lock for each element of an array). In sasdsg executing all critical sections on the large core
can lead to “false serialization” of different, disjoinitaral sections that could otherwise have been executed in
parallel. To reduce the impact of false serialization, AG8udes a dynamic mechanism that decides whether
or not a critical section should be executed on a small coeelarge core. If too many disjoint critical sections
are contending for execution on the large core (and anoénge Icore is not available), this mechanism selects
which critical section(s) should be executed on the large(sd.

Contributions: This paper makes the following contributions:

1. It proposes an asymmetric multi-core architecture, AlG%ccelerate critical sections, thereby reducing
thread serialization. We comprehensively describe theuaton set architecture (ISA), compiler/library,
hardware, and the operating system support needed to ireptefCS

2. We analyze the performance trade-offs of the proposditacture and evaluate design options to further
improve performance. We find that ACS reduces the averageudge time by 34% over an equal-area
32-core symmetric CMP (SCMP) and by 23% over an equal-arseliha ACMP.

For simplicity, we describe the proposed technique assgraimimplementation that contains one large core. Howeuar, o
proposal is general enough to work with multiple large cofsction 3 briefly describes our proposal for such a system.
2\We simulated a CMP with private L1 and L2 caches and a sharazhtBe. Section 5 describes our experimental methodology.



2. Background and Motivation
2.1. Amdahl’'s Law and Critical Sections

A multi-threaded application consists of two parts: thdadgrart and the parallel part. The serial part is
the classical Amdahl’'s bottleneck [6] where only one threaidts. The parallel part is where multiple threads
execute concurrently. When multiple threads execute,sseseto shared data are encapsulated inside critical
sections. Only one thread can execute a particular crieation at any given time. Critical sections are
different from Amdahl’s serial bottleneck: during the ex@ion of a critical section, other threads that do not
need to execute the same critical section can make proghessntrast, no other thread exists in Amdahl’'s
serial bottleneck. We use a simple example to show the pedoce impact of critical sections.

Figure 1(a) shows the code for a multi-threaded kernel wkarh thread dequeues a work quantum from
the priority queue (PQ) and attempts to solve it. If the tbreannot solve the problem, it divides the problem
into sub-problems and inserts them into the priority quell@s is a very common parallel implementation of
many branch-and-bound algorithms [28]. In our benchmahis kernel is used to solve the popular 15-puzzle
problem [50]. The kernel consists of three parts. The ihgat A and the final part E are the serial parts of the
program. They comprise Amdahl’s serial bottleneck sindg one thread exists in those sections. Part B is the
parallel part, executed by multiple threads. It consistsoofe that is both inside the critical section (C1 and C2,
both protected by lock X) and outside the critical sectiod @d D2). Only one thread can execute the critical

section at a given time, which can cause serialization op#rallel part and reduce overall performance.

LEGEND
A,E: Amdahl’'s serial part
InitPriorityQueue(PQ); @ B: Parallel Portion
. C1,C2: Critical Sections
SpawnThreads(); D: Outside critical section (A) v . @
ForEach Thread:
while (problem not solved) time
Lock (X) *
SubProblem = PQ.remove(); ‘ (C1)  begin I ST T T S ST ' end
Unlock(X); (b)
Solve(SubProblem);
If(problem solved) break; T1 C D Dmnnnns -@—
NewSubProblems = Partition(SubProblem);
Lock(X) T2 C o2 oa@pC b o @
PQ.insert(NewSubProblems); @ q: )i G : )
Unlock(X) T3
T4--- fime
PrintSolution(); @ t - t t t ¢ i ¢ t ¢
egin 0 1 2 3 4 5 6 end

Figure 1: Serial part, (p?;rallel part, and critical section in a mtittieaded kerne(lcgf 15-puzzle (a) Code example (b)
Execution timeline on the baseline CMP (c) Execution timelivith accelerated critical sections.
2.2. Serialization due to Critical Sections

Figure 1(b) shows the execution timeline of the kernel showFigure 1(a) on a 4-core CMP. After the serial
part A, four threads (T1, T2, T3, and T4) are spawned, one oh eare. Once part B is complete, the serial
part E is executed on a single core. We analyze the serializahused by the critical section in steady state of

part B. Between time, andtq, all threads execute in parallel. Attinag T2 starts executing the critical section



while T1, T3, and T4 continue to execute code independertietiitical section. At time,, T2 finishes the
critical section and three threads (T1, T3, and T4) contemdHe critical section — T3 wins and enters the
critical section. Between timg& andts, T3 executes the critical section while T1 and T4 remain, idiaiting

for T3 to exit the critical section. Between tinig¢ andt,, T4 executes the critical section while T1 continues
to wait. T1 finally gets to execute the critical section beswéimet, andts.

This example shows that the time taken to execute a critealan significantly affects not only the thread
that executes it but also the threads that are waiting ta #mecritical section. For example, betwegnand
t3 there are two threads (T1 and T4) waiting for T3 to exit théi@l section, without performing any useful
work. Therefore, accelerating the execution of the ciitgzction not only improves the performance of T3
but also reduces the useless waiting time of T1 and T4. Fify(@eshows the execution of the same kernel
assuming that critical sections take half as long to exedd#dving the time taken to execute critical sections
reduces thread serialization which significantly redubedime spent in the parallel portion. Thus, accelerating
critical sections can provide significant performance iowement. On average, the critical section shown in
Figure 1(a) executes 1.5K instructions. During an inséw, dritical section accesses multiple nodes of the
priority queue (implemented as a heap) to find a suitableedacinsertion. Due to its lengthy execution, this
critical section incurs high contention. When the workligdxecuted with 8 threads, on average 4 threads wait
for this critical section. The average number of waitingetiats increases to 16 when the workload is executed
with 32 threads. In contrast, when this critical sectiondsederated using ACS, the average number of waiting
threads reduces to 2 and 3, for 8 and 32-threaded executpaatvely.

We find that similar behavior also exists in commonly-useddascale workloads. Figure 2 shows a sec-
tion of code from the database application MySQL [1]. Thekla®©CK open protects the data structure
open_cache, which tracks all tables opened by all transactions. The@a&mple shown in Figure 2 closes
all the tables opened by a particular transaction. A sinfilaction (not shown) exists to open the tables and
is protected by the same lock. On average, this criticai@@executes 670 instructions. The average length
of each transaction (for th&l t p- si npl e input set) is 40K instructions. As a result, critical sess@ccount
for 3% of the total instructions which leads to high contenti The serialization caused by th&CK_open
critical section is a well-known problem in the MySQL devyeto community [2]. On average, 5 threads wait
for this critical section when the workload is executed wBththreads. When ACS is used to accelerate this

critical section, the average number of waiting threadsiced to 1.4.

pthread_mutex_lock (&LOCK_open)

foreach (table locked by this thread)

table—>lock->release()
table—>file—>release()

--LRB

Speedup vs small core
OFRNWMUIITO N

if (table—>temporary) i 2 ACS
table—>close() : 3
pthread_mutex_unlock (&LOCK_open) é 16 24 52
e Area (Small Cores)
Figure 2:Critical section at the end of MySQL transactions. Figure 3:Scalability of MySQL.



