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Abstract

As processor pipelines get deeper and wider and instruction windows get larger, the branch misprediction penalty

increases. Predication has been used to reduce the number of branch mispredictions by eliminating hard-to-predict

branches. However, with predication, the processor is guaranteed to fetch and possibly execute useless instructions,

which sometimes offsets the performance advantage of having fewer mispredictions. Also, predication does not eliminate

the misprediction penalty due to backward loop branches.

This paper introduces a new type of branch called a wish branch. Wish branches combine the strengths of traditional

conditional branches and predication, allowing instructions to be skipped over as with traditional branches, but also

avoiding pipeline flushes due to mispredictions as with predication. Unlike traditional conditional branches, on a wish

branch misprediction, the pipeline does not (always) need to be flushed. And, unlike predication, a wish branch (some-

times) avoids fetching from both paths of the control flow. This paper also describes a type of wish branch instruction,

called a wish loop, which reduces the branch misprediction penalty for backward loop branches.

We describe the software and hardware support required to generate and utilize wish branches. We demonstrate that

wish branches can decrease the execution times of SPEC2000 integer benchmarks by 7.8% (up to 21%) compared to

traditional conditional branches and by 3% (up to 11%) compared to predicated execution. We also describe several

simple hardware optimizations for exploiting and increasing the benefits of wish branches.

1. Introduction

As processor pipelines get deeper and wider and instruction windows get larger, the branch misprediction penalty

increases. Predicated execution is used to eliminate hard-to-predict branches by converting the control dependencies to

data dependencies [1, 14]. Using predicated execution, a processor fetches and executes more instructions but it does

not incur the branch misprediction penalty for the eliminated branches.1 However, even with code carefully predicated

by a state-of-the-art compiler, a processor implementing predicated execution sometimes loses performance because of

the overhead due to the unnecessary instructions [6]. If the compiler predicates a branch because profile information

indicates the branch is hard-to-predict, but at run-time the branch is easy-to-predict because the profile and actual input

sets are different or the branch is predictable in some program phases but not in others, predicated execution hurts

performance.

1Depending on the microarchitecture design, a predicated instruction with a false predicate may be fetched, decoded, and renamed, but not executed
in a functional unit.
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We introduce a new control flow instruction, called a wish branch. With wish branches, we can combine normal

conditional branching with predicated execution, providing the benefits of predicated execution without its wasted fetch

and execution bandwidth. Wish branches aim to reduce the branch misprediction penalty by using predicated execution

only when it increases performance. The decision of when to use predicated execution is made during run-time using

a branch predictor and, optionally, a confidence estimator. While in some run-time scenarios normal branches perform

better than predicated execution, predicated execution performs better in others. Wish branches aim to get the better

performance of the two under all scenarios.

A wish branch looks like a normal branch but the code on the fall-through path between the branch and the target

is predicated. A forward wish branch is called a wish jump. When the processor fetches the wish jump, it predicts the

direction of the wish jump using a branch predictor, just like it does for a normal branch. If the wish jump is predicted

not-taken, the processor executes the predicated code. But if it is mispredicted, the pipeline does not need to be flushed

since the fall-through path is predicated. If the wish jump is predicted taken, the processor executes the normal branch

code. If this prediction is correct, the extra useless instructions in the predicated code are not fetched. Hence, a wish

jump can obtain the better performance of a normal branch and predicated execution. To increase the benefit of wish

jumps, wish jumps can be used with a confidence estimator. When the confidence estimator predicts that a wish jump

might be mispredicted, the hardware performs predicated execution. Thus, the wish jump mechanism gives the hardware

the option to dynamically decide whether or not to use predicated execution.

Previous research shows that backward loop branches cannot be directly eliminated using predication [1], which

reduces predicated execution’s opportunity to remove the misprediction penalty for a large percentage of branches [6].

However, a backward loop branch can be converted to a wish branch instruction, which we call a wish loop. We show that

the wish loop instruction can reduce the branch misprediction penalty by exploiting the benefits of predicated execution

for backward branches. To use the wish loop, the compiler predicates the body of the loop using the loop branch

condition as the predicate. When the wish loop is mispredicted, the processor doesn’t need to flush the pipeline because

the body of the loop is predicated.

1.1. Contributions

This paper makes the following contributions to the research in reducing the branch penalty in microprocessors:

1. We propose a novel control flow instruction, called a wish branch, that combines the strengths of predicated execu-

tion and conditional branch prediction. This instruction:

(a) provides the hardware with a choice to use branch prediction or predicated execution for each dynamic in-

stance of a branch. In previous research, a static branch instruction either remained as a conditional branch

or was predicated for all its dynamic instances, based on compile-time information. Exploiting the choice

provided by a wish branch, the hardware can decide whether or not to use predicated execution based on more

accurate run-time information.

(b) provides a mechanism to exploit predicated execution to reduce the branch misprediction penalty for backward

branches. In previous research, it was not possible to reduce the branch misprediction penalty for a backward

branch by solely utilizing predicated execution.

2. We develop a compiler algorithm to generate wish branches and describe compiler optimizations that increase the

performance benefits of wish branches.
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3. We describe the basic hardware mechanisms to support wish branches and propose hardware enhancements, in-

cluding a wish loop branch predictor, that increase performance by exploiting the characteristics specific to wish

branches.

4. We demonstrate the use, benefits, and shortcomings of wish branches by implementing the wish branch code gener-

ation algorithm in a state-of-the-art compiler and simulating the generated code in a cycle-accurate, state-of-the-art

out-of-order processor model implementing a fully-predicated ISA. Our evaluation reveals that:

(a) Wish branches outperform both predicated execution and conditional branch prediction.

(b) Wish branches reduce the negative effects of predicated execution when predicated execution results in per-

formance degradation.

5. We describe the shortcomings of wish branches and describe future research directions on how to reduce these

shortcomings.

2. Wish Branches

Conventional branches have compulsory branching behavior: if the branch predicate is false, the processor must fall

through; if the predicate is true, the processor must take the branch. Wish branches have optional –but still desired–

branching behavior for one of the predicate values. For example, if the branch predicate is false, the processor must fall

through. However, if the predicate is true, the compiler desires, or wishes, that the processor take the branch. But if

the processor doesn’t take the branch, it is OK, because the compiler has arranged for the code to produce the correct

outcome regardless of whether the processor takes the branch.

In this section, we explain the behavior of wish branches and how wish branches are different from normal branches

and predicated execution. We introduce and describe three different wish branch instructions: (1) wish jump (Sec-

tion 2.1), (2) wish join (Section 2.2), and (3) wish loop (Section 2.3).

2.1. Wish Jumps

Figure 1 shows a source code example and the corresponding control flow graphs and assembly code for: (a) a normal

branch, (b) predicated execution, (c) a wish jump, and (d) a wish jump with a wish join. The main difference between

the wish jump code and the normal branch code is that the instructions in basic blocks B and C are predicated in the

wish jump code (Figure 1c), but they are not predicated in the normal branch code (Figure 1a). The other difference is

that the normal branch code has an unconditional branch at the end of block B, but the wish jump code doesn’t have one.

The difference between the wish jump code and the predicated code (Figure 1b) is that the wish jump code has a branch

whose target is block C, but the predicated code doesn’t have any branches.

In the normal branch code, only block B or block C is executed depending on the branch condition. Predicated

execution always executes both blocks B and C. In the wish jump code, if the condition of the wish jump is true (i.e., it

is taken), only block C is executed. If the condition of the wish jump is false, both blocks B and C are executed. Hence,

wish jump code is just like normal branch code when the condition of the wish jump is true, and it is just like predicated

code when the condition of the wish jump is false.

