
Microarchitecture-Based Introspection: A Technique for Transient-Fault
Tolerance in Microprocessors

Moinuddin K. Qureshi Onur Mutlu Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2004-004
December 3, 2004

This page is intentionally left blank

2

Microarchitecture-Based Introspection: A Technique for
Transient-Fault Tolerance in Microprocessors

Moinuddin K. Qureshi Onur Mutlu Yale N. Patt

Electrical and Computer Engineering
The University of Texas at Austin
{moin, onur, patt}@hps.utexas.edu

Abstract

The increasing transient fault rate will necessitate on-chip fault tolerance techniques in future processors. The
speed gap between the processor and the memory is also increasing, causing the processor to stay idle for hundreds
of cycles while waiting for a long-latency cache miss to be serviced. Even in the presence of aggressive prefetching
techniques, future processors are expected to waste significant processing bandwidth waiting for main memory.

This paper proposes Microarchitecture-Based Introspection (MBI), a transient-fault detection technique, which
utilizes the wasted processing bandwidth during long-latency cache misses for redundant execution of the instruction
stream. MBI has modest hardware cost, requires minimal modifications to the existing microarchitecture, and is
particularly well suited for memory-intensive applications. Our evaluation shows that the time redundancy of MBI
results in an average IPC reduction of only 7.1% for memory-intensive benchmarks in the SPECCPU2000 suite. The
average IPC reduction for the entire suite is 14.5%.

1 Introduction

When users execute an application on a processor, they trust the processor to perform the expected operation. Incorrect

processor operation can lead to emotional and financial damage to the user. Dependence on processors will increase

as more and more applications move toward the electronic domain. Therefore, maintaining correct operation in future

processors will become even more important. Transient faults present a serious challenge to the correct operation of

future processors.

A transient fault occurs in a processor when a high-energy cosmic particle strikes and inverts the logical state of a

transistor. A transient fault exists for a finite length of time, is non-recurring, and does not cause permanent failure of

1

the device. The transient fault rate of processors is increasing because of the following trends:

1. Reduction in operating voltage

The probability that a particle strike will result in a transient fault is dependent on the noise margin – a lower

noise margin increases the probability and a higher noise margin decreases the probability. The voltage levels at

which transistors operate are reducing, which reduces the noise margin and makes transistors more susceptible

to transient faults.

2. Increase in processor frequency

A fault on the output of a device may or may not get latched depending on the processor frequency. As frequency

increases, the time duration between successive latchings of an output reduces. Thus, a fault is more likely to

get latched in a high-frequency processor than in a low-frequency processor.

3. Increase in the number of on-chip transistors

The number of on-chip transistors has been increasing exponentially. It is projected that the error rate for an

individual transistor will stay constant or decrease only slightly for the next several technology generations [6].

Thus, the fault rate of a processor will increase proportionally with its transistor count.

Recent studies [17] have estimated that the error rate due to transient faults is likely to increase by as much as

eight orders of magnitude in the next decade. Future processors, if they are to be viable, will need to incorporate fault

tolerance techniques to keep the error rate under an acceptable level.

Fault tolerance has traditionally been achieved using two techniques: redundant code and redundant execution.

Storage structures have regular patterns, which lend themselves to redundant codes. These structures can easily be

protected with well-understood techniques such as parity and Error Correcting Codes (ECC). In contrast, combina-

tional logic structures have irregular patterns, which often necessitate redundant execution for fault tolerance. Redun-

dant execution can further be classified into space redundancy and time redundancy. Space redundancy is achieved

by executing a task on multiple disjoint structures. Space redundancy has low performance overhead but requires

hardware in proportion to the number of redundant structures. Time redundancy is achieved by executing a task on

the same hardware multiple times. Time redundancy has low hardware overhead but high performance overhead. The

performance overhead of time redundancy can be reduced if the redundant execution is scheduled during idle cycles in

which the processing bandwidth is otherwise wasted. This paper focuses on utilizing the wasted processing bandwidth

due to long-latency cache misses for time redundancy.

Processor frequency has increased at a much faster rate than DRAM memory speed, which has led to a widening

speed gap between the processor and the memory. This problem is partially addressed in current processors through

multi-level on-chip caches, providing fast access to recently-accessed data. Unfortunately, a cache miss at the highest

2

level on-chip cache almost always stalls the processor [5] because the latency to main memory is very long (in the

order of hundreds of cycles [23]). The stalled processor cannot execute instructions until the long-latency cache miss

is completely serviced. Therefore, these cache misses translate into idle cycles for the processor, resulting in wasted

processing bandwidth. The problem is even worse for memory-intensive applications because these applications

have large working sets, which cause frequent cache misses. Applications that have traditionally required high fault

tolerance, such as transaction processing and database workloads, tend to be memory-intensive [4]. A recent study [3]

shows that database workloads spend about two-thirds of their execution time waiting for memory.

The processing bandwidth wasted due to long-latency cache misses can be utilized for different purposes. Runa-

head execution [10] pre-executes the application during long-latency cache misses in order to generate prefetches.

Li et al. [8] use the spare bandwidth to reduce power by reducing the processor voltage while a cache miss is being

serviced. Similarly, the wasted processing bandwidth can be used for increasing the fault tolerance of a processor by

re-executing the application during the idle cycles.

In this paper, we propose Microarchitecture-Based Introspection (MBI), a time redundancy technique, to detect

transient faults. MBI achieves time redundancy by scheduling the redundant execution of a program during idle

cycles in which a long-latency cache miss is being serviced. MBI provides transient fault coverage for the entire

pipeline starting from instruction fetch to instruction commit. This technique is completely microarchitecture based

and requires no support from the compiler or the ISA. It requires modest hardware overhead and minimal changes

to the existing microarchitecture. Because the technique attempts to utilize idle cycles caused by long-latency cache

misses, it is particularly well-suited for memory-intensive applications. Our experiments show that using MBI for 13

memory-intensive benchmarks from SPECCPU2000 results in an average IPC reduction of only 7.1%. The average

IPC reduction for the entire SPECCPU2000 suite is 14.5%.

