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GPUs and Memory Bandwidth
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Many GPU applications are bottlenecked by 
off-chip memory bandwidth
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Opportunity: Near-Data Processing
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GPU
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Near-Data Processing: Key Challenges

•Which	operations	should	we		
offload?

•How	should	we	map	data	across	
multiple	memory	stacks?
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Key Challenge 1
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?

• Which operations should be executed on the logic 
layer SMs?

?

GPU Logic layer SM

Crossbar switch
Mem 
Ctrl

….
Mem 
Ctrl

T = D0; D0 = D0 + D2; D2 = T - D2;
T = D1; D1 = D1 + D3; D3 = T - D3;
T = D0; d_Dst[i0] = D0 + D1; 
d_Dst[i1] = T - D1;

?



Key Challenge 2
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• How should data be mapped across multiple           
3D memory stacks? 

?

GPU
?

C	=	A	+	B
A B C



The Problem

• Solving these two key challenges requires 
significant programmer effort
•Challenge 1:Which operations to offload?
• Programmers need to identify offloaded 

operations, and consider run time behavior
•Challenge 2: How to map data across 
multiple memory stacks?
• Programmers need to map all the operands

in each offloaded operation to the          
same memory stack
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Our Goal

8

Enable near-data processing in GPUs 
transparently to the programmer



Transparent Offloading and Mapping (TOM)

• Component 1 - Offloading:  A new 
programmer-transparent mechanism to 
identify and decide what code portions to offload
• The compiler identifies code portions to 
potentially offload based on memory profile.
• The runtime system decides whether or not to 

offload each code portion based on 
runtime characteristics.

• Component 2 - Mapping: A new, simple,                 
programmer-transparent data mapping mechanism to 
maximize data co-location in each memory stack
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Outline

•Motivation and Our Approach
•Transparent Offloading
•Transparent Data Mapping
•Implementation
•Evaluation
•Conclusion
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TOM: Transparent Offloading
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Static	compiler	analysis
• Identifies	code	blocks	as	
offloading	candidate blocks

Dynamic	offloading	control
• Uses	run-time	information	to	make	the	
final	offloading	decision	for															
each code	block



TOM: Transparent Offloading

12

Static	compiler	analysis
• Identifies	code	blocks	as	
offloading	candidate blocks

Dynamic	offloading	control
• Uses	run-time	information	to	make	the	
final	offloading	decision	for															
each code	block



Static Analysis:  What to Offload?
• Goal: Save off-chip memory bandwidth
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Offloading benefit: load & store instructions
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Conventional System
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Compiler uses equations (in paper)               
for cost/benefit analysis



Offloading Candidate Block Example
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...

float D0 = d_Src[i0]; 
float D1 = d_Src[i1];
float D2 = d_Src[i2];
float D3 = d_Src[i3]; 
float T;

T = D0; D0 = D0 + D2; D2 = T - D2;
T = D1; D1 = D1 + D3; D3 = T - D3;
T = D0; d_Dst[i0] = D0 + D1; 
d_Dst[i1] = T - D1;
T = D2; d_Dst[i2] = D2 + D3; 
d_Dst[i3] = T - D3;

Code block in Fast Walsh Transform (FWT)



Offloading Candidate Block Example
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...

float D0 = d_Src[i0]; 
float D1 = d_Src[i1];
float D2 = d_Src[i2];
float D3 = d_Src[i3]; 
float T;

T = D0; D0 = D0 + D2; D2 = T - D2;
T = D1; D1 = D1 + D3; D3 = T - D3;
T = D0; d_Dst[i0] = D0 + D1; 
d_Dst[i1] = T - D1;
T = D2; d_Dst[i2] = D2 + D3; 
d_Dst[i3] = T - D3;

Offloading benefit outweighs cost 

Cost:	Live-in	registers

Benefit:	Load/store	inst

Code block in Fast Walsh Transform (FWT)



Conditional Offloading Candidate Block

• The cost of a loop is fixed, but the benefit of 
a loop is determined by the loop trip count.
• The compiler marks the loop as a conditional 

offloading candidate block, and provides the 
offloading condition to hardware              
(e.g., loop trip count > N)
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... 
for (n = 0; n < Nmat; n++){

L_b[n] = −v ∗ delta /( 1.0 + delta ∗ L[n]); 
} 
... 