When the processor fetches the wish jump instruction, it predicts the direction of the wish jump using a branch

predictor, just like it does for a normal conditional branch. There are four cases based on the predicted direction and

the actual direction: (1) Predicted Taken and the Actual direction is Taken (PTAT), (2) Predicted Taken and the Actual

direction is Not-taken (PTAN), (3) Predicted Not-taken and the Actual direction is Taken (PNAT), and (4) Predicted

Not-taken and the Actual direction is Not-taken (PNAN).
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p1 = (cond)

(!p1) mov b, 1

(p1)  mov b,0

A

B

C

A

C

D

B

A

C

D

wish jump

B
wish join

A

D

A

D

C

wish jump

B

} 
else {

}

      b = 0;

      b= 1;

if (cond) {

(a)

B

C

A

TARGET:

(!p1) mov b, 1

p1 = (cond)
wish.jump p1, TARGET

C B

taken not−taken

(p1)  mov b, 0

A

TARGET:

B

C

branch p1, TARGET
p1 = (cond)

mov b, 1

JOIN:

jmp JOIN

C

B

A

TARGET:

JOIN:

wish.join !p1, JOIN

wish.jump p1, TARGET
  p1 = (cond)

(!p1)  mov b, 1

(code)

mov b, 0 (p1)   mov b, 0

(b) (c) (d)

Figure 1. Source code (code); the corresponding control flow graph and assembly code for (a) normal branch code (b) predicated

code (c) wish jump code (d) wish jump and wish join code

For cases PTAT and PNAN, the wish jump is correctly predicted. For cases PTAN and PNAT, the wish jump is

mispredicted. With a normal branch, when the branch is mispredicted, the processor always flushes the pipeline. With a

wish jump, PTAN results in a pipeline flush, but PNAT does not. For the PNAT case, the processor has already fetched

blocks B and C whose instructions are predicated. The instructions in block B become NOPs after the predicate value

is available, eliminating the need for a pipeline flush. For the PTAN case, the processor has not fetched block B, which

actually needs to be executed, so it flushes the pipeline just like in case of a normal branch and it fetches both blocks B

and C after misprediction recovery.

Table 1 summarizes the processor’s action for each of the four cases and compares the cost and benefit of wish jumps

to normal branches and predicated execution. A wish jump performs better than a normal branch for the PNAT case,

because the processor doesn’t flush the pipeline even though the wish jump is mispredicted. However, the processor

fetches and executes more instructions for the PTAN, PNAT, and PNAN cases compared to the normal branch. For the

PTAT case, the wish jump behaves exactly the same as a normal branch.2 A wish jump performs better than predicated

execution for the PTAT case, because the wish jump doesn’t need to fetch and execute block B. However, the wish jump

results in a branch misprediction for the PTAN case, which is worse than predicated execution. In PNAT and PNAN,

the wish jump and predicated execution perform the same except that the wish jump results in the execution of one more

instruction, which is the wish jump itself.

Table 1. Cost-benefit comparison between wish jump and normal branch, predicated execution

Case Processor’s action for wish jump code Comparison to normal branch code Comparison to predicated code

PTAT fetch and execute block C same (=) no fetch and execution of B (+)
PTAN pipeline flush and fetch, execute block B and C (C becomes nop) extra fetch and execution of C (-) pipeline flush penalty (- -)
PNAT fetch, execute block B and C (B becomes nop) no flush penalty but fetch and execution of B (++) similar (one extra instruction) (=̃)
PNAN fetch, execute block B and C (C becomes nop) extra fetch and execution of C. execution delay of B (-) similar (one extra instruction) (=̃)

2See Section 5.3.1 for further information on the PTAT case.
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How wish jumps affect the overall performance depends on the frequency and relative cycle impact of each of the

four cases. Section 3.1 explains how a compiler uses these cases to decide when a wish jump is needed. Section 5 shows

the frequency of each case and the net performance impact of wish jumps.

2.2. Wish Joins

In Figure 1c, even when the wish jump is correctly predicted to be not-taken (PNAN), the processor needs to fetch

both blocks B and C. To avoid the execution of basic block C in this case, a wish jump can be used with another

conditional branch instruction at the end of block B, as shown in Figure 1d. This instruction is called a wish join.

When a wish join is taken, the wish jump and wish join together behave exactly the same as a normal branch. When

a wish join is not-taken, the wish jump and wish join together behave like predicated execution. The main benefit of

wish jumps with wish joins is the extra flexibility they give to the processor in deciding whether or not to use predicated

execution. A wish join is used with a confidence estimator for the wish jump. When the wish jump is predicted, a

confidence estimation is provided for this prediction. If the wish jump prediction has low confidence, both the wish jump

and the corresponding wish join are predicted not-taken (the same as predicated execution). If the wish jump prediction

has high confidence, the wish jump is predicted according to the branch predictor and the wish join is predicted taken

(the same as traditional conditional branch prediction). Hence, this algorithm results in the use of predicated execution

for low-confidence branches and the use of branch prediction for high-confidence branches, where the confidence of a

branch is determined dynamically.

Based on the prediction for the wish join, the four cases in Section 2.1 become six cases. PNAN becomes either

PNAN-JT (Join is predicted Taken) or PNAN-JN (Join is predicted Not-taken). PNAT becomes either PNAT-JT or

PNAT-JN. To distinguish the wish jump behavior in the previous section from the wish join behavior in this section, we

relabel the PTAT case as PTAT-J and the PTAN case as PTAN-J.3

When the wish jump is correctly predicted not-taken and the wish join is predicted taken (PNAN-JT), the processor

avoids fetching block C, which is the goal of the wish join, and an improvement over the wish jump case PNAN. When

the wish jump is incorrectly predicted not-taken and the wish join is predicted taken (PNAT-JT), the processor needs to

flush the pipeline, a loss compared to the wish jump case PNAT. And when the wish join is predicted not-taken (PNAN-

JN or PNAT-JN), the performance of using the wish jump with the wish join is the same as the performance of using the

wish jump by itself, except that the use of the wish join adds one more instruction (the wish join) to the code. Finally,

if the wish jump is incorrectly predicted taken (PTAN-J), after the wish jump is resolved and misprediction recovery

is complete, the processor doesn’t need to fetch block C, an improvement over the wish jump case PTAN. Table 2

summarizes the processor’s action for all six cases and compares the cost and benefit of a wish jump with a wish join to

a normal branch and predicated execution.

Table 2. Cost-benefit comparison between wish jump with wish join and normal branch, predicated execution

Case Processor’s action for wish jump w/ wish join Comparison to normal branch code Comparison to predicated code

PTAT-J fetch and execute C same (=) no fetch and execution of B (+)
PTAN-J pipeline flush and fetch and execute B same (=) pipeline flush, but no fetch and exec. of C after flush (- -)
PNAT-JN fetch and execute B and C (B becomes nop) no flush penalty but fetch and execution of B (++) similar (two extra instructions) (=̃)
PNAT-JT pipeline flush and fetch and execute C same (=) pipeline flush, but no fetch and exec. of B after flush (- -)
PNAN-JN fetch and execute B and C (C becomes nop) extra fetch and execution of C. execution delay of B (-) similar (two extra instructions) (=̃)
PNAN-JT fetch and execute B same (=) no fetch and execution of C (+)

3Note that the actual direction of the wish join is opposite the actual direction of the wish jump. Also note that if the wish jump is predicted taken,
the wish join is not fetched. That’s why we do not distinguish between PTAT-JT and PTAT-JN, since they are the same case, which we call PTAT-J.
The same is true for PTAN-J.
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2.3. Wish Loops

We have explained wish branches only for forward branches. A wish branch can also be used for a backward branch.

We call this a wish loop instruction. Figure 2 contains the source code for a simple loop body and the corresponding

control-flow graph and assembly code for: (a) a normal backward branch and (b) a wish loop. We compare wish loops

only with normal branches since backward branches cannot be directly eliminated using predication [1]. A wish loop

utilizes predication to reduce the branch misprediction penalty of a backward branch without eliminating the branch.

The main difference between the normal branch code (Figure 2a) and the wish loop code (Figure 2b) is that the

instructions in block X (i.e., the loop body) are predicated using the loop branch condition in the wish loop code. Wish

loop code also contains an extra instruction in the loop header for the initialization of the predicate.

while (i<10) {

}
i++;
a++;

YY

(code) (a) (b)

X

H taken 

not−taken

(p1) add a, a, 1
(p1) add i, i, 1
(p1) p1 = (cond)
wish.loop p1, TARGET

TARGET:

EXIT:

mov p1,1

X

H

branch p1, TARGET

EXIT:

TARGET: X

p1 = (cond)
add i, i, 1
add a, a,1

wish loop
X

taken 

not−taken

Figure 2. Source code (code); the corresponding control flow graph and assembly code for (a) normal backward branch code

(b) wish loop code

With wish loops, there are three misprediction cases: (1) early-exit: the loop is iterated fewer times than it is supposed

to be, (2) late-exit: the loop is iterated only a few more times by the processor front end than it is supposed to be and it is

already exited when the wish loop misprediction is signalled, (3) no-exit: the loop is still being iterated by the processor

front end when the wish loop misprediction is signalled (as in the late-exit case, it’s iterated more times than needed).

