Transparent Offloading and Mapping (TOM)

Enabling Programmer-Transparent
Near-Data Processing in GPU Systems

Kevin Hsieh

Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar,
Onur Mutlu, Stephen W. Keckler

SAFARI CarnegieMellon @ KAIST ETH:zirich
NVIDIA.

GPUs and Memory Bandwidth

Many GPU applications are bottlenecked by
off-chip memory bandwidth

Opportunity: Near-Data Processing

3D-stacked memory (memory stack)

NAANARA]
(WANASAQRN

Logic layer

Near-data processing (NDP) can
significantly improve performance

Near-Data Processing: Key Challenges

* Which operations should we
offload?

*How should we map data across
multiple memory stacks?

Key Challenge 1

* Which operations should be executed on the logic

layer SMs!?
T = DO; DO = DO + D2; D2 = T - D2;
T = D1; D1 = D1 + D3; D3 = T - D3;
msmmm I = D0; d Dst[i0] = DO + DI1;
. d Dst[il] = T - D1;
? u
L] - -
u
: ? .
/ : &
| [} Y.
| u Y.
/ - o g
u u
|
|
‘m

X

Logic layer SM

Q)
U
-

|
Crossbar switc
| I

Mem em
Ctrl ‘ Ctrl

Key Challenge 2

* How should data be mapped across multiple
3D memory stacks?

C=A+B

SENERRRNREL

The Problem

* Solving these two key challenges requires
significant programmer effort

* Challenge 1: Which operations to offload?

* Programmers need to identify offloaded
operations,and consider run time behavior

* Challenge 2: How to map data across
multiple memory stacks?
* Programmers need to map all the operands

in each offloaded operation to the
same memory stack

Our Goal

Enable near-data processing in GPUs

transparently to the programmer

Transparent Offloading and Mapping (TOM)

* Component 1 - Offloading: A new
programmer-transparent mechanism to
identify and decide what code portions to offload

* The compiler identifies code portions to
potentially offload based on memory profile.

* The runtime system decides whether or not to
offload each code portion based on
runtime characteristics.

* Component 2 - Mapping: A new, simple,
programmer-transparent data mapping mechanism to
maximize data co-location in each memory stack

Outline

* Transparent Offloading

* Transparent Data Mapping
*Implementation
*Evaluation

* Conclusion

10

TOM:Transparent Offloading

Static compiler analysis

¢ |dentifies code blocks as
offloading candidate blocks

Dynamic offloading control

e Uses run-time information to make the
final offloading decision for
each code block

11

TOM:Transparent Offloading

Static compiler analysis

¢ |dentifies code blocks as
offloading candidate blocks

Dynamic offloading control

e Uses run-time information to make the
final offloading decision for
each code block

12

Static Analysis: What to Offload?

* Goal: Save off-chip memory bandwidth

Conventional System Near-Data Processing
Load Store Offload

Compiler uses equations (in paper)

for cost/benefit analysis

Memory Memory Memory

Offloading benefit: load & store instructions

Offloading cost: live-in & live-out registers

Offloading Candidate Block Example

float DO = d Src[i0];

float D1 = d Src[il];

float D2 = d Src[i2];

float D3 = d Src[i3];

float T; -

T = DO; DO = D0 + D2; D2 =T - D2;
T =D1; D1 = D1 + D3; D3 =T - D3;
T = DO; d Dst[i0] = DO + D1;

d Dst[il] = T - D1;

T = D2; d Dst[i2] = D2 + D3;

d Dst[i3] = T - D3;

Code block in Fast Walsh Transform (FWT)

14

Offloading Candidate Block Example

Offloading benefit outweighs cost

float DO =4 Src[i0];>
float D1 F d_Src[il];
float D2 ¥ d _Src[i2];

/

float D3 & d _Src[i3]; ,
float T; “~_ _ _°
T = DO; DO = DO + D2; D2 = T - D2;
T = D1; Dl=-DL + D3; D3 = T - D3;
T =D0SLd Dst[:LO];— DO + D1;
~.~——
(g Dst[il] =T = D1
T =NDZ./d Dst[lz],- D2 + D3;
- \
(E_Dst[i3]7="![' ~"D3;
— e =

Code block in Fast Walsh Transform (FWT)

15

Conditional Offloading Candidate Block

B Cost: Live-inregisters | Benefit: Load/store inst

for _(n_=~0; n < Nmat; n++) { —— -
/.. b nj‘ = —v % delta /(1.0 + deltal * L[n]};
- - i

| |

Code block in LIBOR Monte Carlo (LIB)

* The cost of a loop is fixed, but the benefit of
a loop is determined by the loop trip count.