The organization of this paper is as follows: We motivate and summarize the MBI concept in Section 2. Details

of the mechanism and its implementation are discussed in Section 3. Our evaluation methodology is described in

Section 4. We present the results and analysis in Section 5. We describe error handling strategies in Section 6. We

discuss related work in Section 7 and conclude in Section 8.

2 Motivation and Overview

2.1 Motivation for Using Cache Miss Cycles for Redundant Execution

To measure the amount of processing bandwidth wasted due to long-latency cache misses, and its potential for re-

dundant execution, we perform three experiments.1 In the first experiment, we simulate the baseline machine with a

perfect instruction cache, a perfect data cache, and a perfect branch predictor. We measure the Cycles Per Instruction2

1Section 4 describes the baseline configuration and benchmarks. The memory system includes a 1MB L2 cache and an aggressive prefetcher.
2We use CPI for the experiments in this section because CPI provides a more intuitive breakdown of execution time due to the different

components in a processor. For experiments in all other sections, we use Instructions Per Cycle (IPC) to measure performance.

3

(CPI) of this configuration (CPI-PERF). Redundant execution can leverage the load values and the resolved branch

directions from the first execution of the instruction stream and therefore does not need to incur data cache misses

or branch mispredictions. Hence, the CPI of the redundant execution can be expected to be very close to CPI-PERF.

In the second experiment, we measure the CPI of the baseline machine with a perfect L2 cache, but real first-level

(L1) caches and a real branch predictor. The CPI increase for the second experiment with respect to the CPI of the

first experiment represents the CPI added due to real L1 caches and branch predictor (CPI-L1-BP). In the third exper-

iment, we measure the CPI of the baseline machine with real L1 and L2 caches and a real branch predictor. The CPI

increase for the third experiment with respect to the CPI of the second experiment represents the CPI added due to a

real L2 cache (CPI-L2). Figure 1 shows the CPI breakdown in terms of CPI-PERF, CPI-L1-BP, and CPI-L2 for each

benchmark.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

C
yc

le
s

pe
r

In
st

ru
ct

io
n

 CPI-L2
 CPI-L1-BP
CPI-PERF

HIGH-MEM CATEGORY LOW-MEM CATEGORY

16

mcf art luc
as

am
mp

tw
olf

wup
wise

ap
si

vp
r

fac
ere

c

sw
im

ga
lge

l
gc

c
bz

ip2
vo

rte
x

mgr
id

pa
rse

r

ap
plu

eq
ua

ke

mes
a

ga
p

six
tra

ck

cra
fty

pe
rlb

mk

gz
ip

eo
n

fm
a3

d

Figure 1: CPI breakdown in terms of : CPI-PERF, CPI-L1-BP, and CPI-L2.

For each benchmark, the proportion of CPI-L2 in total CPI represents the fraction of processing bandwidth that

gets wasted due to L2 misses. We sort the benchmarks with respect to this proportion and classify them into two

categories: HIGH-MEM and LOW-MEM. The thirteen benchmarks that have the highest proportion of CPI-L2 in total

CPI are grouped in the HIGH-MEM category, and the remaining benchmarks are grouped in the LOW-MEM category.

The benchmarks in the LOW-MEM category have a small CPI-L2 component in total CPI. These benchmarks either

have memory access patterns that are easily prefetchable or have working sets that fit in the L2 cache.

All benchmarks in the HIGH-MEM category, except galgel, have CPI-L2 more than CPI-PERF. These benchmarks

have sufficient idle processing bandwidth to re-execute the program with negligible performance degradation. Though

our technique is primarily targeted towards such memory-intensive applications, we perform our studies for all the

benchmarks in the SPECCPU2000 suite.

4

2.2 Overview

In this section, we provide a brief overview of MBI. The operation of a machine implementing MBI has two modes:

performance mode and introspection mode. Instructions are processed for the first time in performance mode. Later,

for fault tolerance, instructions are processed again in introspection mode. The architectural state of the processor

(i.e., architectural registers and memory) is updated only while the processor is in performance mode. The purpose

of introspection mode is to verify the results produced during performance mode and thus the architectural state is

not modified during introspection mode unless an error is found. Figure 2 shows the state machine for the MBI

mechanism.

PERFORMANCE
MODE MODE

INTROSPECTION

OR BUFFER_FULL
LONG_LATENCY_CACHE_MISS

MISS_SERVICED
OR BUFFER_EMPTY

Figure 2: State machine for the MBI mechanism

In performance mode, instruction processing proceeds without paying attention to incorrect operation resulting

from transient faults. Instructions are fetched, executed, and retired. The result of each retired instruction is stored in

a structure, called the backlog buffer. Writing results to the backlog buffer is a post-retirement operation and does not

affect the instruction processing speed in performance mode. When a long-latency cache miss occurs in performance

mode, the processor creates a checkpoints the processor state and switches to introspection mode. In introspection

mode, the processor re-executes each instruction that was retired in performance mode and compares the new result

with the result of the previous execution stored in the backlog buffer. If both results match, then instruction processing

for that instruction is assumed to be fault-free and the respective entry is removed from the backlog buffer. A mismatch

between the two results signals an error.

If there are no L2 cache misses for a long period, the processor will not enter introspection mode and the backlog

buffer will become full. To guarantee redundant execution for all retired instructions, the processor is forced to

enter introspection mode when the backlog buffer becomes full.3 The processor returns from introspection mode to

performance mode when either the backlog buffer becomes empty or when the long-latency miss gets serviced.

3An alternative policy does not force the processor into introspection mode when the backlog buffer is full. However, this policy will not provide
redundant execution for all retired instructions and, therefore, will not guarantee transient fault coverage for all instructions. The percentage of
instructions that are redundantly executed during an L2 miss (i.e., the coverage of the instruction stream of this alternative policy) is shown in
Section 5.3.

5

3 Design

In this section, we provide details about the implementation and operation of MBI. Figure 3 shows the baseline system

and the extensions required to incorporate MBI into an existing microarchitecture. The structures unique to MBI are

shaded.

R
E
T
I
R
E

BUS
MEMORY

H
C

E
F

T

L2 CACHE

BUFFER
BACKLOG

HEAD−PTR

TAIL−PTR

=
COMPARATOR

ARF

ISPECPERF
CHECKPOINTCHECKPOINT

PERFORMANCE MODE INTROSPECTION MODE

PROCESSOR PIPELINE
(VULNERABLE TO TRANSIENT FAULTS)

I CACHE D CACHE

MODE

ERROR

Figure 3: Microarchitecture support for MBI.

