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Processing data directly in 3D-stacked

memories is a promising direction
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Key Challenge |

__global__

void applyScaleFactorsKernel( uint8 T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx blockIdx.x * blockDim.x + threadIdx.x;
const int colldx blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element
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Key Challenge |

* Challenge |: Which operations should be executed
on the logic layer SMs!? e

void applyScaleFactorsKernel( uint8 T * const out,
uint8_T const * const in, const double *factor,
? size_t const numRows, size_t const numCols )
{
// Work out which pixel we are working on.
i const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
.. E B EEEEEER const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element
size t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;
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Key Challenge 2

* Challenge 2: How should data be mapped to
different 3D memory stacks!?
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Our Approach: TOM

* A new mechanism to identify and decide

* The identifies code portions to potentially
offload based on memory profile.

* The decides whether or not to
offload each code portion based on runtime
characteristics.
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* A new mechanism to identify and decide

* The identifies code portions to potentially
offload based on memory profile.

* The decides whether or not to
offload each code portion based on runtime
characteristics.

* A new, simple,
mechanism to maximize code/data co-
location.

* Key Results: 30% average (76% max)
performance improvement in GPU workloads.
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