For example, say a loop needs to be iterated 3 times. The correct loop branch direction is TTN (taken, taken, not-

taken) for the three iterations and the front end needs to fetch blocks X1X2X3Y. An example for each of the three

misprediction cases is as follows: In the early-exit case, the predictions for the loop branch are TN, so the processor

front end has already fetched blocks X1X2Y. One example of the late-exit case is when the predictions for the loop

branch are TTTTN and the front end has already fetched blocks X1X2X3X4X5Y. For the no-exit case, the predictions

for the loop branch are TTTTT...T and the front end has already fetched blocks X1,X2,X3,X4,X5...XN .

In the early-exit case, the processor needs to execute X at least one more time (in the example above, exactly one

more time; i.e., block X3), so it flushes the pipeline just like in the case of a normal branch. In the late-exit case, the

instructions in blocks X4 and X5 become NOPs because the predicate value p1 is 0 for the extra iterations 4 and 5,

and the processor has already fetched block Y. Therefore, the processor doesn’t need to flush the pipeline. With the

late-exit case, the wish loop performs better than a normal backward branch. In this case, as long as the processor front

end has already fetched block Y, the pipeline does not need to be flushed (regardless of how many extra loop iterations

are fetched). Hence, the wish loop saves part of the branch misprediction penalty. The fewer the number of extra loop

iterations fetched, the larger the savings in the branch misprediction penalty.

In the no-exit case, the front end has never fetched block Y. Therefore, the processor flushes the pipeline and restarts

with fetching block Y, similar to the action taken for a normal mispredicted branch. It is possible to not flush the pipeline
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in this case (since the extra iterations that have filled the pipeline are already predicated and will turn into NOPs), but not

flushing the pipeline does not result in any reduction in the branch misprediction penalty. Furthermore, not flushing the

pipeline requires the useless iterations to be drained from the pipeline, which may reduce performance by holding on to

resources needed by incoming correct-path instructions.

We note that when the wish loop is correctly predicted, the wish loop code performs worse than the normal branch

code. First, the wish loop code contains one extra instruction in the loop header. Second, and more importantly, because

all the instructions in the loop body (block X) are predicated, the instructions cannot be executed until the predicate value

is available, which results in an execution delay that can reduce performance compared to normal branch code where

the loop exit is correctly predicted. Due to these overheads, a good compiler should selectively convert backward loop

branches to wish loops using cost-benefit analysis or heuristics.

Table 3 summarizes the processor’s action for the case where the loop exit is correctly predicted and the three mispre-

diction cases and compares the cost and benefit of wish loop code to normal branch code. We expect wish loops to do

well in integer benchmarks where loops iterate a variable number of times in an unpredictable manner [11] that cannot

be captured by a loop branch predictor [34]. As wish loops reduce the misprediction penalty for the late-exit case, a

specialized wish loop predictor can be designed to predict wish loops. This predictor does not have to exactly predict the

iteration count of a loop. It can be biased to overestimate the iteration count of a loop to make the late-exit case more

common than the early-exit case for a wish loop that is hard to predict. We describe the design of such a loop predictor

in Section 5.4.

Table 3. Cost-benefit comparison between wish loop code and normal branch code

Case Processor’s action for wish loop code Comparison to normal branch code

correct-prediction fetch and execute block X exactly as needed execution delay (and one extra instruction) (-)
early-exit pipeline flush and fetch, execute block X as needed and then block Y execution delay (and one extra instruction) (-)
late-exit fetch and execute block X more than needed and fetch block Y exec. delay and extra iterations, but no flush penalty (and one extra inst.) (++)
no-exit pipeline flush and fetch, execute block Y execution delay (and one extra instruction) (-)

2.4. Why Are Wish Branches a Good Idea?

1. A wish jump eliminates the negative effects (extra instruction fetch and execution overhead) of predicated execution,

if the predicated branch turns out to be easy-to-predict at run-time.

2. Wish branches provide a choice to the hardware: the choice of whether or not to use predicated execution. This

choice does not exist for a traditional conditional branch or predicated execution. With a wish jump and a wish join,

wish branch code can behave exactly the same as a normal branch or predicated code, depending on the direction of

the wish branch. The processor can decide to use predicated execution for a low-confidence branch and use branch

prediction for a high-confidence branch, where the confidence of a branch is determined dynamically. Hence,

wish branches allow the processor to obtain the better performance of conditional branch prediction and predicated

execution by utilizing run-time information about branch behavior (in contrast to the less accurate compile-time

information utilized by the compiler for predicated execution).

3. With the wish loop instruction, a backward branch can utilize the benefits of predicated execution. Like wish jumps,

wish loops can also reduce the branch misprediction penalty by sometimes avoiding the flush of the pipeline.
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2.5. ISA Support

Figure 3 shows a possible instruction format for the wish branch. A wish branch can use the same opcode as a normal

conditional branch, but its encoding has two additional fields: btype and wtype. If btype is 0, the branch is a normal

branch and if btype is 1, the branch is a wish branch. If wtype is 0, the wish branch is a wish jump; if wtype is 1, the

wish branch is a wish loop; if wtype is 2, the wish branch is a wish join. If the current ISA already has hint bits for the

conditional branch instruction, like the IA-64 [15], wish branches can be implemented using the hint bit fields without

modifying the ISA. If the processor does not implement the hardware support required for wish branches, it can simply

treat a wish branch as a normal branch (i.e., ignore the hint bits). New binaries containing wish branches will then run

correctly on existing processors without wish branch support.

pwtypebtypeOPCODE
p:          predicate register identifier

btype:   branch type (0:normal branch 1:wish branch) 
wtype:  wish branch type (0:jump 1:loop 2:join) target offset

Figure 3. A possible instruction format for the wish branch

2.6. Hardware Support

Aside from the hardware required to support predicated execution, wish branches require hardware support in the

instruction decoding logic and the branch misprediction detection/recovery module. When a wish jump is mispredicted,

if the predicted branch direction was not-taken, the processor does not flush the pipeline. This corresponds to the PNAT

case in Section 2.1. If a wish join is also used, the processor also needs to check the prediction for the wish join. If the

wish join is also predicted to be not-taken, the pipeline does not need to be flushed, corresponding to the PNAT-JN case

in Section 2.2.

To support wish loop misprediction recovery, the processor uses a small buffer in the front end that stores the last

prediction made for each static wish loop instruction that is fetched but not retired. When a wish loop is predicted, the

predicted direction is stored into the entry corresponding to the static wish loop instruction. When a wish loop is found

to be mispredicted and the actual direction is taken, then it is an early-exit case. So, the processor flushes the pipeline.

When a wish loop is mispredicted and the actual direction is not-taken, the branch misprediction recovery module checks

the latest prediction made for the same static wish loop instruction by reading the buffer in the front end. If the last stored

prediction is not taken, it is a late-exit case, because the front end must have already exited the loop, so no pipeline flush

is required. If the last stored prediction is taken, it is a no-exit case because the front-end must still be fetching the loop

body,4 and the processor flushes the pipeline. Note that to keep the hardware simple we don’t support nested wish loops.

3. Compiler Algorithm for Converting Conditional Branches to Wish Branches

Conversion of branches to wish jumps and wish joins occurs during the if-conversion phase of the compilation process.

During this phase, the compiler decides whether a branch is converted to a wish jump, a wish jump and wish join pair, is

predicated, or stays unchanged. Conversion of backward branches to wish loops occurs after the if-conversion phase.

3.1. Wish Jump Conversion

If the compiler decides to convert a branch to a wish jump, the original control flow graph is converted to a new

control flow graph, which we call the wish control flow graph. An example control flow graph is shown in Figure 4a and

4Note that if the processor exited the loop and then re-entered it, this case will be incorrectly identified as a no-exit case, when it is actually a
late-exit case. Hence, the processor unnecessarily flushes the pipeline. We found that such unnecessary flushes occur rarely.
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its corresponding wish control flow graph is shown in Figure 4b. A wish control flow graph consists of three blocks: a

wish head block, a wish fall-through block, and a wish target block.