* The compiler marks the loop as a conditional
offloading candidate block, and provides the
offloading condition to hardware
(e.g., loop trip count > N)

16

TOM:Transparent Offloading

Static compiler analysis

e |dentifies code blocks as
offloading candidate blocks

Dynamic offloading control

e Uses run-time information to make the
final offloading decision for
each code block

17

When Offloading Hurts:
Bottleneck Channel

Bottlenecked!

B
[

Main GPU Memory stack

Transmit channel becomes full,

leading to slowdown with offloading.

18

When Offloading Hurts:
Memory Stack Computational Capacity

Too many warps'

Main GPU Memory
stack capaaty

Memory stack SM becomes full,

leading to slowdown with offloading.

19

Dynamic Offloading Control:
When to Offload?

* Key idea: offload only when doing so is
estimated to be beneficial

* Mechanism:

* The hardware does not offload code
blocks that increase traffic on a
bottlenecked channel

* When the computational capacity of a
logic layer’s SM is full, the hardware does
not offload more blocks to that logic layer

20

Outline

* Transparent Data Mapping
*Implementation
*Evaluation

*Conclusion

21

TOM:Transparent Data Mapping

* Goal: Maximize data co-location for
offloaded operations in each
memory stack

* Key Observation: Many
offloading candidate blocks exhibit a
predictable memory access pattern:
fixed offset

22

Fixed Offset Access Patterns: Example

for _=§0; n < Nmat; n++) { N
/L b[n] = -v * delta /(1.0 + delta’ L[n]))
~ — - \—-—/

RS
ook E

85% of offloading candidate blocks
exhibit fixed offset access patterns

23

Transparent Data Mapping:Approach

* Key idea:Within the fixed offset bits, find the
memory stack address mapping bits so that
they maximize data co-location in each
memory stack

* Approach: Execute a tiny fraction (e.g, 0.1%)
of the offloading candidate blocks to find the
best mapping among
the most common consecutive bits

* Problem: How to avoid the overhead of
data remapping after we find the best

mapping?

24

Conventional GPU Execution Model

CPU GPU

s e . Wi | Moo | 0
L4
o R R S
oinninining @ nixuARaAGAARRRA

CPU Memory GPU Memory

25

Transparent Data Mapping: Mechanism

Learn the best
mapping among
GPU
Delay Memory the most common
Copy and consecutive bits
Launch Kernel

Memory copy happens only after
the best mapping is found

There is no remapping overhead

Outline

*Motivation and Our Approach
* Transparent Offloading

* Transparent Data Mapping
*Implementation

*Evaluation

* Conclusion

27

TOM: Putting It All Together

Scoreboard ' JJ
Fetch/ ALU
I-Cachel/ Issue [—> Operand
. Collector
Decode Instruction
@ Buffer
MEM

Offload

Controller \

Makes offloading decision ' S;Z':\d ;?:e
Sends offloading request

Memory Port /
MSHR

/
Monitors TX/RX

memory bandwidth

28

Outline

*Motivation and Our Approach
* Transparent Offloading

* Transparent Data Mapping
*Implementation

*Evaluation

* Conclusion

29

Evaluation Methodology

e Simulator: GPGPU-Sim

* Workloads:
* Rodinia, GPGPU-Sim workloads, CUDA SDK

* System Configuration:
* 68 SMs for baseline, 64 + 4 SMs for NDP system

* 4 memory stacks
* Core: |.4 GHz, 48 warps/SM

* Cache: 32KB L1, IMB L2

. Memory Bandwidth:
* GPU-Memory:80 GB/s per link, 320 GB/s total

* Memory-Memory:40 GB/s per link
* Memory Stack: 160 GB/s per stack,640 GB/s total

30

30% average (76% max)
performance improvement

Results: Off-chip Memory Traffic

O GPU-Memory RX B GPU-Memory TX HE Memory-Memory
1.5 :

VAR

\ 7=
, \

=
o

Memory Traffic
o
U

0.0

L 2| 2o 2| 2| 2| 2|k 2
SRloRleeBeERERER

BP BFS KM | CFD | HW LIB RAY

13% average (37% max) memory traffic reduction

2.5X memory-memory traffic reduction

More in the Paper

* Other design considerations

e Cache coherence
* Virtual memory translation

* Effect on energy consumption
* Sensitivity studies

* Computational capacity of logic layer SMs
* Internal and cross-stack bandwidth

* Area estimation (0.018% of GPU area)

33

Conclusion

* Near-data processing is a promising direction to
alleviate the memory bandwidth bottleneck in GPUs

* Problem: It requires significant programmer effort
* Which operations to offload?
* How to map data across multiple memory stacks!?