2.3. Poor Application Scalability due to Critical Sections
As the number of threads increases, contention for crigeations also increases. This contention can be-

come so high that every thread might need to wait for sevetarahreads before it can enter the critical
section. In such a case, adding more threads to the prograsrait improve (and in fact can degrade) perfor-
mance. For example, Figure 3 shows the speedup when MySedsited on multiple cores of a symmetric
CMP (SCMP). As the number of cores increase, more threads)agute concurrently, which increases con-
tention for critical sections and causes performance targtg at 16 threads. Figure 3 also shows the speedup
of an equal-area ACS, which we will describe in Section 3.fd?arance of ACS continues to increase un-
til 32 threads. This shows that accelerating the criticatieas can improve not only the performance of an

application for a given number of threads but also the sd#iabf the application.

3. Accelerated Critical Sections

The goal of this paper is to devise a practical mechanismadbatcomes the performance bottlenecks of
critical sections to improve multi-threaded applicatiogrfprmance and scalability. To this end, we propose
Accelerated Critical Sections (ACHCS is based on the ACMP architecture [32, 25, 15], which praposed
to handle Amdahl’s serial bottleneck. ACS consists of astleme large core and several small cores. The
critical sections and the serial part of the program exeounta large core, whereas the remaining parallel parts
execute on the small cores. Executing the critical sectiona large core reduces the execution latency of the
critical section, thereby improving performance and duitits
3.1. Architecture: A high level overview

The ACS mechanism is implemented on a homogeneous-ISAplgeteeous-core CMP that provides hard-
ware support for cache coherence. ACS leverages one or argeedores to accelerate the execution of critical
sections and executes the parallel threads on the remamad cores. For simplicity of illustration, we first
describe how ACS can be implemented on a CMP with a single leoge and multiple small cores. In Sec-
tion 3.9, we discuss ACS for a CMP with multiple large cores.

Figure 4 shows an example ACS architecture implemented okCMP consisting of one large core (P0)
and 12 small cores (P1-P12). Similar to previous ACMP prafsoR5, 15, 32], ACS executes Amdahl’s serial
bottleneck on the large core. In addition, ACS accelerdtesekecution of critical sections using the large
core. ACS executes the parallel part of the program on thdl sor@s P1-P12. When a small core encounters
a critical section it sends a “critical section executioegjuest to PO. PO buffers this request in a hardware
structure called th€ritical Section Request Buffer (CSRBJhen PO completes the execution of the requested
critical section, it sends a “done” signal to the requestioge. To support such accelerated execution of critical
sections, ACS requires support from the ISA (i.e., new ugtons), from the compiler, and from the on-chip
interconnect. We describe these extensions in detail next.

3.2. ISA Support
ACS requires two new instruction€SCALLandCSRETCSCALL is similar to a traditional CALL instruc-

tion, except it is used to execute critical section code agnaote, large processor. When a small core executes
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CSCALL LOCK_ADDR, TARGET_PC CSRET LOCK_ADDR

Critical Section Request Buffer (CSRB)

On small core: On large core:
STACK_PTR <- SP Release lock at LOCK_ADDR
Send CSCALL Request to large core Send CSDONE to REQ_CORE
P1| P2 with Arguments: LOCK_ADDR
PO TARGET_PC, STACK_PTR, CORE_ID
P3| P4 Stall until CSDONE signal received
On large core: On small core:
Enqueue in CSRB Retire CSCALL
P5 P6 | P7 P8 Wait until HEAD ENTRY in CSRB
Acquire lock at LOCK_ADDR
P9 | P10| P11 | P12 SP <= STACK_PTR
PC <- TARGET_PC

Figure 4: ACS on ACMP with 1
large core and 12 small cores

Figure 5:Format and operation semantics of new ACS instructions
a CSCALL instruction, it sends a request for the executionribical section to PO and waits until it receives
a response. CSRET is similar to a traditional RET instruxtiexcept that it is used to return from a critical
section executed on a remote processor. When PO executeBTCBRends a CSDONE signal to the small
core so that it can resume execution. Figure 5 shows the dimaf CSCALL and CSRET. CSCALL takes
two arguments: LOCKADDR and TARGETPC. LOCKADDR is the memory address of the lock protecting
the critical section and TARGEWPC is the address of the first instruction in the critical mect CSRET takes
one argument, LOCKADDR corresponding to the CSCALL.
3.3. Compiler/Library Support

The CSCALL and CSRET instructions encapsulate a criticetime. CSCALL is inserted before the “lock
acquire” and CSRET is inserted after the “lock release.” Ttmpiler/library inserts these instructions auto-
matically without requiring any modification to the sourasde. The compiler must also remove any register
dependencies between the code inside and outside thelcsiéiction. This avoids transferring register values
from the small core to the large core and vice versa beforeated the execution of the critical section. To do
so, the compiler performiinction outlining[52] for every critical section by encapsulating the catisection
in a separate function and ensuring that all input and oyspteameters of the function are communicated via
the stack. Several OpenMP compilers already do functioliniug for critical sections [30, 39, 9]. Therefore,
compiler modifications are limited to the insertion of CSAAa&nd CSRET instructions. Figure 6 shows the

code of a critical section executed on the baseline (a) andtbdified code executed on ACS (b).

Small Core Small Core Large Core
A = compute(); A = compute();
LOCK X PUSH A CSCALL Request
result = CS(A); CSCALL X, TPC —_—
UNLOCK X send X, TPC, TPC: POP A
print result STACK_PTR, CORE_ID result = CS(A)
PUSH result
CSRET X
PQP result CSDONE Response
print result

@ (b)

Figure 6:Source code and its execution: (a) baseline (b) with ACS
3.4. Hardware Support
3.4.1. Modifications to the small coreswhen a CSCALL is executed, the small core sends a CSCALL

request along with the stack pointer (STAGKIR) and its core ID (CORHED) to the large core and stalls,



waiting for the CSDONE response. The CSCALL instructionesred when a CSDONE response is received.
Such support for executing certain instructions remotélyaaly exists in current architectures: for example, all

8 cores in Sun Niagara-1 [23] execute floating point (FP) af@ns on a common remote FP unit.

3.4.2. Critical Section Request BufferThe Critical Section Request Buffer (CSRB), located at trgd
core, buffers the pending CSCALL requests sent by the sroedlsc Figure 7 shows the structure of the CSRB.
Each entry in the CSRB contains a valid bit, the ID of the retjng core (REQCORE), the parameters of the
CSCALL instruction, LOCKADDR and TARGETPC, and the stack pointer (STACKTR) of the requesting
core. When the large core is idle, the CSRB supplies the bIdEBCALL request in the buffer to the core.
The large core notifies the CSRB when it completes the crisieation. At this point, the CSRB dequeues the
corresponding entry and sends a CSDONE signal to the reggesire. The number of entries in the CSRB
is equal to the maximum possible number of concurrent CSChustructions. Because each small core can
execute at most one CSCALL instruction at any time, the nurabentries required is equal to the number of
small cores in the system (Note that the large core does ndtG8CALL requests to itself). For a system with
12 small cores, the CSRB has 12 entries, 25-Bytesh. Thus, the storage overhead of the CSRB is 300 bytes.