A

B

D

C

E

AAA

D

C

B

E

D

C

D

B

E

C

wish head block

wish fall−through block

wish target block B

E

wish fall−through block

wish head block

wish target block

(d) wish jump with wish join (C has wish jump)

wish jump

wish join

(a) normal branch code

taken

taken

not−taken

not−taken

(b) wish jump code (A has wish jump) (c) wish jump code (C has wish jump)

Figure 4. Wish control flow graph examples

3.1.1. First step in conversion: Selection of wish jump instructions. The compiler first selects wish jump candidate

instructions based on cost-benefit analysis. To do so, it scans all the basic blocks in a given region and selects the

basic blocks which can be predicated [25]. Only branches that can be predicated can be potentially converted into wish

jumps.5 Hence, only a basic block that can be predicated can be part of the wish fall-through block or wish target block.

Whether or not a basic block becomes part of the wish fall-through block or the wish target block is determined through

control flow graph analysis. If a block can be part of either the wish fall-through block or the wish target block, then the

block is included in the wish fall-through block. For example, due to the control flow characteristics in Figure 4a, basic

block D can be part of the wish fall-through block or the wish target block in Figure 4b. Our compiler algorithm makes

such blocks part of the wish fall-through block, because a larger fall-through block size reduces the number of useless

instructions executed when the wish jump is taken. After identifying the control-flow graph structure of the wish jump

code, the compiler estimates the execution time of the wish jump code. Execution time of the normal branch code and

the predicated code for the same portion of the control flow graph are also estimated. Equations used for execution time

estimates for these cases are as follows:
Exec time of normal branch code = exec T ∗ [P (PTAT ) + P (P NAT )] + exec N ∗ [P (PNAN) + P (PTAN)]

+ misp penalty ∗ [P (PTAN) + P (PNAT )]

Execution time of predicated code = exec pred

Exec time of wish jump code = exec T ∗P (P TAT )+ exec pred∗ [P (PNAN)+P (P NAT )+P (P TAN)]+misp penalty ∗P (PTAN)

exec T : execution time of the code when the branch under consideration is taken
exec N: execution time of the code when the branch under consideration is not taken
exec pred : execution time of the predicated code (without considering the predicate dependency)
misp penalty: machine-specific branch misprediction penalty
P(case) : The probability of the case; e.g., P(PNAT) is the probability of case PNAT.

The probability of each case (PTAT, PTAN, PNAT, PNAN) is estimated by profiling or using compiler heuristics.

Execution times (exec T, exec N, exec pred) are estimated with dependency height and resource usage analysis. If the

execution time estimate for the wish jump code is the least among the three execution time estimates, the branch is

converted to a wish jump. If the execution time estimate for the predicated code is the least, then the code is predicated.

When there are several wish jump candidates in a given selection, the compiler performs cost-analysis for each wish

jump candidate. For example, in Figure 4a, either the branch at the end of basic block A or the branch at the end of basic

block C can be converted to wish jump. Figure 4b shows the wish control flow graph when the branch at the end of A is

converted and Figure 4c shows the wish control flow graph when the branch at the end of C is converted.

5We use the ORC compiler’s baseline algorithm [21, 25, 24] to determine the branches that can be predicated.
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3.1.2. Second step in conversion: Wish block conversion and predication. After finishing the wish jump selection,

the compiler performs wish block formation. Wish target blocks and wish fall-through blocks are predicated. Multiple

basic blocks in each wish block are combined to form a single basic block (e.g., in Figure 4b, blocks B and E form a

single basic block when combined). The selected wish jump is marked to be a wish jump and all unnecessary branches

are eliminated. At the code emit stage, the compiler generates code such that a wish head block, the corresponding wish

fall-through block and the wish target block are laid out next to each other.

3.2. Wish Join Insertion

A wish join is inserted at the end of a wish fall-through block after wish block formation. Because the original control

flow graph has already been converted to a wish control flow graph, the potential for inserting a wish join instruction is

limited. The potential for wish join insertion is also reduced by the existence of if statements without corresponding else

statements in the source code. If the wish target block might need to be executed when the wish jump is not taken, a

wish join instruction is not inserted. For example, in Figure 4b, block B might need to be executed even if the wish jump

is not taken. Our compiler algorithm does not insert the wish join instruction in this case. In Figure 4c, block B never

needs to be executed if the wish jump is not taken, so a wish join instruction is inserted. Figure 4d shows the control

flow graph after a wish join is inserted in Figure 4c.

The compiler examines the instructions in the wish target block to determine whether or not to insert a wish join. If

there are instructions which always become NOPs when the wish jump condition is false, it inserts a wish join instruction.

The target of the wish join instruction is the first instruction which might need to be executed when the wish jump

condition is false.

3.3. Wish Loop Conversion

Conversion of backward branches to wish loops occurs after the if-conversion phase. First, the compiler identifies

which branches need to be converted to wish loops. All backward branches can potentially be wish loops. To simplify

the hardware needed to support wish loops, we do not allow nested wish loops. The loop body is also not allowed to

contain any loop exit branches or procedure calls. As discussed in Section 2.3, due to the execution delay resulting from

the predication of the loop body, wish loops need to be selected using cost-benefit analysis. Equations used for execution

time estimates are as follows:
Iteration exec time (normal loop code) = exec loop + misp penalty ∗ [P (early exit) + P (late exit) + P (no exit)]

Iteration exec time (wish loop code) = exec loop + misp penalty ∗ [P (early exit) + P (no exit)] + exec delay
+ late exit penalty ∗ P (late exit) + 1/N

exec loop: average execution time of the loop body (one iteration) without considering the predicate dependency
exec delay: execution delay of one iteration due to the predicate dependency
late exit penalty: average number of cycles the processor spends for extra loop iterations in the late-exit case
1/N: per-iteration execution time for one extra instruction added to the loop header (N is the average number of loop iterations)

Since it is hard to estimate the exec delay for an out-of-order processor, instead of cost-benefit analysis, our compiler

uses a simple heuristic that considers the size of the loop body, which affects the exec delay: the compiler converts a

branch to a wish loop only if the number of static instructions in the loop body is less than or equal to N. We explore the

performance impact of the threshold N in Section 5.2.

After deciding that a backward branch will be converted to a wish loop, the compiler inserts a header block before

the loop body in the control flow graph. A predicate initialization instruction is inserted in this header block. All the

instructions in the loop body are then predicated with the loop branch condition.
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4. Methodology

Figure 5 illustrates our simulation infrastructure. We chose the IA-64 ISA to evaluate the wish branch mechanism,

because of its full support for predication, but we converted the IA-64 instructions to micro-operations (µops) to execute

on our out-of-order superscalar processor model. We modified and used the ORC compiler [25] to generate the IA-64

binaries (with and without wish branches). The binaries were then run on an Itanium II machine using the Pin binary

instrumentation tool [26] to generate traces. These IA-64 traces were later converted to µops. The µops were fed into a

cycle-accurate simulator to obtain performance results.

Trace
generation

module
Compiler
 (ORC)

IA−64 Binary

Translator Simulator

IA−64 TraceSource Code IA−64 uop uopuops

(Pin)

Figure 5. Simulation infrastructure

4.1. Simulator

Experiments were run using a cycle-accurate simulator which was derived from an in-house Alpha ISA simulator. Our

baseline processor is an aggressive superscalar, out-of-order processor. Table 4 describes our baseline micro-architecture.

Because a less accurate branch predictor would provide more opportunity for wish branches, a large and accurate hybrid

branch predictor is used in our experiments to avoid inflating the impact of wish branches.