We assume that the storage structures such as caches, register file, checkpoints, and backlog buffer are protected

using ECC and buses are protected using parity. The pipeline is unprotected and vulnerable to transient faults.

3.1 Structures

MBI requires the following changes to the microarchitecture:

1. Checkpoints: The design includes two checkpoints4 for storing the register state corresponding to each of the two

modes. Each checkpoint contains a snapshot of the Architectural Register File (ARF) and the Program Counter

(PC). The checkpoint is updated only when the processor switches from one mode to another. Information

stored in a checkpoint is used to restore the architectural state when the processor returns to the corresponding

mode.

2. Backlog buffer: This storage structure keeps track of the instructions that were retired in performance mode but

have not yet been processed in introspection mode. It is implemented as a circular FIFO buffer and contains two

pointers: a tail pointer (TAIL-PTR) and a head pointer (HEAD-PTR). The TAIL-PTR determines the entry in the

backlog buffer where the result of the next retiring instruction will be written. Results are written in the backlog

buffer only during performance mode. When an instruction writes its result in the backlog buffer, the TAIL-PTR

is incremented to point to the next entry. The HEAD-PTR determines the location of the entry in the backlog

4An optimized design with only one checkpoint is also possible, at the cost of additional complexity.

6

buffer that will provide the result to be compared with the next completed instruction in introspection mode.

The results from the backlog buffer are read only during introspection mode. In our experiments, we assume

that the backlog buffer can store the results of 2K instructions. Section 5.2 analyzes the impact of varying the

size of the backlog buffer.5

3. Selection mechanism for load instructions: Because the store instructions in performance mode update the

D-cache the load instructions in introspection mode read their memory values from the backlog buffer. The

selection mechanism selects between the D-cache output and the backlog buffer output, determined by the

mode.

4. Comparator: The comparator is required to compare the results of redundant execution with the results stored

in the backlog buffer. The comparator logic contains XOR gates and is accessed in the post-retirement stage of

the pipeline. If the inputs to the comparator are different, an error is signaled in introspection mode.

In addition, depending on the error handling policy, logic for handling errors may be required.

3.2 Operation

A processor implementing MBI can be in performance mode, introspection mode, or switching from one mode to

another. We describe the operation for all these cases.

• Operation in performance mode

In performance mode, the processor performs its normal operation without checking errors resulting from tran-

sient faults. When an instruction retires, its results are copied into the backlog buffer. Store instructions update

the D-cache and load instructions read their values from the D-cache.

• Operation in introspection mode

Instruction processing in introspection mode begins with the oldest instruction that was retired in performance

mode but has not yet been processed in introspection mode. In introspection mode, the processor fetches the

instructions from the I-cache and processes them in the normal manner with the following exceptions:

1. A load instruction reads its memory value from the backlog buffer.

2. A store instruction does not update the D-cache (memory system is not updated in introspection mode).

3. Prediction for a conditional branch instruction is provided by the resolved branch direction stored in the

backlog buffer. In introspection mode, the processor does not update the branch predictor. This allows the

branch predictor to retain its history information.

5If each instruction result is four bytes, then the storage cost of a backlog buffer containing 2K entries will be 8KB (which is fairly small
considering that the baseline contains a 1MB on-chip cache). The storage cost of the backlog buffer can further be reduced by storing a signature
of the result instead of the full result.

7

When an instruction retires in introspection mode, its result is compared with the result stored in the backlog

buffer. A match denotes correct operation, whereas a mismatch is signaled as an error. We discuss error handling

policies in Section 6.

• Switching from performance mode to introspection mode

A processor in performance mode can switch to introspection mode due to any of the following reasons:

1. Long-latency L2 cache miss

When there is a long-latency L2 cache miss, the instruction causing the cache miss will reach the head

of the reorder-buffer and stall retirement until the cache miss gets serviced. When the instruction causing

the cache miss reaches the head of the reorder-buffer, the processor waits for 30 cycles and switches to

introspection mode. The 30 cycle wait allows the in-flight instructions to execute and to possibly generate

additional L2 misses. We found that waiting for 30 cycles before switching to introspection mode rather

than switching to introspection mode as soon as an L2 miss instruction is at the head of the reorder-buffer

is better for performance.

2. Backlog buffer full

When the backlog buffer is full, the processor is forced to enter introspection mode. This is done to

guarantee redundant execution, and, therefore, transient fault coverage, for all instructions.

3. System call

Instructions retired in performance mode need to go through redundant execution before the processor

executes a system call.6 This prevents external devices from accessing the possibly incorrect results of

the instructions that have not been verified through redundant execution. As system calls are infrequent,

entering introspection mode before them does not cause a significant performance degradation. In our

studies, only 0.0004% of the introspection mode episodes were caused by system calls.

4. Self-modifying code

When self-modifying code is detected, the processor is forced to enter introspection mode before modify-

ing any of the instructions. Otherwise, the two executions of the same instruction will likely give different

results in performance mode and introspection mode, even if there is no transient fault. We do not have any

self-modifying code in our experiments because we model the Alpha ISA, which disallows self-modifying

code.

If the processor switches from performance mode to introspection mode because of a long-latency cache miss,

6For critical system calls, such as the machine check exception, the processor can transfer control without completing redundant execution of
all retired instructions.

8

the entry into introspection mode is called normal-introspection. Entry into introspection mode for any other

reason is called forced-introspection. The process of switching to introspection mode comprises two activities:

1. Checkpointing the state of performance mode: The ARF is copied to the performance mode checkpoint. In

the case of normal-introspection, the PC of the miss-causing instruction is copied into the performance mode

checkpoint. In case of forced-introspection, the PC of the instruction after the last retired instruction is copied

into the performance mode checkpoint.

2. Restoring the state for introspection mode: The state for introspection mode is restored by copying the register

values from the introspection mode checkpoint to the ARF. The PC from the introspection mode checkpoint is

also restored and the processor begins fetching the redundant instructions from the I-cache.

• Switching from introspection mode to performance mode.