CSRET from large core l ‘ CSDONE to requesting core

HEAD ENTRY AN ENTRY IN CSRB

VALID ‘REQ_CORE ‘LOCK_ADDR ‘TARGET_PC ‘ STACK_PTR ‘

T— CSCALL Requests from small cores
Figure 7:Critical Section Request Buffer (CSRB)

3.4.3. Moadifications to the large coreWhen the large core receives an entry from the CSRB, it lotds i
stack pointer register with STACRTR and acquires the lock corresponding to LOBRDR (as specified by
program code). It then redirects the program counter to TER®C and starts executing the critical section.
When the core retires the CSRET instruction, it releasetottiecorresponding to LOCKADDR and removes
the HEAD ENTRY from the CSRB. Thus, ACS executes a criticatisa similar to a conventional processor
by acquiring the lock, executing the instructions, andasileg the lock. However, it does so at a higher

performance because of the aggressive configuration ofithe tore.

3.4.4. Interconnect ExtensionsACS introduces two new transactions on the on-chip intereott CSCALL
and CSDONE. The interconnect transfers the CSCALL requshg with its arguments) from the smaller
core to the CSRB and the CSDONE signal from the CSRB to thelen@re. Similar transactions already
exist in the on-chip interconnects of current processoos.ekample, Sun Niagara-1 [23] uses such transactions
to interface cores with the shared floating point unit.
3.5. Operating System Support

ACS requires modest support from the operating system (@8gn executing on an ACS architecture, the
OS allocates the large core to a single application and doieschedule any threads onto it. Additionally, the

OS sets the control registers of the large core to the sanvewvals the small cores executing the application.

3Each CSRB entry has one valid bit, 4-bit REZDRE, 8 bytes each for LOCKDDR, TARGET.PC, and STACKPTR.



As aresult, the program context (e.g. processor statustezgj and TLB entries) of the application remains the
same in all cores, including the large core. Note that ACSdut require any special modifications because
such support already exists in current CMPs to executelpbegiplications [21].

Handling Multiple Parallel Applications: When multiple parallel applications are executing coreuly,
ACS can be used if the CMP provides multiple high-perforneacantexts of execution (multiple large cores or
simultaneous multithreading (SMT) [47] on the large cordjernatively, the OS can time-share the large core
between multiple applications taking performance anchéss into account. ACS can be enabled only for the
application that is allocated the large core and disabledhi® others. This paper introduces the concept and
implementation of ACS; resource allocation policies ang phour future work.

3.6. Reducing False Serialization in ACS

Critical sections that are protected by different locks barexecuted concurrently in a conventional CMP.
However, in ACS, their execution gets serialized becausg dine all executed sequentially on the single large
core. This “false serialization” reduces concurrency aagrddes performance. We reduce false serialization
using two techniques. First, we make the large core capdbéxexruting multiple critical sections concur-
rently*, using simultaneous multithreading (SMT) [47]. Each SMTteat can execute CSRB entries with
different LOCKADDR. Second, to reduce false serialization in workloademha large number of critical
sections execute concurrently, we prop&sective Acceleration of Critical Sections (SELhe key idea of
SEL is to estimate the occurrence of false serializationaafaptively decide whether or not to execute a critical
section on the large core. If SEL estimates false seri@indab be high, the critical section is executed locally
on the small core, which reduces contention on the large core

Implementing SEL requires two modifications: 1) a bit vectdreach small core that contains the
ACS_DISABLE bits and 2) logic to estimate false serializatiorheTACSDISABLE bit vector contains one
bit per critical section and is indexed using the LO@GKDR. When the smaller core encounters a CSCALL,
it first checks the corresponding AOSISABLE bit. If the bit is O (i.e., false serialization is Igwa CSCALL
request is sent to the large core. Otherwise, the CSCALL laadtitical section is executed locally.

False serialization is estimated at the large core by autingethe CSRB with a table of saturating coun-
ters, which track the false serialization incurred by eaxtical section. We quantify false serialization by
counting the number of critical sections present in the C&&Bvhich the LOCKADDR is different from the
LOCK_ADDR of the incoming request. If this count is greater thamd. (f there are at least two independent
critical sections in the CSRB), the estimation logic adds ¢bunt to the saturating counter corresponding to
the LOCKADDR of the incoming request. If the count is 1 (i.e. if theseeactly one critical section in the
CSRB), the corresponding saturating counter is decrerderifdhe counter reaches its maximum value, the
ACS_DISABLE bit corresponding to that lock is set by sending a sagg to all small cores. Since ACS is dis-

abled infrequently, the overhead of this communicationegligible. To adapt to phase changes, we reset the

“Another possible solution to reduce false serializatiotoisdd additional large cores and distribute the criticatises across
these cores. However, further investigation of this soluts an interesting research direction, but is beyond tbpesof this paper.
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ACS_DISABLE bits for all locks and halve the value of the saturgtcounters periodically (every 10 million
cycles). We reduce the hardware overhead of SEL by hashaigdddress into a small number of sets. Our
implementation of SEL hashes lock addresses into 16 setase®i6-bit counters. The total storage overhead
of SEL is 36 bytes: 16 counters of 6-bits each and 16 AWSABLE bits for each of the 12 small cores.

3.7. Handling Nested Critical Sections

A nested critical section is embedded within another @itgection. Such critical sections can cause dead-
locks in ACS with SEL To avoid deadlocks without extra hardware complexity, cesign does not convert
nested critical sections to CSCALLs. Using simple conflolv analysis, the compiler identifies the critical
sections that can possibly become nested at run-time. Siticialcsections are not converted to CSCALLS.

3.8. Handling Interrupts and Exceptions

ACS supports precise interrupts and exceptions. If animpeor exception happens outside a critical section,
ACS handles it similar to the baseline. If an interrupt orepiton occurs on the large core while it is executing
the critical section, the large core disables ACS for allicai sections, pushes the CSRB on the stack, and
handles the interrupt or exception. If the interrupt is reee by the small core while it is waiting for a CSDONE
signal, it delays servicing the interrupt until the CSDON@nsll is received. Otherwise, the small core may
miss the CSDONE signal as it is handling the interrupt, leqdd a deadlock.

Because ACS executes critical sections on a separate eongotary register values outside the critical
section are not visible inside the critical section and weesa. This is not a concern in normal program
execution because the compiler removes any register depeied between the critical section and the code
outside it. If visibility to temporary register values ouals the critical section is required inside the critical
section, e.g. for debugging purposes, the compiler canrerba transfer of all register values from the small
core to the large core by inserting additional stack openstin the debug version of the code.

3.9. Accommodating Multiple Large Cores

We have described ACS for an ACMP that contains only one leoge. ACS can also leverage multiple large
cores in two ways: 1) to execute different critical sectifmasn the same multi-threaded application, thereby
reducing “false serialization,” 2) to execute critical seas from different applications, thereby increasing

system throughput. Evaluation of ACS using multiple largees is out of the scope of this paper.

4. Performance Trade-offs in ACS

There are three key performance trade-offs in ACS that deter overall system performance:

1. Faster critical sectionsvs. Fewer threads: ACS executes selected critical sections on a large corertze
dedicated to which could otherwise be used for executingtiaddl threads. ACS could improve performance
if the performance gained by accelerating critical sedi¢end serial program portions) outweighs the loss

of throughput due to the unavailability of additional thllea ACS’s performance improvement becomes more

SFor example, consider three nested critical sections: tiermost Q), inner (\), and the innermost). ACS is disabled foN and
enabled folO andl. The large core is executir@and another small core is executing executinigcally (because ACS was disabled).
The large core encountel§ and waits for the small core to finidth Meanwhile, the small core encountéysends a CSCALL request
to the large core, and waits for the large core to finishherefore, deadlock ensues.
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likely when the number of cores on the chip increases beazfus® reasons. First, the marginal loss in parallel
throughput due to the large core becomes relatively smadlg¢kample, if the large core replaces four small
cores, then it reduces 50% of the smaller cores in a 8-cotersyisut only 12.5% of cores in a 32-core system)
Second, more cores allow concurrent execution of more dsreahich increases contention by increasing the
probability of each thread waiting to enter the criticaltg@e [38]. When contention is high, faster execution of
a critical section reduces not only critical section exaxutime but also the contending threads’ waiting time.