Table 4. Baseline processor configuration

Front End 64KB, 4-way instruction cache with 2-cycle latency; 8-wide fetch/decode/rename
Branch Predictors 64K-entry gshare, 64K-entry PAs hybrid with 64K-entry selector; 4K-entry branch target buffer; 64-entry return address stack;

64K-entry target cache (for indirect branches); minimum branch misprediction penalty is 30 cycles
Execution Core 512-entry reorder buffer; 8-wide execute/retire;

full bypass network; all instructions have 1-cycle latency except for integer multiply (8-cycles), FP add, FP multiply, FP convert, FP compare,
and FP bit operations (each 4-cycle), and FP divide (16 cycles)

On-chip Caches 64KB, 4-way L1 data cache and 2-cycle latency; 1MB, 8-way, unified L2 cache with 8 banks and 6-cycle latency, 1 L2 read port, 1 L2 write port;
all caches use LRU replacement and have 64B line size;

Buses and Memory 300-cycle minimum main memory latency; 32 DRAM banks; 32B-wide, split-transaction core-to-memory bus at 4:1 frequency ratio;
maximum 64 outstanding misses to main memory; bank conflicts, bandwidth, and queuing delays faithfully modeled

4.2. Support for Predicated Execution on an Out-of-order Processor

In an out-of-order execution processor, a predicated instruction makes register renaming more complicated because it

may or may not write into its destination register depending on the value of the predicate [37, 27]. Several solutions have

been proposed to handle this problem: (1) converting predicated instructions into C-style conditional expressions [37],

(2) breaking predicated instructions into two µops [10], (3) select-µop mechanism [40], (4) predicate prediction [8]. Our

baseline processor uses the first mechanism, which has no extra instruction overhead. We also experimented with the

select-µop mechanism and found its performance to be similar to the first mechanism (See Section A.3). Note that wish

branch can be used with any of these mechanisms. We briefly explain our baseline mechanism below. A full evaluation

of the mechanisms used to support predicated execution on an out-of-order processor is out of the scope of this paper.

Converting a predicated instruction into a C-style conditional expression: This mechanism transforms the pred-

icated instruction into another instruction similar to C-style conditional expression. For example, (p1)r1=r2+r3

instruction is converted to the µop r1=p1?(r2+r3):r1. If the predicate is true, the instruction performs the com-

putation and stores the result into the destination register. If the predicate is false, the instruction simply moves the old

value of the destination register into the destination register, which is architecturally a nop operation. Hence, regardless
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of predicate value, the instruction always writes into the destination register, allowing the dependent instructions to be

renamed correctly. The advantage of this mechanism is that it has no extra instruction overhead. The disadvantage of

this mechanism is that it requires four register sources (old register value, predicate register, and two source inputs). It

also increases the length of the dependency chain by adding a nop operation when the predicate is false. Sprangle

and Patt [37] proposed an enhanced mechanism to eliminate the nop operation using a statically defined tag.

4.3. Trace Generation and Benchmarks

IA-64 traces were generated with the Pin instrumentation tool [26]. Because modeling wrong-path instructions is

important in studying the performance impact of wish branches, we generated traces that contain wrong-path information

by forking a wrong-path trace generation thread. We forked a thread at every wish branch down the mispredicted path.

The spawned thread executed until the number of executed wrong-path instructions exceeded the instruction window

size. The trace contains the PC, predicate register, register value, memory address, binary encoding, and the current

frame marker information for each instruction and it is stored using a compressed trace format. We developed an IA-

64 to Alpha ISA translator to convert the IA-64 instructions in the trace into µops, which are similar to Alpha ISA

instructions. All NOPs are eliminated during µop translation.

All experiments were performed using the SPEC 2000 integer benchmarks. The benchmarks were run with a reduced

input set [20].6 Table 5 shows information about the simulated benchmarks.7 To reduce the trace generation time

and the simulation time, each trace contains about 100M instructions after the initialization phase of the benchmark.

We synchronize traces between different binaries using procedure call counts so that we can fairly compare the same

portions of the program among different binaries.

Table 5. Simulated benchmarks

Benchmark Simulated section Dynamic instructions Static branches Dynamic branches Mispredicted branches IPC/µPC
(based on procedure call count) IA64 instructions / µops (per 1000 µops)

164.gzip 42500 - 765000 94M / 66M 781 10M 8.71 2.25/ 1.56
175.vpr 1 - 1665000 154M / 106M 3525 13M 7.89 2.38/ 1.64
181.mcf 1630000 - 4246000 94M / 66M 1187 14M 6.05 1.52/ 1.07
186.crafty 1 - 1780000 86M / 61M 5231 6M 4.37 1.68 / 1.19
197.parser 2600000 - 5030000 105M / 76M 913 17M 10.32 1.21/ 0.87
253.perlbmk 1 - 700000 195M / 137M 3452 17M 0.07 1.21 / 0.85
254.gap 1 - 450000 93M / 66M 3134 7M 2.47 1.22/ 0.86
255.vortex 395000 - 1685000 93M / 71M 7535 10M 0.77 1.06/ 0.81
256.bzip2 1400000 - 1785000 75M / 52M 634 8M 16.40 1.38/ 0.96
300.twolf 240000 - 780000 119M / 79M 3288 7M 6.5 1.81/ 1.20

4.4. Compilation

All benchmarks were compiled for the IA-64 ISA with the -O2 optimization by the ORC compiler. Software pipelin-

ing, speculative load optimization, and other IA-64 specific optimizations were turned off to reduce the effects of features

that are specific to the IA-64 ISA and that are less relevant on an out-of-order microarchitecture. Software pipelining was

shown to provide provides less than 1% performance benefit on the SPEC 2000 integer benchmarks [6] and we removed

this optimization to simplify our analysis. Wish branch code generation is also performed with -O2 optimization.8 To

compare wish branches to normal branches and predication, we generated six different binaries, which are described in

Table 6. Across all six binaries, forward branches that cannot be predicated remain as normal branches.

6Because each experiment uses different binaries, other ways of reducing the simulation time such as SimPoint is not easily applicable in our
experiments.

7The information shown in Table 5 is collected using the normal branch binary, which is described in Table 6. NOPs are included in the dynamic
IA-64 instruction count, but they are not included in the µop count.

8Due to problems encountered during compilation and trace generation, gcc and eon benchmarks were excluded. We are currently working on
fixing these problems.
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Table 6. Description of binaries compiled to assess the performance of different combinations of wish branches

Binary name Branches that can be predicated with the ORC algorithm [21, 25, 24] ... Backward branches ...

normal branch binary remain as normal branches remain as normal branches
predicated code binary are predicated remain as normal branches
wish jump binary are converted to wish jumps or are predicated (see Section 3.1.1) remain as normal branches
normal branch and wish loop binary remain as normal branches are converted to wish loops or remain as normal branches
predicated code and wish loop binary are predicated are converted to wish loops or remain as normal branches
wish jump and wish loop binary are converted to wish jumps or are predicated (see Section 3.1.1) are converted to wish loops or remain as normal branches

5. Simulation Results and Analysis

We first evaluate how wish jumps and wish loops perform compared to normal branches and predicated code. Figure 6

shows the normalized number of execution cycles for the six different binaries. Execution time is normalized to the

normal branch binary. These results show that the wish jump binary performs as well as or better than the normal branch

binary for all benchmarks. The wish jump binary performs 11% better than the predicated code binary for mcf, where

the predicated code binary actually degrades performance due to its overhead. The wish jump binary performs slightly

worse than the predicated code binary for crafty, vortex, and twolf due to the pipeline flushes caused by wish jump

mispredictions and the overhead of extra instructions. Combining normal branches with wish loops performs better than

the normal branch binary for vpr, parser, bzip2, and twolf, without degrading performance in any benchmark. Combining

predicated code with wish loops improves the performance of the predicated code binary for the same four benchmarks,

but does not eliminate the negative performance impact of predicated code in mcf. Using both wish jumps and wish

loops removes the negative impact of predication in mcf by utilizing the benefit of wish jumps and also further increases

performance by utilizing the benefit of wish loops, with a maximum performance improvement of 19% over the normal

branch binary in vpr and twolf. On average, utilizing both wish jumps and wish loops obtains the best performance across

the six binaries, with an average improvement of 7.2% over the normal branch binary and 2.4% over the predicated code

binary.
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Figure 6. Relative execution cycles normalized to normal branch binaries

Figure 7 shows the distribution of dynamic mispredicted branches in the normal branch binary based on how they

are treated in the other binaries. The bar labeled Predicated shows the mispredicted branches that are predicated in both

the predicated code binary and the binaries containing wish jumps. Wish Jump shows the branches that are converted to

wish jumps in the binaries containing wish jumps. Wish Loop shows the branches that become wish loops in the binaries

containing wish loops. Normal Branch shows the branches that remain as normal conditional branches in all six binaries.