For normal-introspection, the processor returns to performance mode when the long-latency cache miss gets

serviced or when the backlog buffer becomes empty, whichever is earlier. Whereas, for forced-introspection,

the processor returns to performance mode only when the backlog buffer becomes empty. The process of

returning to performance mode comprises two activities:

1. Checkpointing the state of introspection mode: This is done by copying the register values of the ARF to the

introspection mode checkpoint. The PC of the instruction after the last instruction completed in introspection

mode is also copied. This PC determines where the instruction processing will begin when the processor enters

introspection mode the next time.

2. Restoring the state for performance mode: This state is restored by copying the register values from the

performance mode checkpoint to the ARF. The PC stored in the performance mode checkpoint is also restored.

4 Experimental Methodology

4.1 Baseline Configuration

We evaluate MBI by modeling it in an execution-driven performance simulator. Our baseline processor is an ag-

gressive eight-wide out-of-order superscalar processor that implements the Alpha ISA. Table 1 describes the baseline

configuration. Because MBI is primarily targeted towards utilizing the idle cycles during long-latency cache misses,

we model the memory system in detail. We model port contention, bank conflicts, bandwidth, and queuing delays

faithfully. The cache hierarchy includes a relatively large, 1MB, L2 cache. Because some of the cache misses can

be easily prefetched using a prefetcher, our baseline also contains a state-of-the-art streaming prefetcher [20]. The

prefetcher is very effective on benchmarks with streaming memory reference behavior and it significantly reduces the

performance loss due to cache misses on some of the floating point benchmarks.

9

Table 1: Baseline configuration.
Instruction cache 16KB, 64B line-size, 4-way with LRU replacement; 8-wide fetch with 2 cycle access latency
Branch Predictor 64K-entry gshare/64K-entry PAs hybrid with 64K-entry selector; 4K-entry, 4-way BTB ;

minimum branch misprediction penalty is 24 cycles.
Decode/Rename/Issue 8-wide; reservation stations contain 128 entries and implement oldest-first scheduling
Execution units 8 general purpose functional units;

Latency for all integer instructions, except multiply, is 1 cycle; Integer multiply takes 8 cycles.
All FP operations, except FP divide, take 4 cycles; FP divide takes 16 cycles

Data Cache 16KB, 64B line-size, 4-way with LRU replacement, 2-cycle hit latency, 128-entry MSHR
Unified L2 cache 1MB, 8-way with LRU replacement, 64B line-size, 15-cycle hit latency, 128-entry MSHR
Memory 400-cycle minimum access latency; maximum 128 outstanding requests;

32 DRAM banks; bank-conflicts modeled
Bus 16B-wide split-transaction bus at 4:1 frequency ratio; queueing delays modeled
Prefetcher Stream-based prefetcher containing 32 stream buffers;

a stream is created on an L2 miss; each buffer has a window of 64 instructions and detects L2 accesses
within that window; first L2 access that is within the window of a stream buffer after its
creation determines the direction of the stream; an L2 access within the window generates 2 prefetches

4.2 Benchmarks

The experiments were performed with SPEC2000 benchmarks compiled for the Alpha ISA with the -fast optimiza-

tions and profiling feedback enabled. We perform our studies by fast-forwarding the initial part of each benchmark

and simulating it for 200M instructions using the reference input set. Table 2 shows the category, the type, and the

number of instructions fast-forwarded for each benchmark.

Table 2: Benchmark Summary. (B represents Billion)
HIGH-MEM Benchmarks LOW-MEM Benchmarks

Name Type fast-forward Name Type fast-forward
mcf INT 15B vortex INT 15B
art FP 15B mgrid FP 15B
lucas FP 15B parser INT 15B
ammp FP 15B applu FP 15B
twolf INT 15B equake FP 15B
wupwise FP 15B mesa FP 15B
apsi FP 2B gap INT 15B
vpr INT 15B sixtrack FP 2B
facerec FP 2B crafty INT 15B
swim FP 2B perlbmk INT 15B
galgel FP 15B gzip INT 15B
gcc INT 2B eon INT 15B
bzip2 INT 15B fma3d FP 2B

5 Results and Analysis

5.1 Performance overhead

MBI has two sources of performance overhead. First source is the latency involved in filling the pipeline after switch-

ing from one mode to another. We call this overhead the pipeline-fill penalty. Second source for is forced-introspection,

which forces the processor to perform redundant execution at the expense of performing its normal operation. We call

this overhead the forced-introspection penalty.

10

Figure 4 shows the decrease in IPC of the baseline processor when MBI is incorporated. To measure IPC, we only

count the instructions retired in performance mode. We measure the IPC overhead for a suite by first calculating the

harmonic mean IPC of the baseline for the suite, then calculating the harmonic mean IPC for the suite when MBI is

incorporated, and taking the percentage difference between the two harmonic means.

0

5

10

15

20

25

30

35

40

45

50

%
 R

ed
uc

ti
on

 in
 I

P
C

HIGH-MEM CATEGORY LOW-MEM CATEGORY

mcf art luc
as

am
mp

tw
olf

wup
wise

ap
si

vp
r

fac
ere

c

sw
im

ga
lge

l
gc

c
bz

ip2
vo

rte
x

mgr
id

pa
rse

r

ap
plu

eq
ua

ke

mes
a

ga
p

six
tra

ck

cra
fty

pe
rlb

mk

gz
ip

eo
n

fm
a3

d

A
V

G
-H

IG
H

-M
E

M

 A
V

G
-A

L
L

Figure 4: IPC reduction due to the MBI mechanism.

For benchmarks in the HIGH-MEM category, the IPC overhead due to MBI is fairly low, averaging only 7.1%.

The average IPC overhead for all the 26 benchmarks is 14.5%. For mcf, art, twolf, vpr and swim, the IPC reduction

is well below 5%. These benchmarks are memory intensive and have frequent stalls due to long-latency cache misses.