2. CSCALL/CSDONE signals vs. Lock acquire/release: To execute a critical section, ACS requires the
communication of CSCALL and CSDONE transactions betweemallscore and a large core. This com-
munication over the on-chip interconnect is an overhead©@$Awhich the conventional lock acquire/release
operations do not incur. On the other hand, a lock acquireatipe often incurs cache misses [35] because the
lock needs to be transferred from one cache to another. Eadtedo-cache transfer requires two transactions
on the on-chip interconnect: a request for the cache lineth@desponse, which has similar latency to the
CSCALL and CSDONE transactions. ACS can reduce such cachaehe transfers by keeping the lock at the
large core, which can compensate for the overhead of CSCADLGEDONE. ACS actually has an advantage
in that the latency of CSCALL and CSDONE can be overlappeti wié execution of another instance of the
same critical section. On the other hand, in conventionelfitg, a lock can only be acquired after the crit-
ical section has been completed, whallwaysadds a delay before critical section execution. Therefire,
overhead of CSCALL/CSDONE is likely not as high as the ovathef lock acquire/release.

3. Cache misses due to private data vs. cache misses due to shared data: In ACS, private data that is
referenced in the critical section needs to be transfenmauh the cache of the small core to the cache of the
large core. Conventional locking does not incur this caitheache transfer overhead because critical sections
are executed at the local core and private data is oftenirgstihe local cache. On the other hand, conventional
systems incur overheads in transferring shared data: imsystems, shared data “ping-pongs” between caches
as different threads execute the critical section and eefer the shared data. ACS eliminates the transfers of
shared data by keeping it at the large cdrehich can offset the misses it causes to transfer private idéd
the large core. In fact, ACS can decrease cache misses ifitfoalcsection accesses more shared data than
private data. Note that ACS can improve performance evdmeifetare equal or more accesses to private data
than shared data because the large core can still 1) impeermance of other instructions and 2) hide the
latency of some cache misses using latency tolerance tpagsiike out-of-order execution.

In summary, ACS can improve overall performance if its perfance benefits (faster critical section ex-
ecution, improved lock locality, and improved shared datality) outweigh its overheads (reduced parallel
throughput, CSCALL and CSDONE overhead, and reduced priglata locality). Next, we will evaluate the

performance of ACS on a variety of CMP configurations.

®By keeping all shared data in the large core’s cache, ACScestine cache space available to shared data compared emtional
locking (where shared data can reside in any on-chip cadligg.can increase cache misses. However, we find that suble caisses
are rare and do not degrade performance because the pradte of the large core is large enough.
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5. Experimental Methodology

Table 1 shows the configuration of the simulated CMPs, usingrehouse cycle-accurate x86 simulator.
The large core occupies the same area as four smaller cdressnialler cores are modeled after the Intel
Pentium processor [20], which requires 3.3 million tratwsis, and the large core is modeled after the Intel
Pentium-M core, which requires 14 million transistors [12e evaluate three different CMP architectures: a
symmetric CMP (SCMP) consisting of all small cores; an aswtnim CMP (ACMP) with one large core with
2-way SMT and remaining small cores; and an ACMP augment&dsupport for the ACS mechanism (ACS).
Unless specified otherwise, all comparisons are done at atgambudget. We specify the area budget in terms
of number of small cores. Unless otherwise stated, the nuoflibreads for each application is set equal to the
number of threads that minimizes the execution time for #méiqular configuration e.g. if the best performance
of an application is obtained on an 8-core SCMP when it runb &ithreads, then we report the performance
with 3 threads. In both ACMP and SCMP, conventional lock &eduelease operations are implemented using
the Monitor/Mwait instructions, part of the SSE3 extensidmthe x86 ISA [17]. In ACS, lock acquire/release

instructions are replaced with CSCALL/CSRET instructions
Table 1:Configuration of the simulated machines

Small core 2-wide In-order, 2GHz, 5-stage. L1: 32KB write-through.: 2ZB6KB write-back, 8-way, 6-cycle access

Large core 4-wide Out-of-order, 2GHz, 2-way SMT, 128-entry ROB, 1adg&, L1: 32KB write-through. L2: 1-MB write-back, 16-wayc§cle
Interconnect | 64-bit wide bi-directional ring, all queuing delays modgleing hop latency of 2 cycles (latency between one cachiestoéxt)
Coherence | MESI, On-chip distributed directory similar to SGI Origi@{], cache-to-cache transfers. # of banks = # of cores, 8kesriank
L3 Cache 8MB, shared, write-back, 20-cycle, 16-way

Memory 32 banks, bank conflicts and queuing delays modeled. Rowthiff 25ns, Row buffer miss: 50ns, Row buffer conflict: 75ns
Memory bus | 4:1 cpu/bus ratio, 64-bit wide, split-transaction, pipeli bus, 40-cycle latency

| Area-equivalent CMPs where area is equal to N small coresvaMeN from 1 to 32 |

SCMP N small cores, One small core runs serial part, all N coregamallel part, conventional locking (Max. concurrent s = N)
ACMP 1 large core and N-4 small cores; large core runs serial pastay SMT on large core

and small cores run parallel part, conventional locking XMaum number of concurrent threads = N-2)
ACS 1 large core and N-4 small cores; (N-4)-entry CSRB on theelagye, large core runs the serial part, small cores run tredlelpart,

2-way SMT on large core runs critical sections using ACS (Mzoncurrent threads = N-4)

5.1. Workloads

Our main evaluation focuses on 12 critical-section-inisenavorkloads shown in Table 2. We define a
workload to be critical-section-intensive if at least 1%itloé instructions in the parallel portion are executed
within critical sections. We divide these workloads intateategories: workloads with coarse-grained locking
and workloads with fine-grained locking. We classify a wodd as using coarse-grained locking if it has at
most 10 critical sections. Based on this classification, tfobd 2 workloads use coarse-grain locking and the
remaining 5 use fine-grain locking. All workloads were siatald to completion.

We briefly describe the benchmarks whose source code is biitlyavailable’ i pl ookup is an Internet
Protocol (IP) packet routing algorithm [49]. Each threadinteins a copy of the routing table, each with a
separate lock. On a lookup, a thread locks and searchesritsomting table. On an update, a thread locks and
updates all routing tables. Thus, the updates, althougbgoént, cause substantial serialization and disruption

of data locality.