Figure 7 provides insight into why the wish jump binary and the predicated code binary perform better than the normal

branch binary: in gzip, vpr, parser, vortex, and twolf, more than 20% of the mispredicted branches in the normal branch
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binary are eliminated using predication in the wish jump binary and the predicated code binary. Figure 7 also shows

that few mispredicted branches are converted to wish jumps, because many branches either become predicated code or

cannot be converted to predicated code. We discuss how a better compiler can convert more mispredicted branches into

wish jumps in Section 6.1.

Figure 7 also provides insight into why using wish loops increases performance in vpr, parser, bzip2, and twolf.

Approximately 15%, 42%, 10%, and 15% of the mispredicted branches in vpr, parser, bzip2, and twolf, respectively are

converted to wish loops. Section 5.2 examines the behavior of mispredicted wish loop instructions in detail.
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Figure 7. Mispredicted branch distribution in normal branch binary

5.1. Benefits of Wish Jumps

Figure 8 shows the dynamic distribution of the four cases that were analyzed in Table 1. Remember that a wish

jump performs better than predicated execution in the PTAT case. Figure 8 shows that 90% of the wish jumps in mcf

fall into the PTAT category. We find that, in mcf, many of the branches that are predicated in the predicated code

binary are actually correctly predicted in the normal branch binary. Using wish jumps instead of predication for these

branches eliminates the instruction overhead of predication for the PTAT correct predictions, which results in significant

performance improvement over predicated code. Figure 8 also shows that the case in which wish jump performs worse

than predicated execution (PTAN) does not occur frequently. The performance of wish jumps and predicated execution

are similar in the PNAN and PNAT cases, but a wish jump has an extra instruction overhead. We find that this overhead

is the cause of the performance loss of the wish jump binary compared to the predicated code binary in twolf and vortex.

Figure 8 shows that more than 50% of the wish jumps are actually not taken (PNAN and PTAN) for vpr, parser, perlbmk,

gap, vortex, and twolf. As wish jumps are more beneficial when they are taken, the performance benefit of wish jumps in

these benchmarks can increase with smarter profile-based code reorganization in which the compiler optimizes the wish

jump code such that the taken case is more frequent than the not-taken case.

5.2. Benefits of Wish Loops

Figure 9 shows the dynamic distribution of the four cases that were analyzed in Table 3. Figure 9 shows that approx-

imately 50% of the mispredicted wish loops fall into the late-exit category, which provides performance improvement

in vpr, parser, bzip2, and twolf. Since the early-exit case constitutes a significant percentage of the mispredicted wish

loops, a loop predictor specialized for converting the harmful early-exit cases to the beneficial late-exit cases has the

potential to increase the performance benefit of wish loops.

Because the predication of the wish loop body causes extra execution delay and because wish loop conversion adds an

extra instruction to the loop header, performance reduction is possible if the compiler does not carefully convert branches
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Figure 8. Dynamic distribution of wish jumps (based on wish jump binary)
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Figure 9. Dynamic distribution of wish loops (based on normal branch and wish loop binary)

to wish loops. Our baseline compiler algorithm converts a backward branch to a wish loop when the size of the loop

body is less than or equal to N instructions where N=5. Figure 10 shows the execution time when N is varied from 10

to 50. When larger loops are converted to wish loops, a performance loss is observed across all benchmarks, especially

in mcf and perlbmk. To identify the cause of the overhead in wish loops, two ideal experiments are performed. First,

we ideally remove the cost of the extra instruction inserted into the loop header in our simulator (NOINIT - second bar

from the right in Figure 10). Second, in addition, we ideally eliminate the execution delay caused by the predication of

the loop body in our simulator (NOINIT + NODELAY - rightmost bar). Eliminating the extra execution delay removes

the performance degradation observed in all benchmarks when larger loops are converted to wish loops. In contrast,

eliminating the extra instruction does not affect performance, implying that the major overhead of the wish loop is the

execution delay it causes due to predication. Figure 10 also shows that our simple compiler heuristic works well in that

it achieves almost the same performance achieved when the overhead due to wish loops is eliminated.
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Figure 10. The overhead due to wish loops
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5.3. Hardware Optimizations for Wish Branches

5.3.1. Predicate dependency elimination If a wish jump is predicted taken, the predicate value can be predicted to be

true. If the wish jump is correctly predicted, the instructions on the taken path do not need to wait until the predicate

value is computed before they are executed. If the wish jump is mispredicted, the processor flushes the pipeline so the

instructions after the wish jump will be re-executed with the correct predicate value. The prediction mechanism is as

follows: When a wish jump is predicted taken, the predicate register number of the wish jump instruction is stored in

a special buffer. Each following instruction compares its source predicate register number with the register number in

the special buffer. If both predicate register numbers are the same, the source predicate register of the instruction is

assumed to be ready, with a true value. The special buffer is reset if there is a branch misprediction or if an instruction

that writes to the same predicate register is decoded. For example, in Figure 1c, when the wish jump is predicted to be

taken, the predicate register number p1 is stored in the special buffer. The following instruction (p1) mov, b0 has the

same predicate register number p1, so it can be executed before the instruction that generates the p1 value (p1 = cond)

is executed. Figure 11 shows that this optimization results in about 1% improvement for gzip and crafty over the wish

jump binary.

5.3.2. Confidence estimator Wish jumps can be better utilized with a confidence mechanism. When the prediction

made for a wish jump has low confidence, the wish jump is predicted to be not taken. This reduces the occurrence of the

PTAN case, which requires a pipeline flush, and increases the occurrence of the PNAT or PNAN cases. Figure 11 shows

the performance of wish jumps with a perfect branch confidence mechanism, where every mispredicted wish jump is

predicted to be low-confidence. Since the PTAN case does not occur frequently as shown in Figure 8, the performance

improvement is negligible even with a perfect confidence predictor.

5.3.3. Wish joins As explained in Section 2.2, wish joins should be used with a confidence estimator. To demonstrate

the potential of wish joins, we use a perfect confidence predictor. Figure 11 shows that, even with a perfect confidence

predictor, wish joins do not show significant additional performance benefit in our current wish jump binaries. We found

that the number of wish join instructions inserted is negligible due to the reasons explained in Section 3.2. Hence, the

performance impact of the wish joins is negligible.
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Figure 11. Relative execution cycles with hardware optimizations for wish branches

5.4. Hardware Optimizations for Wish Loops

A specialized wish loop predictor can be designed to overestimate the iteration count of a loop to make the late-exit

case more common than the early-exit case when a wish loop is hard to predict. This predictor would take advantage
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of the benefits provided by the wish loop without requiring the exact prediction of the iteration count of a loop. We

propose a specialized predictor design based on the previously-proposed loop termination predictor [34]. In contrast to

the previous proposal, the wish loop predictor does not try to predict the exact number of iterations of a loop. It predicts

that the wish loop will iterate the maximum number of times it iterated in the past. For example, if a wish loop iterated

3, 6, 4, 4, 2, 1, and 3 times in the last seven executions of the loop, the wish loop predictor predicts that the loop will

iterate 6 times in the next execution.

The wish loop predictor, shown in Figure 12, has three counters: SpecIter (number of speculatively fetched itera-

tions), NonSpec (number of retired iterations), and ConfCount (a counter used to determine the confidence of the loop

prediction). The maximum number of retired loop iterations encountered for each loop is stored in the MaxIter field.

SpecIter is incremented by one when the wish loop branch is predicted to be taken in the front end. NonSpec is incre-

mented by one when the wish loop branch retires and is found to be taken. When the wish loop retires and is found to

be not-taken, the NonSpec value is compared with the Max value. If the NonSpec value is less than or equal to the Max

value, ConfCount is incremented. If the NonSpec value is greater than the Max value, Max value is set to the NonSpec

value and both ConfCount and Conf are reset to zero. NonSpec and SpecIter are reset to zero when a wish loop branch

retires and is found to be not-taken. Once the ConfCount value reaches a threshold N (N=5 in our simulations), the Conf

bit is set. The output of the loop predictor is valid only if the Conf bit is set.