For lucas, ammp, and wupwise, the IPC reduction ranges from 12% to 16%. The bursty cache-miss behavior of

these three benchmarks results in a high IPC overhead even though these benchmarks spend more than half of their

execution time waiting for memory. In some of these benchmarks, the program passes through two phases, P1 and

P2, each phase containing many more instructions than the size of the backlog buffer. Phase P1 causes a lot of long-

latency cache misses and therefore results in a lot of spare processing bandwidth, whereas phase P2 does not contain

any long-latency cache misses. Phases P1 and P2 repeat in an alternating pattern. Even though there is significant

spare processing bandwidth that may be left unutilized during P1, instructions in P2 cannot utilize it for redundant

execution and the processor is frequently forced to enter forced-introspection during P2, which causes the reduction

in IPC.

For benchmarks in the LOW-MEM category, the performance overhead is high. All benchmarks, with the ex-

ception of vortex and parser, incur an IPC reduction of more than 30%. For the LOW-MEM benchmarks when the

processor enters introspection mode, it is almost always because the backlog buffer is full. This results in frequent

incurrence of the forced-introspection penalty.

11

5.2 Impact of Varying the Size of the Backlog Buffer

In the previous section, we assumed that the backlog buffer can store the results of 2K instructions. In this section,

we analyze the sensitivity of the IPC overhead of MBI to the capacity of the backlog buffer. We vary the size of the

backlog buffer from 1K entries to 4K entries and measure the IPC overhead.

1K 2K 4K

(a) Type-1 behavior

0

5

10

15

20

25

30

35

40

%
 R

ed
uc

ti
on

 in
 I

P
C vortex

bzip2

1K 2K 4K

(b) Type-2 behavior

0

5

10

15

20

25

30

35

40

%
 R

ed
uc

ti
on

 in
 I

P
C

gzip
art

1K 2K 4K

(c) Type-3 behavior

0

5

10

15

20

25

30

35

40

%
 R

ed
uc

ti
on

 in
 I

P
C eon

gcc

1K 2K 4K

(d) Average

0

5

10

15

20

25

30

35

40

%
 R

ed
uc

ti
on

 in
 I

P
C

average

Figure 5: Sensitivity of the IPC overhead to the size of the backlog buffer. Y-axis represents the IPC overhead and
X-axis represents the number of entries in the backlog buffer.

The sensitivity of the IPC overhead can broadly be classified into three categories:

1. Type-1 behavior: Benchmarks in this category show a significant reduction in the IPC overhead as the size of

the backlog buffer is increased. For example, in Figure 5(a), the IPC overhead reduces from 27.9% to 19.2% for

vortex and from 15.2% to 9.2% for bzip2. Type-1 behavior is seen because a large backlog buffer can reduce

the number of costly forced-introspection episodes. With a larger backlog buffer, the processor waits longer

before being forced into introspection mode due to the backlog buffer becoming full. If a long-latency cache

miss occurs during the longer wait, the processor enters into a normal-introspection episode rather than a more

costly forced-introspection episode.

2. Type-2 behavior: Benchmarks in this category do not show a significant change in the IPC overhead when the

size of the backlog buffer is changed. For example, in Figure 5(b), art has a steady IPC overhead of 3.6% for

all three sizes of the backlog buffer. Art has frequent long-latency cache misses, which obviates the need for a

large backlog buffer. Figure 5(b) also shows that the IPC overhead of gzip changes only marginally from 32.7%

to 29.6% when the backlog buffer size is quadrupled. Gzip does not have a significant number of long-latency

cache misses; therefore, almost all redundant execution in gzip is performed due to forced-introspection. A

12

larger backlog buffer in such a case helps only by amortizing the pipeline-fill penalty over a larger number of

instructions.

3. Type-3 behavior: Benchmarks in this category show a slight increase in the IPC overhead when the size of

the backlog buffer is increased. This happens in benchmarks that have large instruction working-set sizes. A

large backlog buffer can increase the I-cache miss rate in introspection mode, which in turn can increase the

I-cache miss rate in performance mode (because different instructions may need to be fetched from the I-cache

in the two different modes). Gcc and eon, two benchmarks that have instruction working-set sizes that stress the

baseline (16kB) I-cache, show Type-3 behavior as displayed in Figure 5(c). The IPC overhead increases from

37% to 39.5% for eon and from 19.2% to 24.1% for gcc when the backlog buffer size is quadrupled.

Figure 5(d) shows that the average IPC-overhead decreases from 16.1% for a 1K-entry backlog buffer, to 13.9% for

a 4K-entry backlog buffer. A backlog buffer of 2K entries provides a good trade-off between IPC overhead (14.5%)

and hardware overhead. Therefore, we chose 2K entries as the default size of the backlog buffer throughout our

experiments.

5.3 Reasons for Entering Introspection mode

The processor enters introspection mode either because of a long-latency cache miss (normal-introspection) or because

it is forced to enter introspection mode (forced-introspection). An episode of normal-introspection does not cause a

significant reduction in performance because it uses idle processing bandwidth for redundant execution. On the other

hand, an episode of forced-introspection reduces the performance of the processor because the processor is forced to

do redundant execution at the expense of normal execution. In this section, we present results on the distribution of

introspection episodes. Figure 6 shows the breakdown of the introspection episodes into normal-introspection and

forced-introspection for some of the benchmarks.

For mcf, art, lucas, twolf, and vpr, more than 96% of the introspection episodes occur because of normal-

introspection. These benchmarks are memory intensive and frequently experience long-latency cache misses. For

apsi, approximately half of the introspection episodes occur because of forced-introspection. Although apsi generates

a significant number of long-latency cache misses, these misses tend to be clustered. For perlbmk, gap, and, eon almost

all the introspection episodes occur because the backlog buffer is full. These benchmarks do not have a substantial

number of long-latency cache misses and therefore need forced-introspection.

When the processor is forced to enter introspection mode because the backlog buffer is full, the processor always

performs redundant execution until the backlog buffer becomes empty. In contrast, during normal-introspection, the

processor performs redundant execution either until the long-latency cache miss gets serviced or until the backlog

buffer becomes empty, whichever is earlier. Thus, a typical forced-introspection episode results in the execution of

13

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
al

l i
nt

ro
sp

ec
ti

on
 e

pi
so

de
s

forced-introspection
normal-introspection

mcf art tw
olf ap

si
vp

r
ga

lge
l

gc
c

bz
ip2

vo
rte

x

pe
rlb

mk

gz
ip

eo
n

Figure 6: Breakdown of introspection episodes into
normal-introspection and forced-introspection

0

10

20

30

40

50

60

70

80

90

100

C
ov

er
ag

e
fo

r
al

l r
et

ir
ed

 in
st

ru
ct

io
ns

 (
%

)

forced-introspection
normal-introspection

mcf art tw
olf ap

si
vp

r
ga

lge
l

gc
c

bz
ip2

vo
rte

x

pe
rlb

mk

gz
ip

eo
n

Figure 7: Redundant execution coverage of normal-
introspection and forced-introspection

many more instructions than a typical normal-introspection episode. Figure 7 shows the redundant-execution coverage

of the instruction stream provided by normal-introspection and forced-introspection.

