Transparent Offloading and Mapping
(TOM)
Enabling Programmer-Transparent
Near-Data Processing in GPU Systems

Kevin Hsieh

Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar,
Onur Mutlu, Stephen W. Keckler

SAFARI Carnegie Mellon @ KAIST ETH:zirich
NVIDIA.




Motivation

3D-stacked memory
(memory stack) SM

<. Logic layer

Logic layer
SM

- / Main GPU ' Crossbar switch
d d | |

Vault| ... Vault
Ctrl Ctrl

Processing data directly in 3D-stacked

memories is a promising direction



Motivation

3D-stacked memory
(memory stack) SM

... Logic layer

Logic layer
SM
I

Crossbar switch
[ [

Vault| ... Vault
Ctrl Ctrl

However, it requires significant

orogrammer effort




Key Challenge |

__global__

void applyScaleFactorsKernel( uint8 T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx blockIdx.x * blockDim.x + threadIdx.x;
const int colldx blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3D-stacked memory i
(memory stack) SM

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl

4

Main GPU




Key Challenge |

* Challenge |: Which operations should be executed
on the logic layer SMs!? e

void applyScaleFactorsKernel( uint8 T * const out,
uint8_T const * const in, const double *factor,
? size_t const numRows, size_t const numCols )
{
// Work out which pixel we are working on.
i const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
.. E B EEEEEER const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element
size t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

3D-stacked memory

(memory stack) SM

~J

< Logic layer,

»
Logic IaM
SM

I

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl

5

Main GPU




Key Challenge 2

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory
(memory stack) Main GPU SMs

SM

Logic layer

I

Crossbar switch

[
a- Vault
Ctrl

Vault
Ctrl

6




Our Approach: TOM

* A new mechanism to identify and decide

* The identifies code portions to potentially
offload based on memory profile.

* The decides whether or not to
offload each code portion based on runtime
characteristics.



Our Approach: TOM

* A new mechanism to identify and decide

* The identifies code portions to potentially
offload based on memory profile.

* The decides whether or not to
offload each code portion based on runtime
characteristics.

* A new, simple,
mechanism to maximize code/data co-
location.



Our Approach: TOM

* A new mechanism to identify and decide

* The identifies code portions to potentially
offload based on memory profile.

* The decides whether or not to
offload each code portion based on runtime
characteristics.

* A new, simple,
mechanism to maximize code/data co-
location.

* Key Results: 30% average (76% max)
performance improvement in GPU workloads.
9



Talk at Monday 2:50pm (Session 3B)

Transparent Offloading and Mapping
(TOM)

Kevin Hsieh

Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar,
Onur Mutlu, Stephen W. Keckler

SAFARI Carnegie Mellon @ KAIST ETH:zirich
NVIDIA.