A wish loop branch is predicted taken if the SpecIter value is less than the MaxIter value. When the SpecIter counter

reaches the MaxIter value, the wish loop branch is predicted not-taken. This prediction is used only if the confidence

estimation for the main branch predictor’s prediction is low confidence. If the confidence estimation for that prediction

is high confidence, the loop predictor’s result is discarded and the branch predictor’s prediction is used.
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Figure 12. Wish loop prediction mechanism

Figure 13 shows the execution time when the wish loop predictor is utilized along with a realistic confidence esti-

mator [16]. Compared to the execution time of the wish jump and wish loop binary that does not utilize the wish loop

predictor, a 4% performance improvement is observed for parser and a 1-2% performance improvement is observed for

vpr, bzip2, and twolf. Similar improvements are seen with the loop predictor on the predicated code and wish loop

binary. The reason is that the wish loop predictor migrates early-exit cases to late-exit cases. For example, in parser,

without the proposed loop predictor, 11% of all mispredicted branches fall into the late-exit case and 11% fall into the

early-exit case (Figure 9). When the wish loop predictor is used, 14% of all mispredicted branches fall into the late-exit

case and 6% fall into the early-exit case. With the wish loop predictor, utilizing wish jumps and wish loops results

in an average improvement of 7.8% (maximum 21% in vpr, parser, and twolf) over the normal branch binary and 3%

(maximum 11% in mcf and parser) over the predicated code binary.
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Figure 13. Relative execution cycles with the wish loop predictor

6. Discussion

This section examines the shortcomings of our implementation, provides insights into how wish branches can perform

better by reducing some of these shortcomings, and proposes areas for future study.

6.1. Compiler Effects on Wish Jump Effectiveness

As discussed in Section 3, a branch instruction can be converted to a wish jump only if it can be predicated. Since our

base compiler uses a region-based compilation algorithm, all if-conversion is performed within a region boundary [21,

25]. How a region is constructed is a critical factor that determines how many branches can be predicated. A different

region formation algorithm can convert more branches to predicated code, which also increases the opportunities for

converting branches to wish jumps.

The region formation algorithm built into the base compiler is also not optimized for building large predicated code

blocks. In predicated execution, large predicated blocks can hurt performance because they result in the execution of

a large number of useless instructions. As we have shown, wish jumps can reduce this problem associated with large

predicated blocks. If a compiler produces larger predicated code blocks by using a different region formation algorithm

or different configuration values in the region formation algorithm, this will increase the wish fall-through block size.

A larger wish fall-through block will provide more opportunities for a wish branch to improve the performance of

predicated execution and thus may make predication of larger code blocks more viable using the wish branch mechanism.

Hence, future research should evaluate the impact of region formation algorithms on the effectiveness of wish jumps and

predication.

6.2. Wish Jumps vs. Predicated Code, Revisited

One advantage of predication is that it gives the compiler more freedom and scope in code optimization by combining

multiple basic blocks into a single basic block [14, 23]. If we use wish jumps instead of predication alone, this code

optimization benefit is reduced, because a wish jump breaks the code into multiple basic blocks instead of using a single

large basic block. Therefore, predication can have additional benefit over wish jumps, since it allows for the generation

of more optimized code. Because we evaluate both wish jumps and predicated execution on an aggressive out-of-order,

superscalar processor model, we found that the additional code optimization benefit present in the predicated code does

not significantly affect performance. For other processor models (e.g. VLIW, in-order), the additional benefit due to

predication can be more significant. Therefore, the tradeoffs between predication and wish jumps in other processor

models needs to take into account the code optimization effects.

Another advantage of predication is that it reduces the pressure on the branch predictor by eliminating branches. This
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may reduce the branch mispredictions for the remaining branches in the code. As wish jumps add more branches to

the code, this advantage provided by predication may be reduced. On the other hand, the addition of wish jumps to the

code can actually help increase the prediction accuracy because the prediction of wish jumps adds more information to

the global branch history register that is used to make branch predictions. Previous research has shown that information

on the direction of the predicated branches does increase the branch prediction accuracy [3, 35]. We find that these

conflicting effects balance each other and the additional branches present in the wish jump code do not significantly

affect the branch predictor accuracy.

6.3. Global Branch History Register Updates

In current microprocessors, the global branch history register (GHR) is updated speculatively in the fetch stage and

is recovered using the correct branch direction during branch misprediction recovery [17]. As such, branch predictions

made on the mispredicted path do not corrupt the history used to predict branches that are on the correct program path.

In contrast, a processor using wish branches is sometimes unable to recover the GHR on a wish jump or wish loop

misprediction. This happens in the PNAT case for the wish jump and in the late-exit case for the wish loop. For both

of these cases, no misprediction recovery is initiated even though the wish jump/loop is mispredicted. Hence, the bit

corresponding to the wish jump/loop in the GHR cannot be corrected. This results in the prediction of future branches

with incorrect GHR values, which may result in an increase in the number of branch mispredictions. This problem

can affect wish loops more significantly, because multiple wish loops can update the GHR speculatively and they can

all be on the mispredicted path. Therefore, multiple bits in the GHR may be incorrect in the late-exit case. We found

that eliminating the negative effects of this problem has the potential to improve the performance provided by the wish

branches. Hence, part of our future research is on techniques to fix the GHR upon wish branch mispredictions.

7. Related Work

7.1. Related Research on Predicated Execution

Predicated execution was first implemented in the Cray-1 computer system as mask vectors [33]. Allen et al. [1]

proposed the predication of instructions using if conversion to enable automatic vectorization in the presence of complex

control flow. Hsu and Davidson proposed the use of predicated execution for scalar instructions, which they called

guarded execution, to reduce the penalty of conditional branches in deeply-pipelined processors [14]. Hsu and Davidson

also described how predicated execution enables compiler-based code scheduling optimizations.

Several papers examined the impact of predicated execution on branch prediction and instruction-level parallelism.

Pnevmatikatos and Sohi [27] showed that predicated execution can significantly increase a processor’s ability to extract

parallelism, but they also showed that predication results in the fetch and decode of a significant number of useless

instructions. Mahlke et al. [22], Tyson [38], and Chang et al. [4] showed that predicated execution can eliminate a

significant number of branch mispredictions and can therefore reduce the program execution time.

Choi et al. [6] examined the performance advantages and disadvantages of predicated execution on a real IA-64

implementation. They showed that even though predication can potentially remove 29% of the branch mispredictions

in the SPEC 2000 integer benchmark suite, it results in only a 2% improvement in average execution time. For some

benchmarks, a performance loss is observed with predicated execution. This performance loss and small performance

gain is due to the overhead of predication (the extra useless instructions executed). Our paper aims to reduce the overhead

of predication by using the wish branches to dynamically eliminate the useless predicated instructions.
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Chuang and Calder [8] proposed a hardware mechanism to predict the predicate values in order to overcome the

multiple-definition problem [37, 40] in an out-of-order processor that implements predicated execution. Although they

do not mention it, their mechanism can reduce the extra instruction overhead of predicated execution, if the predicate

value is easy to predict at run time. However, if the predicate value is hard to predict, incorrect predicate predictions

will result in partial pipeline flushes, which reduce the benefit provided by predicated execution. In contrast to predicate

prediction, which is performed for every predicate, a wish branch is inserted by the compiler only for a subset of the

predicated branches. With wish branches, the hardware has the freedom to dynamically decide whether to use conditional

branching or predicated execution, whereas with predicate prediction every predicate is predicted, just like a normal

conditional branch.

Klauser et al. [18] proposed dynamic hammock predication (DHP), which is a hardware mechanism that dynamically

predicates hammock branches. This mechanism supports predication on processors with little or no ISA predication

support. Like wish branches, DHP provides the hardware with the ability to dynamically decide whether or not to

predicate a hammock branch. In contrast to wish branches, DHP is a hardware-based mechanism and adds significant

hardware complexity to the pipeline, especially to the renaming logic. In this paper, we assume predication support

exists in the ISA and try to reduce the negative effects of predication by using combined software/hardware mechanisms,

without significantly increasing the hardware complexity.

7.2. Related Research on Control Flow Independence

Several hardware mechanisms have been proposed to exploit control flow independence [30] by reducing the branch

misprediction penalty or improving parallelism [29, 30, 31, 7, 5, 12]. Similar to the wish branch’s objective, these

techniques aim to avoid flushing the processor pipeline when the processor is known to be on the correct control flow

path at the time a branch misprediction is signalled. In contrast to wish branches, these mechanisms require a significant

amount of hardware to exploit control flow independence. Hardware is required for the following:

1. Detection of the reconvergent (control-flow independent) point in the instruction stream: While some mechanisms

use software to detect the reconvergent point [30, 31], most proposed mechanisms use hardware-based heuristics

and predictors [29, 7, 5, 12, 9]. The hardware used to detect/predict the reconvergent point adds more complexity

to the processor pipeline. In contrast, a wish branch exactly specifies the reconvergent point, because the compiler

that generates the wish branch knows exactly where the reconvergent point is in the instruction stream. Hence, there

is no need for extra hardware.