"The source code of these benchmarks will be made availabléfyuon our website.
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Table 2:Simulated workloads

Locks | Workload Description Source Input set # of disjoint What is Protected by CS?
critical sections
ep Random number generatgr  NAS suite [7] 262144 nums. 3 reduction into global data
is Integer sort NAS suite [7] n = 64K 1 buffer of keys to sort
pagemine Data mining kernel MineBench [33] 10Kpages 1 global histogram
Coarse| puzzle 15-Puzzle game [50] 3x3 2 work-heap, memoization table
gsort Quicksort OpenMP SCR [11] 20K elem. 1 global work stack
sqlite sqlite3 [3] database enging  SysBench [4] OLTP-simple 5 database tables
tsp Traveling salesman prob. [24] 11 cities 2 termination cond., solution
iplookup IP packet routing [49] 2.5K queries # of threads routing tables
oltp-1 MySQL server [1] SysBench [4] OLTP-simple 20 meta data, tables
Fine oltp-2 MySQL server [1] SysBench [4] OLTP-complex 29 meta data, tables
specjbb | JAVA business benchmari [42] 5 seconds 39 counters, warehouse data
webcache| Cooperative web cache [44] 100K queries 33 replacement policy

puzzl e solves a 15-Puzzle problem [50] using a branch-and-bougatitim. There are two shared data
structures: a work-list implemented as a priority heap angeanoization table to prevent threads from dupli-
cating computation. Priority in the work-list is based oe tilanhattan distance from the final solution. The
work-list (heap) is traversed every iteration, which maltess critical sections long and highly contended for.
webcache implements a shared software cache used for caching “pagd#es in a multi-threaded web
server. Since, a cache access can modify the contents cdiche and the replacement policy, it is encapsulated
in a critical section. One lock is used for every file with eadeone page in the cache. Accesses to different
files can occur concurrentlypageni ne is derived from the data mining benchmarkear chk [33]. Each

thread gathers a local histogram for its data set and addstietglobal histogram inside a critical section.

6. Evaluation

We make three comparisons between ACMP, SCMP, and ACS, Riestompare their performance on
systems where the number of threads is set equal to the dptim@er of threads for each application under a
given area constraint. Second, we compare their perforenassuming the number of threads is set equal to the
number of cores in the system, a common practice employedinyraxisting systems. Third, we analyze the
impact of ACS on application scalability i.e., the numbetto€ads over which performance does not increase.
6.1. ACS Performance with the Optimal Number of Threads

Developers sometimes use profile information to choose timber of threads that minimizes execution
time [19]. We first analyze ACS with respect to ACMP and SCMRewlthe optimal number of threads are
used for each application on each CMP configurafiowe found that doing so provides the best baseline
performance for ACMP and SCMP, and a performance compariseults in the lowest performance improve-
ment of ACS. Hence, this performance comparison penaliZeS fas our evaluations in Section 6.2 with the
same number of threads as the number of thread contextshweil)s We show this performance comparison

separately on workloads with coarse-grained locks ancetiath fine-grained locks.

6.1.1. Workloads with Coarse-Grained LocksFigure 8 shows the execution time of each application on
SCMP and ACS normalized to ACMP for three different area leistg8, 16, and 32. Recall that when area

8We determine the optimal number of threads for an applioatipsimulating all possible number of threads and using treetbat
minimizes execution time. The interested reader can olth&ioptimal number of threads for each benchmark and eadigocation
by examining the data in Figure 10. Due to space constraim@sjo not explicitly quote these thread counts.
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budget is equal to N, SCMP, ACMP, and ACS can execute up to R, &d N-4 parallel threads respectively.
In the ensuing discussion, we refer to Table 3, which showsctiaracteristics of critical sections in each

application, to provide insight into the performance resul
150
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(a) Area budget=8 small cores (b) Area budget=16 small cores (c) Area budget=32 small cores
Figure 8:Normalized execution time of ACS and SCMP on workloads witharse-grained locking.

Systems area-equivalent to 8 small coresiWhen area budget equals 8, ACMP significantly outperforms
SCMP for workloads with high percentage of instructionshia serial part (85% ins and 29% ingsort). In
puzzl e, even though the serial part is small, ACMP improves perforoe because it improves cache locality
of shared data by executing two of the six threads on the leoge, thereby reducing cache-to-cache transfers
of shared data. SCMP outperforms ACMP &agl i t e andt sp because these applications spend a very small
fraction of their instructions in the serial part and saciifg two threads for improved serial performance is not
a good trade-off. Since ACS devotes the two SMT contexts erdige core to accelerate critical sections, it
can execute only four parallel threads (compared to 6 tlsreddCMP and 8 threads of SCMP). Despite this
disadvantage, ACS reduces the average execution time byc2g¥pared to SCMP and by 11% compared to
ACMP. ACS improves performance of five out of seven workloedsipared to ACMP. These five workloads
have two common characteristics: 1) they have high comerftir the critical sections, 2) they access more
shared data than private data in critical sections. Duededltharacteristics, ACS reduces the serialization
caused by critical sections and improves locality of shalea.

Table 3: Characteristics of Critical Sections. Shared/Privatéésriatio ofshareddata (number of cache lines that are
transferred from caches of other coresptovate data (humber of cache lines that hit in the private cachegssad inside

a critical section. Contention is the average number ofdtisevaiting for critical sections when the workload is exedu
with 4, 8, 16, and 32 threads on the SCMP.

Workload || % of total instr. | % of parallel instr. # of disjoint Avg. instr. in | Shared/Private Contention
in Serial part | in critical sections | critical sections | critical section| (at4threads)| 4 | 8 | 16 | 32
ep 13.3 14.6 3 620618.1 1.0 14118 | 40| 82
is 84.6 8.3 1 9975.0 11 231 43| 81| 164
pagemine 0.4 5.7 1 531.0 1.7 23| 43| 82| 159
puzzle 2.4 69.2 2 926.9 1.1 22| 43|83 16.1
gsort 28.5 16.0 1 127.3 0.7 11| 30| 96| 256
sqlite 0.2 17.0 5 933.1 2.4 14]1 22| 37| 64
tsp 0.9 4.3 2 29.5 0.4 12| 16| 20| 36
iplookup 0.1 8.0 4 683.1 0.6 12113 15| 19
oltp-1 2.3 13.3 20 277.6 0.8 12| 12| 15| 22
oltp-2 1.1 12.1 29 309.6 0.9 11])12| 14| 16
specjbb 1.2 0.3 39 1002.8 0.5 10| 10| 10| 1.2
webcache 35 94.7 33 2257.0 11 111111 14
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Why does ACS reduce performancedsort andt sp? The critical section irgsort protects a stack
that contains indices of the array to be sorted. The insestatjpn pushes two indices (private data) onto the
stack by changing the stack pointer (shared data). Sindeeimdre larger than the stack pointer, there are
more accesses to private data than shared data. Furthemoatention for critical sections is low. Therefore,
gsort can take advantage of additional threads in its paralldiggoand trading-off several threads for faster
execution of critical sections lowers performance. The ihamt critical section it sp protects a FIFO queue
where an insert operation reads the node to be insertectprilata) and adds it to the queue by changing only
the head pointer (shared data). Since private data is ltinger shared data, ACS reduces cache locality. In
addition, contention is low and the workload can effeciyiva$e additional threads.