Cost:	Live-in	registers Benefit:	Load/store	inst

Code block in LIBOR Monte Carlo (LIB)



TOM: Transparent Offloading
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Static	compiler	analysis
• Identifies	code	blocks	as	
offloading	candidate blocks

Dynamic	offloading	control
• Uses	run-time	information	to	make	the	
final	offloading	decision	for															
each code	block
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TX
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Main GPU Memory stack

Data

Transmit channel becomes full,
leading to slowdown with offloading.

Data

DataData

TX

Bottlenecked!

RegRegReg

When Offloading Hurts: 
Bottleneck Channel



TX
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SM 
capacity

Full

Memory stack SM becomes full, 
leading to slowdown with offloading.

Main GPU Memory 
stack

RX

When Offloading Hurts: 
Memory Stack Computational Capacity

Too many warps!



Dynamic Offloading Control: 
When to Offload?
•Key idea: offload only when doing so is 
estimated to be beneficial 

•Mechanism: 
• The hardware does not offload code 

blocks that increase traffic on a 
bottlenecked channel
•When the computational capacity of a 

logic layer’s SM is full, the hardware does 
not offload more blocks to that logic layer
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Outline

•Motivation and Our Approach
•Transparent Offloading
•Transparent Data Mapping
•Implementation
•Evaluation
•Conclusion
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TOM: Transparent Data Mapping

•Goal: Maximize data co-location for           
offloaded operations in each       
memory stack

•Key Observation: Many                  
offloading candidate blocks exhibit a 
predictablememory access pattern:   
fixed offset
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Fixed Offset Access Patterns: Example
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... 
for (n = 0; n < Nmat; n++){

L_b[n] = −v ∗ delta /( 1.0 + delta ∗ L[n]); 
} 
... 

L_b base n L	base n

Some address bits are always the same:
Use them to decide memory stack mapping

85% of  offloading candidate blocks        
exhibit fixed offset access patterns



Transparent Data Mapping: Approach
•Key idea: Within the fixed offset bits, find the 
memory stack address mapping bits so that 
they maximize data co-location in each 
memory stack 

•Approach: Execute a tiny fraction (e.g, 0.1%) 
of the offloading candidate blocks to find the   
best mapping among                                     
the most common consecutive bits

• Problem: How to avoid the overhead of            
data remapping after we find the best 
mapping?
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Conventional GPU Execution Model
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GPUCPU

GPU MemoryCPU Memory

GPU	Data

Launch Kernel



Transparent Data Mapping: Mechanism
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GPUCPU

GPU MemoryCPU Memory

GPU	Data

Delay Memory 
Copy and 
Launch Kernel

Learn the best 
mapping among 
the most common 
consecutive bits

Memory copy happens only after                    
the best mapping is found

There is no remapping overhead



Outline

•Motivation and Our Approach
•Transparent Offloading
•Transparent Data Mapping
•Implementation
•Evaluation
•Conclusion
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TOM: Putting It All Together
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Outline

•Motivation and Our Approach
•Transparent Offloading
•Transparent Data Mapping
•Implementation
•Evaluation
•Conclusion
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Evaluation Methodology
• Simulator: GPGPU-Sim
• Workloads: 
• Rodinia, GPGPU-Sim workloads, CUDA SDK

• System Configuration:
• 68 SMs for baseline, 64 + 4 SMs for NDP system
• 4 memory stacks
• Core: 1.4 GHz, 48 warps/SM
• Cache: 32KB L1, 1MB L2
• Memory Bandwidth:

• GPU-Memory: 80 GB/s per link, 320 GB/s total
• Memory-Memory: 40 GB/s per link
• Memory Stack: 160 GB/s per stack, 640 GB/s total

30



Results: Performance Speedup
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13% average (37% max) memory traffic reduction
2.5X memory-memory traffic reduction 



More in the Paper

•Other design considerations
• Cache coherence
• Virtual memory translation

•Effect on energy consumption
• Sensitivity studies
• Computational capacity of logic layer SMs
• Internal and cross-stack bandwidth

•Area estimation (0.018% of GPU area)

33



Conclusion
• Near-data processing is a promising direction to 

alleviate the memory bandwidth bottleneck in GPUs

• Problem: It requires significant programmer effort
• Which operations to offload?
• How to map data across multiple memory stacks?

• Our Approach: Transparent Offloading and Mapping
• A new programmer-transparent mechanism to identify and 

decide what code portions to offload
• A programmer-transparent data mapping mechanism to 

maximize data co-location in each memory stack

• Key Results: 30% average (76% max) performance 
improvement in GPU workloads
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Observation on Access Pattern

36

85% of  offloading candidate blocks exhibit 
fixed offset pattern
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Bandwidth Change Equations
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3. Mechanism
We describe our new mechanisms to enable programmer-
transparent near-data processing in GPU systems. Our pro-
posal, Transparent O�oading and Mapping (TOM), consists
of two key components. The �rst is a compiler-based tech-
nique to identify candidate code blocks for o�oading based
on cost-bene�t analysis of memory bandwidth (Section 3.1).
The second component is a software/hardware cooperative
mechanism that maps memory pages accessed by o�oaded
code to where the code will execute, by exploiting common
memory access patterns (Section 3.2). After describing these
two key components separately, we describe a runtime mech-
anism that dynamically determines whether an o�oading
candidate block should really be o�oaded (Section 3.3).
3.1. Identi�cation of O�loading Candidates
The objective when identifying candidate instruction blocks
for o�oading is to improve performance by reducing the
main GPU’s memory bandwidth consumption. The key to
this identi�cation is determining whether o�oading a block
saves more memory bandwidth during o�oaded execution than
it costs in additional data transfers to initiate and complete the
o�oad. Memory bandwidth savings come from executing
o�oaded loads/stores in the memory stack. The overhead of
o�oading is due to transferring the context required by the
block to execute in memory, and returning execution results
to the main GPU. This section details the process.
3.1.1. Estimating the memory bandwidth cost-bene�t.
As Figure 1 shows, the main GPU and the memory stacks are
connected by unidirectional high speed links similar to the
Hybrid Memory Cube (HMC) architecture [34]. Load instruc-
tions send addresses through the transmit channels (TX, from
the GPU to the memory stack), and receive data back on the
receive channels (RX, from the memory stack to the GPU).
Store instructions send store addresses and data through the
TX channels, and get the acknowledgment messages back
from the RX channels. Without loss of generality, we assume
the size of address, data, and registers is 4◊ the size of an
acknowledgment message. If loads and stores are executed
independently for each thread, we can estimate the change
in bandwidth consumption caused by o�oading a block as:

BWT X = REGT X ≠ (NLD + 2 ·NST ) (1)
BWRX = REGRX ≠ (NLD + 1/4 ·NST ) (2)

REGT X and REGRX are the number of registers trans-
mitted and received from the memory stacks respectively.
These represent the bandwidth cost of o�oading the block.
The bandwidth bene�t of o�oading is based on the number
of loads, NLD , and stores, NST , executed in the block.
Equation (1) is derived assuming each load transmits an

address, and each store transmits both its address and data
through the TX channel. Similarly, Equation (2) is derived
by assuming each load gets its data and each store gets its
acknowledgment message back on the RX channel.
In a GPU, threads are executed in lock-step warps, so it

is straightforward for the hardware to o�oad code block
instances at the granularity of a warp as opposed to the gran-
ularity of a single thread. O�oading at warp granularity

makes Equations (1) and (2) overly simplistic because, in real-
ity, loads and stores are coalesced by the load-store unit and
caches. Furthermore, for loads, the sizes of address and data
are di�erent because data is fetched at cache line granularity.
To address these issues, we estimate the bandwidth change
at warp granularity as follows:

BWT X = (REGT X ·SW )≠
(NLD ·CoalLD ·MissLD + NST · (SW + CoalST )) (3)

BWRX = (REGRX ·SW )≠
(NLD ·CoalLD ·SC ·MissLD + 1/4 ·NST ·CoalST ) (4)

In Equations (3) and (4), SW is the size of a warp (e.g. 32)
and SC is the ratio of the cache line size to the address size
(e.g. 32 for 128B cache lines and 4B addresses). CoalLD

and CoalST are the average coalescing ratios for loads and
stores respectively. For example, if all loads in a warp can be
coalesced into two cache line accesses on average, CoalLD

is 2. Also, MissLD is the cache miss rate for loads and is
accounted for as a co-e�cient for the number of loads, NLD ,
when calculating the bandwidth bene�t of o�oading.

We propose identifying o�oad candidate blocks with static
compile time analysis since determining instruction depen-
dencies (i.e., REGT X andREGRX values) at run timewould
introduce high hardware complexity. The compiler can easily
determine these terms as they are needed for register allo-
cation and instruction scheduling. However, the compiler
does not statically know coalescing ratios (CoalLD , CoalST )
or cache miss rates (MissLD). We use a conservative esti-
mate for these values so that the identi�ed candidate blocks
are most likely bene�cial. As such, we assume all memory
instructions in a warp are perfectly coalesced so both coalesc-
ing ratios are 1. Since GPU cache miss rates are usually high,
we choose an estimate of 50% for MissLD , close to the GPU
cache miss rates reported by prior works on a wide range of
workloads [1, 45].2
3.1.2. O�loading candidate block identi�cation. The
compiler identi�es an instruction block as a potential o�oad-
ing candidate if the total estimated change in bandwidth
as a result of o�oading (BWT X + BWRX of Equations (3)
and (4)) is negative. This means the bene�ts of o�oading that
candidate outweigh the costs and thus o�oading is expected
to save overall memory bandwidth. The compiler tags each
candidate with a 2-bit value indicating whether o�oading
it is estimated to save RX bandwidth and/or TX bandwidth.
Section 4.2 describes how the hardware uses this informa-
tion to dynamically determine whether or not the candidate
should be actually o�oaded.
3.1.3. Loops and conditional o�loading candidates. In
candidate blocks that encapsulate a loop structure, the loop’s
execution count is a multiplier into the number of loads/stores
for the block’s bandwidth change calculation. While the
overhead of o�oading a loop is constant and is proportional
to the number of live-in registers required by the block and

2While using more aggressive values identi�es more o�oading candi-
dates, we do not observe clear performance bene�ts in our experiments.
This is because not all aggressively-chosen o�oading candidates result in
memory bandwidth savings.
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Best memory mapping search space

• We only need 2 bits to determine the memory stack in 
a system with 4 memory stacks. The result of the 
sweep starts from bit position 7 (128B GPU cache line 
size) to bit position 16 (64 KB). 

• Based on our results, sweeping into higher bits does 
not make a noticeable difference. 

• This search is done by a small hardware (memory 
mapping analyzer), which calculates how many memory 
stacks would be accessed by each offloading candidate 
instance for all different potential memory stack 
mappings (e.g., using bits 7:8, 8:9, ..., 16:17 in a system 
with four memory stacks) 

38



Best Mapping From Different Fraction 
of Offloading Candidate Blocks
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Energy Consumption Results
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Sensitivity to Computational Capacity 
of memory stack SMs
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Sensitivity to Internal Memory 
Bandwidth
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