2. Removal of wrong-path instructions, formation of correct data dependences for control-independent instructions,

and selective re-scheduling and re-execution of instructions: Proposed mechanisms to exploit control flow inde-

pendence [29, 30, 31, 7, 5, 12] require fairly complicated hardware structures to accomplish these tasks [30]. In

contrast, as wish branches make use of predication to exploit control-flow independence, there is no need to provide

extra hardware other than what is in place to support predicated execution. Instructions that are on the wrong-

path will become NOPs because they are predicated, and the control-independent instructions on the correct path

already have the correct data dependences, because the compiler correctly identifies their dependences while gen-

erating predicated code, which eliminates the need for re-scheduling and re-execution. In summary, wish branches,

with their use of predication, eliminate most of the complex hardware support required to exploit control-flow

independence purely in hardware.
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Instruction reuse buffers [36] and register integration [32] are two mechanisms that reuse the execution results of the

control and data independent instructions that are on the wrong path. Unlike wish branches, in these two approaches, the

pipeline needs to be flushed on a branch misprediction.

7.3. Related Research on Multipath Execution

Several mechanisms were proposed to reduce the branch penalty by fetching and/or executing instructions from the

multiple paths of the control flow. Eager execution [28] was proposed by Riseman and Foster. Dual-path fetch in IBM

360/91 [2] was a simple form of eager execution. Selective dual path execution [13], disjoint eager execution [39], and

the PolyPath architecture [19] refined eager execution to reduce its implementation cost. These mechanisms are at a level

similar to the wish branch mechanism because they fetch and execute from both paths of the control flow. However, in

wish branch code, both control-flow paths after a conditional branch are already combined into one single path (i.e., the

not-taken path in wish jump code) by predicating the code. No hardware support is needed to fetch from multiple paths.

The hardware simply needs to decide whether to fetch instructions from the taken path or from the not-taken path. In

multipath execution, extra hardware resources are needed to fetch and execute from multiple control-flow paths.

8. Conclusion

This paper proposes a new control-flow instruction called a wish branch to reduce the branch misprediction penalty.

We introduce three types of wish branches (wish jump, wish join, and wish loop) and provide insights into how and why

they can perform better than normal branch prediction and predicated execution. The compiler algorithms to generate

wish jumps, wish joins, and wish loop branches are described. We demonstrate the performance improvement of wish

branches by implementing the new instructions in a state-of-the-art compiler.

Using wish jumps and wish loops together decreases the execution time of the SPEC 2000 integer benchmarks by

7.2% (up to 19%) compared to traditional conditional branches and by 2.4% (up to 11%) compared to predicated execu-

tion, without requiring complex hardware support. To improve the benefit of wish loops, we propose a specialized wish

loop predictor. With this predictor, the execution time is reduced by 7.8% (up to 21%) compared to traditional condi-

tional branches and 3% (up to 11%) compared to predicated execution. We also describe several hardware optimizations

which can improve the performance benefit of the wish jumps. Since few mispredicted branches are converted to wish

jumps, these hardware optimization techniques do not show significant performance benefits. These techniques will be

more useful with better compilation techniques for generating wish jump code, which we intend to investigate as part of

our future research.
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A. Sensitivity of the Performance of Wish Branches to Microarchitectural Parameters

A.1. Effect of Instruction Window Size and Pipeline Depth

We analyze the benefits of wish branches on machines with smaller instruction windows and shorter pipelines. Fig-

ure 14 shows the normalized execution time of the five binaries on three different machines with 128, 256, and 512-entry

instruction windows. The data is averaged over all the ten benchmarks examined. Execution time of each binary is

normalized to the execution time of the normal branch binary on the machine with the corresponding instruction window

size. We can see that wish branches provide larger performance improvements on processors with larger instruction win-

dows. This is due to the increased cost of branch mispredictions (due to the increased time to fill the instruction window

after the pipeline is flushed) on machines with larger instruction windows. Wish branches are also more effective on

larger windows, because it is more likely to have useful instructions in the pipeline of a machine with a larger window

when a mispredicted branch is resolved. Hence, the potential of exploiting control-flow independence is higher on a

larger instruction window.

Instruction window size

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

E
xe

cu
ti

on
 t

im
e 

no
rm

al
iz

ed
 t

o 
no

rm
al

 b
ra

nc
h predicated code binary

wish jump binary
normal branch and wish loop binary
predicated code and wish loop binary
wish jump and wish loop binary

128 256 512

Figure 14. Sensitivity of wish branch performance to instruction window size.

Figure 15 shows the normalized execution time of the five binaries on three different machines with 10, 20, and 30

pipeline stages. The benefits of wish branches increases as pipeline depth increases. Note that the binaries with wish

jumps and wish loops always outperform the other binaries for all pipeline depths and instruction window sizes.

A.2. Wish Branches on In-order Processors

We also evaluate the benefits of wish branches in an in-order machine. The processor we evaluate has a 30-cycle

minimum branch misprediction penalty. Since branch mispredictions are less costly on an in-order machine predicated

code binaries do not show performance benefits as large as they do on out-of-order machines. Even so, wish branches

still reduce most of the negative effects of predicated code and keep the benefits of predicated code if the predicated code

provides a performance benefit. Wish jumps and wish loops together improve the performance of the in-order processor

by 1.8% compared to traditional conditional branches and by 1.1% compared to predicated execution. Notice that using

wish loops sometimes significantly reduces performance on an in-order processor, especially in vpr. This is due to the
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Figure 15. Pipeline depth effect

execution delay caused by the predication of the loop body. The cost of execution delay due to wish loops is much higher

in an in-order machine because an in-order machine cannot tolerate the execution delay unlike an out-of-order machine.
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Figure 16. Relative execution cycles normalized to normal branch binaries in an in-order machine

A.3. Effect of the Select-µop Mechanism to Support Predicated Execution

Our baseline out-of-order processor uses C-style conditional expressions to handle predicated instructions as dis-

cussed in section 4.2. We also implemented the select-µop mechanism proposed by Wang et. al [40] to quantify the

benefits of wish branches on an out-of-order microarchitecture that uses a different technique to support predicated

execution.

The advantage of the select-µop mechanism over the C-style conditional expressions is that it does not require the

extra register read port and the extra input in the data-path to read and carry the old destination register value. Hence, the

implementation cost of predicated execution is higher on a processor that supports predicated instructions by converting

predicated instructions into C-style conditional expressions.

The disadvantage of the select-µop mechanism is that it requires additional µops to handle the processing of pred-

icated instructions. Note that this is not the case in a processor that supports predicated instructions using C-style

conditional expressions. Due to this additional µop overhead, the performance benefits of predicated code are lower on

a processor that uses the select-µop mechanism than on a processor that uses C-style conditional expressions.
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Figure 17 shows the normalized execution time of the five different binaries on a processor that supports predicated

execution using the select-µop mechanism. All execution times are normalized to the execution time of the binary that

contains only conditional branches. Hence, the results in Figure 17 are directly comparable to results in Figure 6 which

assumes the base processor that uses C-style conditional expressions to support predicated execution. Predicated code

binary provides 2.2% performance improvement on the processor that uses the select-µop mechanism compared to 5%

on the baseline processor. Wish jump and wish loop binary improves the performance of the processor that uses the

select-µop mechanism by 5.6% compared to normal branch binary and 3.5% compared to predicated code binary.

Hence, on the processor that uses the select-µop mechanism, the overall performance improvement of wish branches

over conditional branch prediction (5.6%) is smaller than it is on the processor that uses C-style conditional expressions

(7.2%). This is due to the higher overhead of the select-µop mechanism to support predicated instructions. On the other

hand, the overall performance improvement of wish branches over predicated execution (3.5%) is larger than it is on

the processor that uses C-style conditional expressions (2.4%). Hence, the performance improvement provided by wish

branches is larger when predicated execution has higher overhead.
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Figure 17. Relative execution cycles normalized to normal branch binaries in select-µop mechanism

26