Systems area-equivalent to 16 and 32 small coreRecall that as the area budget increases, the overhead of
ACS decreases. This is due to two reasons. First, the pataiteighput reduction caused by devoting a large
core to execute critical sections becomes smaller, asieggan Section 4. Second, executing more threads
increases contention for critical sections because ie@mes the probability that each thread is waiting to enter
the critical section. When the area budget is 16, ACS immg@erformance by 32% compared to SCMP and
by 22% compared to ACMP. When the area budget is 32, ACS inggrgerformance by 42% compared to
SCMP and by 31% compared to ACMP. In fact, the two benchma&e(t andt sp) that lose performance
with ACS when the area budget is 8 experience significantopadnce gains with ACS over both ACMP
and SCMP for an area budget of 32. For example, ACS with anlawdget of 32 provides 17% and 22%
performance improvement faysort andt sp respectively over an equal-area ACMP. With an area budget
of at least 16, ACS improves the performanceatfapplications with coarse-grained locks. We conclude that
ACS is an effective approach for workloads with coarsefggdilocking even at small area budgets. However,

ACS becomes even more attractive as the area budget in témusnder of cores increases.

6.1.2. Workloads with Fine-grained Locks Figure 9 shows the execution time of workloads with fine-
grained locking for three different area budgets: 8, 16, a32d Compared to coarse-grained locking, fine-
grained locking reduces contention for critical sectiond hence the serialization caused by them. As a result,
critical section contention is negligible at low thread ota) and the workloads can take significant advantage
of additional threads executed in the parallel section. ithe area budget is 8, SCMP provides the highest
performance (as shown in Figure 9(a)) for all workloads lseat can execute the most number of threads in
parallel. Since critical section contention is very low, 3@ssentially wastes half of the area budget by dedi-
cating it to a large core because it is unable to use the langeefficiently. Therefore, ACS increases execution
time compared to ACMP for all workloads excappl ookup. Ini pl ookup, ACS reduces execution time
by 20% compared to ACMP but increases it by 37% compared to BQMe critical sections inpl ookup
access more private data than shared data, which reducbsnbét of ACS. Hence, the faster critical section
execution benefit of ACS is able to overcome the loss of 2 tg¥€ACMP) but is unable to provide enough

improvement to overcome the loss of 4 threads (SCMP).
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Figure 9:Execution time of workloads with fine-grained locking on A@&J SCMP normalized to ACMP
As the area budget increases, ACS starts providing perfacenanprovement over SCMP and ACMP be-

cause the loss of parallel throughput due to the large cahaces. With an area budget of 16, ACS performs
similar to SCMP (within 2%) and outperforms ACMP (by 6%) oreeage. With an area budget of 32, ACS’s
performance improvement is the highest: 17% over SCMP afiddvg&r ACMP; in fact, ACS outperforms both
SCMP and ACMP on all workloads. Hence, we conclude that A@Siges the best performance compared to
the alternative chip organizations, even for criticaltsecintensive workloads that use fine-grained locking.
Depending on the scalability of the workload and the amodirdomtention for critical sections, the area
budget required for ACS to provide performance improvemsmdifferent. Table 4 shows the area budget
required for ACS to outperform an equivalent-area ACMP a@d/®. In general, the area budget ACS requires
to outperform SCMP is higher than the area budget it requesutperform ACMP. Howevermebcache
andgsort have a high percentage of serial instructions; thereforslR®ecomes significantly more effective
than SCMP for large area budgets. For all workloads with §iragned locking, the area budget ACS requires to
outperform an area-equivalent SCMP or ACMP is less than valkig 24 small cores. Since chips with 8 small
cores are already in the market [23], chips with 16 and 32 lscoaés are being built [46, 40], and chips with
80 small cores are already prototyped [48], we believe AQShma feasible and effective option to improve

the performance of workloads that use fine-grained lockingeiar-future multi-core processors.

Table 4:Area budget (in terms of small cores) required for ACS to edigrm an equivalent-area ACMP and SCMP.
| [[ ep [ is | pagemine| puzzle | gsort [ sqlite | tsp ][ iplookup | oltp-1 | oltp-2 | specjbb| webcache|

ACMP || 6 | 6 6 4 12 6 10 6 14 10 18 24

SCMP || 6 | 4 6 4 8 6 18 14 14 16 18 14

Summary: Based on the observations and analyses we made above fdoadskvith coarse-grained and fine-
grained locks, we conclude that ACS provides significantjhrr performance than both SCMP and ACMP
for both types of workloads, except for workloads with fimaiged locks when the area budget is low. ACS’s
performance benefit increases as the area budget increlas@igure systems with a large number of cores,
ACS is likely to provide the best system organization amdwgthree choices we examined. For example, with
an area budget of 32 small cores, ACS outperforms SCMP by 3#A&MP by 23% averaged across all
workloads, including both fine-grained and coarse-graioeHs.
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Figure 10:Speedup over a single thread running on a single small core.

6.2. ACS Performance with Number of Threads Set Equal to the Nmber of Available Thread Contexts
In the previous section, we used the optimal number of tleréardeach application-configuration pair. When

an estimate of the optimal number of threads is not availabény current systems use as many threads as there
are available thread contexts [18, 34]. We now evaluate A€38raing the number of threads is set equal to the
number of available contexts. Figure 10 shows the speedwmesof ACMP, SCMP, and ACS over one small
core as the area budget is varied from 1 to 32. The curves f& &l ACMP start at 4 because they require at
least one large core which is area-equivalent to 4 smallscore

Table 5 summarizes the data in Figure 10 by showing the agexggcution time of ACS and SCMP normal-
ized to ACMP for area budgets of 8, 16, and 32. For comparigenalso show the data with optimal number
of threads. With an area budget of 8, ACS outperforms both BGxd ACMP on 5 out of 12 benchmarks.
ACS degrades average execution time compared to SCMP by 8%uwperforms ACMP by 3%. When the
area budget is doubled to 16, ACS outperforms both SCMP andRAGn 7 out of 12 benchmarks, reducing
average execution time by 26% and 23%, respectively. Witlaraa budget of 32, ACS outperforms both
SCMP and ACMP on all benchmarks, reducing average exectittaby 46% and 36%, respectively. Note
that this performance improvement is significantly highwart the performance improvement ACS provides
when the optimal number of threads is chosen for each coufligar (34% over SCMP and 23% over ACMP).
Also note that when the area budget increases, ACS startmgistently outperform both SCMP and ACMP.

Table 5:Average Execution time normalized to area-equivalent ACMP

Number of threads|| No. of max. thread contextg] Optimal
Area Budget 8 [16 [ 32 | 8 [16 [ 32
SCMP 93 104 118 94 105 115
ACS 97 77 64 96 83 77
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This is because ACS tolerates contention among threadsr etn SCMP and ACMP. Table 6 compares the
contention of SCMP, ACMP, and ACS at an area budget of 32eppon average more than 8 threads wait for
each critical section in both SCMP and ACMP. ACS reduces thigivg threads to less than 2, which improves
performance by 44% (at an area budget of 32).

We conclude that, even if a developer is not in a position terdgine the optimal number of threads for a
given application-configuration pair and chooses to sentimaber of threads at a point beyond the saturation
point, ACS provides significantly higher performance thathbACMP and SCMP. In fact, ACS’s performance
benefit is even higher in systems where the number of thresgis equal to number of thread contexts because

ACS is able to tolerate critical-section related interetit contention significantly better than ACMP or SCMP.