For mcf, 12% of the instructions go through their redundant execution due to forced-introspection. However,

this costs only 1.4% in terms of IPC because the benchmark is memory bound. For twolf and vpr, over 90% of the

instructions go through their redundant execution due to normal-introspection. This translates to an IPC reduction of

only 3% for these benchmarks. In contrast, for apsi, galgel, and gcc almost 80% of the instructions go through their

redundant execution due to forced-introspection. Consequently, these benchmarks incur an IPC overhead of more than

20% (refer to Figure 4). Although these benchmarks have a lot of CPI-L2 (Theoretically enough to re-execute the

program without any performance loss), this idle processing bandwidth comes in bursts and the MBI technique is not

able to exploit it.

5.4 Error Detection Latency

A redundant execution mechanism can have a delay between the first execution and the redundant execution of an

instruction. If there is an error in the first execution of an instruction, then this error will not be detected until the

instruction completes its redundant execution. This delay between the first execution and the redundant execution

determines the error detection latency of the fault tolerance mechanism. MBI has a variable error detection latency.

To measure the average and worst-case error detection latencies on a per-instruction basis, we added a cycle counter

to each entry in the backlog buffer. We initialize this counter to zero when an instruction stores its result in the

entry during performance mode. The counter is incremented every cycle. The value of the counter is read when the

instruction completes its redundant execution in introspection mode and compares its new result with the result stored

in the entry. The counter value gives the error detection latency for that instruction. Table 3 shows the average and

worst-case error detection latency for each benchmark.

14

Table 3: Error Detection Latency.

HIGH-MEM Benchmarks LOW-MEM Benchmarks

Name Average Worst-Case Name Average Worst-Case
mcf 465 6976 vortex 467 18157
art 304 3552 mgrid 514 17401
lucas 307 7066 parser 957 8593
ammp 500 7829 applu 680 25941
twolf 481 10785 equake 795 5366
wupwise 457 7711 mesa 646 11449
apsi 1143 36183 gap 744 12187
vpr 487 5043 sixtrack 770 20978
facerec 475 9279 crafty 1190 19480
swim 807 16546 perlbmk 832 14330
galgel 790 8372 gzip 1106 7339
gcc 902 20075 eon 877 17954
bzip2 680 4793 fma3d 615 10936

Overall: Average = 692, Worst-Case = 36183

For all benchmarks except apsi, crafty, and gzip, the average error detection latency is less than 1000 cycles. Over

the entire SPECCPU2000 suite, the average error detection latency is 692 cycles, and the worst-case error detection

latency is 36183 cycles. The impact of the error detection latency on the system operation is dependent on the fault

handling policy. For example, if the fault handling policy is to terminate the faulting application, then the average error

detection latency of 692 cycles is clearly acceptable. However, if the fault-handling policy is to correct the error, then

the time it takes to correct the error may increase with the error detection latency. The next section discusses error

handling policies.

6 Handling Errors

A fault in the processor can be detected only during introspection mode. When a fault is detected, the faulting instruc-

tion is re-executed one more time to ensure that the fault was during the first execution of that instruction. If the result

produced during this re-execution matches the result in the backlog buffer, then the fault is ignored. However, if the

result of the re-execution does not match the result in the backlog buffer, then the fault is considered an error and is

dealt with in accordance with the error handling policy. We discuss some of the error handling policies that can be

combined with MBI.

6.1 Fail-Safe Operation

The simplest error handling mechanism is to terminate the error causing application and generate a machine check

exception. This mechanism avoids any correction but allows the processor to fail in a safe manner.

15

6.2 Restore a Checkpointed State

The other error handling mechanism, also known as Backward Error Recovery (BER), is based on the concept of

checkpointing. Both memory state and processor state is checkpointed at predetermined intervals. When an error

is detected, the system is restored to the most-recent, error-free checkpointed state. The BER scheme provides fast

recovery from an error but has a high storage cost. Proposals such as Multiversion memory [18] and Revive [13]

provide cost-effective implementations of the BER mechanism.

6.3 Recovery with Undo Mechanism

The system can recover from an error if its state can be restored to a state where the effects of all the instructions

prior to the error causing instruction are architecturally visible and no effect of the error-causing instruction, or any

subsequent instruction, is architecturally visible. The MBI mechanism allows a unique error recovery technique that

can restore the system to the state of the last error-free instruction. Error recovery is performed by undoing the store

operations that were performed during performance mode after the last error-free instruction. Figure 8(a) shows the

extensions added to the backlog buffer to facilitate error recovery.

N

O

P

Q

R

S

T

U

V

W

X

Y
Z

ADDR: VAL

ADDR: VAL

ADDR: VAL

(a)

ADDR: VAL

ADDR: VAL

Represents undo information
for store operations. ADDR is
the address and VAL is the old
value at that address.

N

S

T

U

V

X

Y

Z

O

P

Q

R

W

UNDONE

UNDONE

UNDONE

UNDONE

(b)

TAIL−PTR

HEAD−PTR

Instructions Q, T, V and Y

HEAD−PTR
TAIL−PTR

are store instructions

ERROR

Figure 8: (a) Extending the backlog buffer to keep track of undo information for store instructions. (b) An example of
error correction with the undo mechanism.

6.3.1 Structure

The backlog buffer tracks undo information for each store instruction. In Figure 8(a), instructions labeled Q, T, V, and

Y are store instructions and the shaded regions represent the undo information associated with each store instruction.

The backlog buffer does not contain any undo information for non-store instructions.