* Our Approach: Transparent Offloading and Mapping

* A new programmer-transparent mechanism to identify and
decide what code portions to offload

* A programmer-transparent data mapping mechanism to
maximize data co-location in each memory stack

* Key Results: 30% average (76% max) performance
improvement in GPU workloads

34

Transparent Offloading and Mapping (TOM)

Enabling Programmer-Transparent
Near-Data Processing in GPU Systems

Kevin Hsieh

Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar,
Onur Mutlu, Stephen W. Keckler

SAFARI CarnegieMellon @ KAIST ETH:zirich
NVIDIA.

Observation on Access Pattern

HE All accesses fixed offset B 75%-99% fixed offset B 50%-75% fixed offset
O 25%-50% fixed offset W 0%-25% fixed offset E No access fixed offset
00 100% .
£ I |
T X 30% :
c O .
o O .
£ o 60% i
° g |
S & 40% :
- 2 :
S S 20% i
= 8 :
g_’ 0% '
BP BFS KM CFD HW LIB RAY FWT SP RD AVG

85% of offloading candidate blocks exhibit

fixed offset pattern

36

Bandwidth Change Equations

BWrx = (REGrx - Sw)—
(NLD-COGZLD~MiSSLD +NST°(SW —I—COCLZST))
BWrx = (REGRx-Sw)—
(NLD-COCLZLD-SC°M’iSSLD -+ 1/4-N5T°COCLZST)

(3)

(4)

37

Best memory mapping search space

* We only need 2 bits to determine the memory stack in
a system with 4 memory stacks. The result of the
sweep starts from bit position 7 (128B GPU cache line
size) to bit position 16 (64 KB).

* Based on our results, sweeping into higher bits does
not make a noticeable difference.

* This search is done by a small hardware (memory
mapping analyzer), which calculates how many memory
stacks would be accessed by each offloading candidate
instance for all different potential memory stack
mappings (e.g., using bits 7:8,8:9, ..., 16:17 in a system
with four memory stacks)

38

Best Mapping From Different Fraction
of Offloading Candidate Blocks

0 Baseline mapping
Best mapping in first 0.5% NDP blocks
H Best mapping in all NDP blocks

(]

100%
80%
60%
40%

20%

0%

Probability of accessing one memory
stack in an offloading candidate instanc

BP BFS KM CFD

HW

O Best mapping in first 0.1% NDP blocks
B Best mapping in first 1% NDP blocks

LIB RAY FWT SP RD AVG

39

Energy Consumption Results

B DRAM Devices

0 Off-chip Links

OSMs

S, IR =y

[m-ou § O

i s =
= [o-ou &
................... B [P0 o

— mo-ou E A

(== [0 o M
] [mo-ou &
(. 1o =

S [o-ou E

B 1o o n
T [1o-ou .m
] [0 =y

[[o-ou § K

] [19 g W
) [o-ou &
.I_ 135 w

O mo-ou 5 -

o w5 2
' [no-ou m
[1o =

B mo-ou § m

(= 5 & 3
(= - [1o-ou ..m
(m; 1o o

O [mo-ou E =

0 [0 g T
O [1o-ou m
S 110 =

(= m-ou § AN

—= mw g O
BT [o-ou £
C o — S =)

T mw-ou E s

] 110 g M
] [mo-ou £
| T [P =y

. o [0-0U E »

T [0 = o
I T [10-0U £
m EER-Y

i mo-ou E

m [0 & /M
[[1o-ou .m

) o e} o
S

#w._o:m— ﬂuN:mE.:mu N

40

Sensitivity to Computational Capacity
of memory stack SMs

Ono-ctrl-1X-warp Octrl-1X-warp HEctrl-2X-warp Bctrl-4X-warp

a 1.5 . !
2 2 2l P 7
> 1.0 i /e g Hii AR ;
5] / ¢ / !
»n 0.5 ,,.d ,,.d / :
7 Bl / :
0.0 : :
BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Uno-ctrl-1X-warp Octrl-1X-warp Bctrl-2X-warp Bctrl-4X-warp
1 O -

AR

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

0.5

Traffic

A
’
’
/
’
’
/
’
’
/
A

0.0

Normalized Memory

41

Sensitivity to Internal Memory
Bandwidth

O2X-internal-BW B 1X-internal-BW
1.5 o o

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Speedup
) S —_
(a) (9] ()
|
1
|