Table 6:Contention at an area budget of 32 (Number of threads set tmjthee number of thread contexts)
[ Workload [[ ep [ is | pagemine| puzzle | gsort [ sqlite [ tsp || iplookup | oltp-1 | oltp-2 | specjbb | webcache|

SCMP 8.2 | 16.4 15.9 16.1 25.6 6.4 | 3.6 1.9 2.2 1.6 1.2 1.4
ACMP 8.1 | 14.9 155 16.1 24.0 6.2 | 3.7 1.9 1.9 1.5 1.2 1.4
ACS 15| 20 2.0 2.5 1.9 14 | 35 1.8 1.4 1.3 1.0 1.2

6.3. Effect of ACS on Application Scalability

We examine the effect of ACS on the number of threads requedinimize the execution time of each
application. Table 7 shows number of threads that provitlesbest performance for each application using
ACMP, SCMP, and ACS. The best number of threads were choserdmyuting each application with all possi-
ble threads from 1 to 32. For 7 of the 12 applications (pagem ne,puzzl e,qsort,sqlite,ol tp-1,
andol t p- 2) ACS improves scalability: it increases the number of teeat which the execution time of
the application is minimized. This is because ACS reducesecion due to critical sections as explained in
Section 6.2 and Table 6. For the remaining applications, 465 not change scalabilitywWe conclude that if

thread contexts are available on the chip, ACS uses them effecively compared to ACMP and SCMP.

Table 7:Best number of threads for each configuration.
[ Workload || ep [ is | pagemine| puzzle | gsort | sqlite [ tsp ]| iplookup | oltp-1 | oltp-2 | specjbb | webcache]

SCMP 4 8 8 8 16 8 32 24 16 16 32 32
ACMP 4 8 8 8 16 8 32 24 16 16 32 32
ACS 4 | 12 12 32 32 32 32 24 32 24 32 32

6.4. Performance of ACS on Critical Section Non-Intensive Bnchmarks

We have also evaluated all 16 benchmarks from the NAS [7] @dASH [51] suites that are not critical-
section-intensive. These benchmarks contain regularmiatlel loops and execute critical sections infre-
guently (less than 1% of the executed instructions). We fimtl ACS does not significantly improve or degrade
the performance of any of these application compared to ACMIS provides a modest 1% performance im-
provement over ACMP and 2% performance reduction comparéfiIMP. At increased area budgets, ACS
performs similarly to (within 1% of) SCMP and ACMP. We condtuthat ACS will not significantly affect the
performance of critical section non-intensive workloadduture systems with large number of cores. (We do

not present detailed results due to space limitations. Wenglude them in an extended technical report.)

®Note that Figure 10 provides more detailed information or8&Ceffect on the scalability of each application. Howevwenlike
Table 7, the data shown on the x-axis is area budget and ndieruohthreads.
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7. Sensitivity of ACS to System Configuration
7.1. Effect of SEL

ACS uses the SEL mechanism (Section 3.6) to selectivelyjerate critical sections to reduce false serializa-
tion of critical sections. We evaluate the performance icbpadSEL. Since SEL does not affect the performance
of workloads that have negligible false serialization, weus our evaluation on the three workloads that expe-
rience false serializatiorpuzzl e, i pl ookup, andwebcache. Figure 11 shows the normalized execution
time of ACS with and without SEL for the three workloads whbe airea budget is 32. Fopl ookup and
webcache, which has the highest amount of false serialization, uSgd. improves performance by 11%
and 5% respectively over the baseline. The performanceawepnent is due to acceleration bmecritical
sections which SEL allows to be sent to the large core becdugsedo not experience false serialization. In
webcache, multiple threads access pages of different files storedsimaaed cache. Pages from each file are
protected by a different lock. In a conventional systemseheritical sections can execute in parallel, but ACS
without SEL serializes the execution of these critical im&st by forcing them to execute on a single large core.
SEL disables the acceleration of 17 out of the 33 locks, whlghinates false serialization and reduces pres-
sure on the large core. inpl ookup, multiple copies of the routing table (one for each thread)@motected
by disjoint critical sections that get serialized witholELS puzzl| e contains two critical sections protecting
a heap object (PQ) and a memoization table. Accesses to PQoaesfrequent than to the memoization table,
which results in false serialization for the memoizatiohléa SEL detects this serialization and disables the
acceleration of the critical section for the memoizatiobléa On average, across all 12 workloads, ACS with
SEL outperforms ACS without SEL by 15%. We conclude that S&h successfully improve the performance
benefit of ACS by eliminating false serialization withoufeating the performance of workloads that do not

experience false serialization.
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Figure 11:Impact of SEL. Figure 12:Impact of SMT. Figure 13:ACS on symmetric CMP.

7.2. Effect of using SMT on the Large Core

We have shown that ACS significantly improves performancer 8CMP and ACMP when the large core
provides support for SMT. The added SMT context provides A@8 the opportunity to concurrently execute
critical sections that are protected by different locks lo@ high performance core. When the large core does

not support SMT, contention for the large core can increaskl@ad to false serialization. Since SMT is not a
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requirement for ACS, we evaluate ACS on an ACMP where theelagge does not support SMT and executes

only one thread. Figure 12 shows the execution time of AC8auit SMT normalized to ACMP without SMT
when the area budget is 32. On average, ACS without SMT redexscution time by 22% whereas ACS with
SMT by 26%. Thus, SMT provides 4% performance benefit by reduialse serialization of critical sections.
7.3. ACS on Symmetric CMPs: Effect of Only Data Locality

Part of the performance benefit of ACS is due to improved locaf shared data and locks. This benefit can
be realized even in the absence of a large core. A variant & &&h be implemented on a symmetric CMP,
which we callsymmACSIin symmACS, one of the small cores is dedicated to executiigal sections. This
core is augmented with a CSRB and can execute the CSCALL sexqaed CSRET instructions. Figure 13
shows the execution time of symmACS and ACS normalized to B@Wen area budget is 32. SymmACS
reduces execution time by more than 5% compared to SCMRsinpuzzl e, sqgl it e, andi pl ookup
because more shared data is accessed than private datical sections? In ep, pagemni ne, gsort , and
t sp, the overhead of CSCALL/CSRET messages and transferringtprdata offsets the shared data/lock
locality advantage of ACS. Thus, overall execution timaéases. On average, sSymmACS reduces execution
time by only 4% which is much lower than the 34% performanceelfie of ACS. Since the performance gain
due to improved locality alone is relatively small, we cartg that most of the performance improvement of
ACS comes from accelerating critical section executiomgisihe large core.
7.4. Interaction of ACS with Hardware Prefetching

Part of the performance benefit of ACS comes from improvirgreth data/lock locality, which can also be
partially improved by data prefetching [45, 37]. To studg #ffect of prefetching, we augment each core with
a L2 stream prefetcher [43] (32 streams, up to 16 lines ahdddiure 14 shows the execution time of ACMP
with a prefetcher, ACS (with and without a prefetcher), @imalized to an ACMP without a prefetcher (area
budget is 32). On all benchmarks, prefetching improves #dopmance of both ACMP and ACS, and ACS
with a prefetcher outperforms ACMP with a prefetcher. Hoamrin puzzl e, gqsort,t sp, andol t p- 2,

ACMP benefits more from prefetching than ACS because theskloaals contain shared data structures that

10Note that these numbers do not correspond to those showrbie Ba The Shared/Private ratio reported in Table 3 is ctelbc
by executing the workloads with 4 threads. On the other hemilhis experiment, the workloads were run with the optimater of
threads for each configuration.
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lend themselves to prefetching. For exampld, &p, one of the critical sections protects an array. All eleraent
of the array are read, and often updated, inside the crisieetion which leads to cache misses in ACMP. The
stream prefetcher successfully prefetches this arraychvigduces the execution time of the critical sections.
As a result, ACMP with a prefetcher is 28% faster. Because Alt&ady reduces the misses for the array by
keeping it at the large core, the improvement from prefeiglis modest compared to ACMP (4%). On average,
ACS with prefetching reduces execution time by 18% comptrye&’CMP with prefetching and 10% compared
to ACS without prefetching. Thus, ACS interacts positiveligh a stream prefetcher and both schemes can be
employed together.