6.3.2 Operation

Error recovery consist of two parts: (1) recovering the register state, and (2) recovering the memory state. Recovering

the register state is relatively easy because the register state in introspection mode is updated only after the instruction

16

is found to be fault-free. Thus, during introspection mode the register state always corresponds to the last instruction

that was found to be correct. When an error is detected, the register state is copied to both the performance mode

checkpoint and the introspection mode checkpoint.

Recovery of the memory state is more challenging because, at the time the error is detected, the store instructions

younger than the error-causing instruction have already updated the memory. Therefore, memory updates caused by

these store instructions must be undone. We explain the undo operation with an example. Figure 8(b) shows the

state of the backlog buffer for the instruction sequence N to Z. Instructions Q, T, V, and Y are store instructions and

the backlog buffer entries corresponding to the stores contain undo information (the store address and the previous

value at the store address). While checking the result of instruction P in introspection mode, an error is detected. To

recover the memory state, all stores younger than instruction P in the backlog buffer (stores Q, T, V, and Y) must be

undone. To accomplish this, backlog buffer is traversed backwards starting with the TAIL-PTR. Any store instruction

that is encountered during this backward traversal is undone. The undo operation simply copies the old value stored

in the backlog buffer entry to the memory address indicated in the backlog buffer entry. Backward traversal of the

backlog buffer continues until the the error-causing instruction is reached. At that point, no effect of the error-causing

instruction, or any subsequent instruction, is architecturally visible. Thus the system has recovered from the error

detected at instruction P.

It should be noted that the undo mechanism assumes that the store values are not read by other devices (such as

other processors if a multiprocessor system is used) before the undo process takes place. For multiprocessor systems,

the undo mechanism can be used if other processors are not allowed to read the values produced by a store instruction

until that instruction is found to be fault-free in introspection mode. An alternative is to transfer the control to software

so that the processors that have consumed incorrect values can be recovered to a consistent state. Design requirements

of the undo mechanism in multiprocessor systems is outside the scope of this paper and is part of our future work.

6.3.3 Error Correction Latency

The duration between when the error is detected and when the system is restored to an error-free state is called the

error correction latency. The error correction latency of the undo mechanism is variable and depends on the number

of instructions between the HEAD-PTR and TAIL-PTR. In the worst-case where every entry in the backlog buffer

is a store instruction, the TAIL-PTR traverses through, and performs undo operation for, every entry in the backlog

buffer. Thus, the worst-case error correction latency with a backlog buffer containing 2K entries can be as high as 2K

undo operations. However, this error correction latency is very low compared to the time between errors and will not

significantly affect the availability of the system. For example, even with an error rate of 1 error/hour, a 5GHz processor

that can perform 1 undo operation per cycle will have an availability of 99.99999% (Availability = (TE − TR)/TE ,

where TE is the mean time between errors, and TR is the time the machine is not available due to an error).

17

7 Related Work

Research in fault tolerance has lead to a variety of solutions that are applicable in the processor domain. Commer-

cial high reliability systems, such as the Tandem Computer [2], the Compaq NonStop Himalaya [24], and the IBM

S/390 [19] use lock-step execution for detecting faults in processors. Fault tolerance in these systems is achieved at

the expense of hardware replication.

An alternative to replication was proposed by Austin in the form of DIVA [1]. For redundant execution, DIVA

uses a simple checker processor after the retirement stage of the main processor. The assumption that the instruction

fetch stage and the instruction decode stage of the main processor are fault-free allows the checker processor to use

the instruction dependency information computed in the main processor. Unlike DIVA, MBI provides fault coverage

for the entire pipeline, including the fetch and decode stages. DIVA uses a physically separate processor for redundant

execution and can therefore detect both permanent and transient faults, whereas MBI provides coverage only for

transient faults and would need to be combined with techniques like RESO [12] to provide coverage for permanent

faults. The additional processor in DIVA, although simple, requires considerable hardware overhead compared to

MBI. A low hardware overhead is desirable because it provides the users with a choice to use or not to use the features

of fault tolerance. With MBI, if the user chooses not to have fault tolerance, then only the hardware solely dedicated

to fault tolerance, which is relatively small, will go unused.

Rotenberg [16] proposed AR-SMT, which provides fault tolerance by executing the application using two separate

threads. The primary thread inserts its results into a delay buffer and the redundant thread uses these results for

speculation and fault detection. Both threads run concurrently in the processor pipeline and have different memory

images. The approach of using SMT-based machines for fault tolerance was generalized in [15]. Both [16] and [15]

require a fine-grain multi-threaded machine capable of concurrently fetching, decoding, and executing from more than

one thread. Redundant execution, in both cases, halves the fetch bandwidth, reduces the effective size of the storage

structures (e.g. reservation stations, caches) visible to each thread, and increases the contention for execution units.

In contrast, operation in MBI is in either performance mode or introspection mode. Therefore, in MBI, redundant

execution does not compete with the primary execution for hardware resources at a fine-grain level. The MBI design

is also less intrusive than the SMT-based designs because it does not require widespread modifications throughout the

processor pipeline.

Both MBI and SMT-based techniques target idle processing bandwidth for fault tolerance. However, they target

fundamentally different types of idle processing bandwidth – SMT leverages the fine-grain idle processing slots that

remain unused due to limited ILP in each cycle. On the other hand, MBI utilizes the coarse-grain idle processing

bandwidth that remains unused due to long-latency cache misses. As such, MBI is well suited for memory-intensive

applications. SMT-based techniques, on the other hand, are well suited for applications that are not significantly

limited in their performance by long-latency cache misses.

18

Mendelson and Suri proposed O3RS [9], which provides transient-fault tolerance to only the out-of-order portion

of the processor pipeline. After an instruction is renamed, it occupies two entries in the reservation stations. The two

results obtained in this manner are compared for fault detection. The mechanism proposed by Ray et al. [14] replicates

instructions in the rename stage and provides transient-fault coverage for all stages after the rename stage. Both [9]

and [14] assume fault protection for the stages before the rename stage and require extra logic in the processor to

handle the simultaneous existence of primary and redundant instructions.