8. Related Work

The major contribution of our paper is a comprehensive meishathat accelerates the execution of critical
sections using a large core. The most closely related wotlteisiumerous proposals to optimize the imple-
mentation of lock acquire/release operations and theitgoafl shared data in critical section using OS and
compiler techniques. We are not aware of any work that spepdise execution of critical sections using more
aggressive execution engines. To our knowledge, this irdtgraper that comprehensively accelerates critical
sections by improving both the execution speed of critieatisns and locality of shared data/locks.

8.1. Related Work in Improving Locality of Shared Data and Locks

Sridharan et al. [41] propose a thread scheduling algoritr8MP machines to increase shared data locality
in critical sections. When a thread encounters a criticeliee, the operating system migrates the thread to the
processor that has the shared data. This scheme increabedaaality of shared data but incurs the substantial
operating system overhead of migrating complete thredd staevery critical section. ACS does not migrate
thread contexts and therefore does not need OS intervenitisiead, it sends a CSCALL request with minimal
data to the core executing the critical sections. Moreod&€iS accelerates critical section execution, a benefit
unavailable in [41]. Trancoso et al. [45] and Ranganathaal. ¢87] improve locality in critical sections using
software prefetching. These techniques can be combinddA@S for improved performance.

Several primitives (e.g., Test&Set, Test&Test&Set, Cora®dwap) were proposed to efficiently implement
lock acquire and release operations [10]. Recent reseaxhlho studied hardware and software techniques to
reduce the overhead of lock operations [16, 29, 5]. The N&ggrocessor improves cache locality of locks by
executing the “lock acquire” instructions [13] remotelytla¢ cache bank where the lock is resident. However,
none of these techniques increase the speed of criticabsgubcessing or the locality of shared data.

8.2. Related Work in Hiding the Latency of Critical Sections

Several proposals try to hide the latency of a critical sechiy executing it speculatively with other instances
of the same critical sectioas long as they do not have data conflicts with each otiexamples include
transactional memory (TM) [14], speculative lock elisi@®LE) [35], transactional lock removal (TLR) [36],
and speculative synchronization (SS) [31]. SLE is a hardwaechnique that allows multiple threads to execute
the critical sections speculatively without acquiring tbek. If a data conflict is detected, only one thread is

allowed to complete the critical section while the remagnthreads roll back to the beginning of the critical
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Exec. Time Norm. to ACMP

Figure 15:ACS vs. TLR performance.

section and try again. TLR improves upon SLE by providingreeitamp-based conflict resolution scheme that
enables lock-free execution. ACS is partly orthogonal &sthapproaches due to three major reasons:

1. TLR/SLE/SS/TM improve performance when the concurgeettecuted instances of the critical sections
do not have data conflicts with each other. In contrast, ACd@wves performance even for critical section
instances that have data conflicts. If data conflicts areiey TLR/SLE/SS/TM can degrade performance by
rolling back the speculative execution of all but one instato the beginning of the critical section. In contrast,
ACS'’s performance is not affected by data conflicts in citgections.

2. TLR/SLE/SS/TM amortize critical section latency by corrently executing non-conflicting critical sec-
tions, but they do not reduce the latency of each criticdicecIn contrast, ACS reduces the execution latency
of critical sections.

3. TLR/SLE/SS/TM do not improve locality of lock and sharestal In contrast, as our results in Section 7.3
showed, ACS improves locality of lock and shared data by ikggtihem in a single cache.

We compare the performance of ACS and TLR. Figure 15 showsx&eution time of an ACMP augmented
with TLR*! and the execution time of ACS normalized to ACMP (area budg@®2 and number of threads set
to the optimal number for each system). TLR reduces averageuéon time by 6% while ACS reduces it by
23%. In applications where critical sections often accéseidt data (e.g.puzzl e, where the critical section
protects a heap to which accesses are disjoint), TLR previtge performance improvements. However, in
workloads where critical sections conflict with each otteeg(,i s, where each instance of the critical section
updates all elements of a shared array), TLR degrades paafare. ACS outperforms TLR on all benchmarks,
and by 18% on average. This is because ACS accelerates mificgl @ections regardless of whether or not
they have data conflicts, thereby reducing serialization.

8.3. Related Work in Asymmetric CMPs

CMPs with heterogeneous cores have been proposed to redwees and improve performance. Morad et

al. [32] proposed an Asymmetric Chip Multiprocessor (ACM#)h one large core and multiple small, low-

performance cores. The large core was used to accelerasetia bottleneck. Hill at al. [15] build on the

1TLR was implemented as described in [36]. We added a 128-buaffer to each small core to handle speculative memory tgsda
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ACMP model and further show that there is potential in imfmgvthe performance of the serial part of an
application. Kumar et al. [25] propose heterogeneous doresduce power and increase throughput for multi-
programmed workloads. Our proposal utilizes the ACMP aettire to accelerate the execution of critical
sections as well as the serial part in parallel workloads.

Ipek et al. [22] propose Core Fusion, which consists of rpldtsmall cores that can be combined, i.e. fused,
to form a powerful core at runtime if parallelism is low. Thalgo apply Core Fusion to speed up serial portion
of programs. Our technique can be adapted to work on a ColierFaschitecture, where multiple execution

engines can be combined to form a powerful execution engiaedtelerate critical sections.

8.4. Other Related Work

The idea of executing critical sections remotely on a défgérprocessor resembles tRemote Procedure
Call (RPC)[8] mechanism used in network programming to ease the aarigin of distributed, client-server
based applications. RPC is used to execute (client) stiibesubn remote (server) computers. In ACS, the small
cores are analogous to the “client,” and the large core itogoas to the “server” where the critical sections
are remotely executed. ACS has two major differences fror@ Hrst, ACS executes “remote” critical section
calls within the same address space and the same chip adld® tteereby enabling the accelerated execution
of shared-memory multi-threaded programs. Second, AC@Bgse is to accelerate shared-memory parallel

programs, whereas RPC'’s purpose is to ease network progragjnm

9. Conclusion

This paper proposedccelerated Critical Sections (AG®) novel technique to improve the performance and
scalability of multi-threaded applications. ACS accelesaexecution of critical sections by executing them on
the large core of an Asymmetric CMP (ACMP). Our evaluationhwii2 critical section intensive workloads
shows that ACS reduces the average execution time by 34%arechpo an equal-area baseline with 32-core
symmetric CMP and by 23% compared to an equal-area ACMPhé&umore, ACS improves the scalability
of 7 of the 12 workloads. As such, ACS is a promising approacbvercome the performance bottlenecks
introduced by critical sections. Our future work will examiresource allocation in ACS architecture and
extending/generalizing the ACS paradigm to accelerateatiprogram paths.
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