The related fault tolerance techniques described thus far are hardware based. Fault tolerance can also be incorpo-

rated with software support. Karri et. al[7] proposed a technique to arrange the code such that redundant instructions

are statically mapped to use empty slots in execution units. However, only applications with regular code behavior

and with latencies predictable at compile-time lend themselves to static scheduling. The mechanism proposed in [11]

executes two different versions of the same program (with the same functionality) and compares the outputs to detect

transient and some permanent faults.

A transient fault may or may not cause an error depending on whether it affects the final outcome of the program.

A study of the effects of transient faults on the performance of a superscalar processor is provided in [21]. Weaver et

al. [22] describe a mechanism to avoid signaling errors that occur during the processing of dynamically dead instruc-

tions. All retired instructions are inserted in a FIFO buffer. A faulty instruction is marked as possibly incorrect before

insertion into the FIFO buffer. Faults in a possibly incorrect instruction are ignored if the instruction is found to be

dynamically dead while it is in the FIFO buffer. Currently, the MBI mechanism detects errors for both dynamically

live and dynamically dead instructions. However, the technique proposed in [22] can easily be incorporated in the

MBI mechanism by making minor modifications to the backlog buffer.

8 Conclusion and Future work

Future processors will need on-chip fault tolerance techniques to tolerate the increasing transient fault rate. Future

processors will also be challenged by the speed gap between the processor and the memory and will waste significant

processing bandwidth waiting for memory. Based on these observations, this paper makes the following two contribu-

tions:

(1) A transient-fault detection technique, Microarchitecture-Based Introspection (MBI), which uses the wasted

processing bandwidth during long-latency cache misses for redundant execution.

(2) A fault recovery scheme for MBI. The recovery mechanism has a very modest hardware overhead and a

negligible effect on system availability.

The time redundancy of MBI results in an average IPC reduction of only 7.1% for memory-intensive benchmarks

and an average IPC reduction of 14.5% over the entire SPECCPU2000 suite.

19

MBI can be combined with runahead execution [10] to improve both the reliability and the performance of

memory-intensive applications. MBI can also be combined with SMT to utilize both fine-grain and coarse-grain

idle processing bandwidth for redundant execution. Exploring these hybrid mechanisms is a part of our future work.

9 Acknowledgements

We thank Pradip Bose of IBM Research for early discussions and his continued support on this work.

References
[1] T. M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings of the 32nd Annual ACM/IEEE

International Symposium on Microarchitecture, pages 196–207, 1999.

[2] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in Tandem computer systems. Technical Report 86.2, Tandem Computers, Mar. 1986.

[3] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eric, H.Nueckel, and J. Shen. Scaling and characterizing database workloads: Bridging
the gap between research and practice. In Proceedings of the 36th Annual ACM/IEEE International Symposium on Microarchitecture, pages
151–163, 2003.

[4] W. W. Hsu, A. J. Smith, and H. C. Young. Characteristics of production database workloads and the TPC benchmarks. IBM Journal of
Research and Development, 40(3):781–802, Mar. 2001.

[5] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss. In Second Annual Workshop on Memory Performance Issues, 2002.

[6] T. Karnki, B. Bloechel, K. Soumyanath, V. De, and S. Borkar. Scaling trends of cosmic rays induced soft errors in static latches beyond 0.18
micron. In Symposium on VLSI Circuits Digest of Technical Papers, pages 264–273, 2001.

[7] R. Karri and B. Iyer. Introspection: A register transfer level technique for cocurrent error detection and diagnosis in data dominated designs.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 6(4):501–515, Oct. 2001.

[8] H. Li, Chen-Yong Cher, T. N. Vijaykumar, and K. Roy. VSV: L2-miss-driven variable supply-voltage scaling for low power. In Proceedings
of the 36th Annual ACM/IEEE International Symposium on Microarchitecture, pages 19–28, 2003.

[9] A. Mendelson and N. Suri. Designing high-performance and reliable superscalar architectures: The out of order reliable superscalar (o3rs)
approach. In Proceedings of the International Conference on Dependable Systems and Networks, 2000.

[10] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An alternative to very large instruction windows for out-of-order
processors. In Proceedings of the Ninth IEEE International Symposium on High Performance Computer Architecture, pages 129–140, 2003.

[11] N. Oh, S. Mitra, and E. J. McCluskey. ED4I: Error detection by diverse data and duplicated instructions. IEEE Transactions on Computers,
51(2):180–199, Feb. 2002.

[12] J. H. Patel and L. Y. Fung. Concurrent Error Detection in ALUs by REcomputing with Shifted Operands. IEEE Transactions on Computers,
31(7):589–595, July 1982.

[13] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: cost-effective architectural support for rollback recovery in shared-memory multiprocessors.
In Proceedings of the 29th Annual International Symposium on Computer Architecture, pages 111–122, 2002.

[14] J. Ray, J. C. Hoe, and B. Falsafi. Dual use of superscalar datapath for transient-fault detection and recovery. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, pages 214–224, 2001.

[15] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via simultaneous multithreading. In Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture, 2000.

[16] E. Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance in microprocessors. In Proceedings of the Twenty-Ninth Annual
International Symposium on Fault-Tolerant Computing, pages 84–91, 1999.

[17] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Modeling the effect of technology trends on the soft error rate of
combinational logic. In Proceedings of the International Conference on Dependable Systems and Networks, pages 389–398, 2002.

[18] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Fast checkpoint/recovery to support kilo-instruction speculation and hardware
fault tolerance. In Dept. of Computer Sciences Technical Report CS-TR-2000-1420, October 2000.

[19] T. J. Slegal et al. IBM’s S/390 G5 Microprocessor Design. IEEE micro, pages 12–23, Mar. 1999.

[20] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 system microarchitecture. IBM Technical White Paper, Oct. 2001.

[21] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. Characterizing the effects of transient faults on a high-performance processor pipeline. In
Proceedings of the International Conference on Dependable Systems and Networks, pages 61–70, 2004.

[22] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. Techniques to reduce the soft error rate of a high-performance microprocessor. In
Proceedings of the 31th Annual International Symposium on Computer Architecture, pages 264–273, 2004.

[23] M. V. Wilkes. The memory gap and the future of high performance memories. ACM Computer Architecture News, 29(1):2–7, Mar. 2001.

[24] A. Wood. Data integrity concepts, features, and technology. White Paper, Tandem division, Compaq Computer Corporation.

20

