
Exploiting Core Criticality for

Enhanced GPU Performance

Adwait Jog, Onur Kayıran, Ashutosh Pattnaik,

Mahmut T. Kandemir, Onur Mutlu,

Ravishankar Iyer, Chita R. Das.

SIGMETRICS ‘16

Era of Throughput Architectures

GPUs are scaling: Number of CUDA Cores, DRAM bandwidth

2016:

GTX 1080

(Pascal)

2560 cores

(320 GB/sec)

2010:

GTX 480

(Fermi)

448 cores

(178 GB/sec)

2012:

GTX 680

(Kepler)

1536 cores

(192 GB/sec)

2

• Number of CUDA Cores are scaling rapidly

• Memory bandwidth is scaling at a much slower pace

Exploiting Core Criticality for Enhanced GPU Performance

Current Trend

• Modern Schedulers (e.g., FR-FCFS)

– assume that all memory requests are equally critical

towards performance.

– maximize memory data throughput.

• Inability of FR-FCFS to distinguish memory

requests from different GPU cores lead to

– GPU cores experiencing significant variation in

average memory access latencies

– some GPU cores becoming more “critical” than others

3Exploiting Core Criticality for Enhanced GPU Performance

Coefficient of Variation (COV) in

Average Memory Access Latencies
• To understand further,

– consider the COV (ratio of Standard Deviation over Arithmetic Mean) in memory

access latencies

– some GPU cores experience higher avg. memory latency than others

– these cores are less latency tolerant (“critical”)

– latency variations correlate with IPC variation

4

0

0.1

0.2

0.3

0.4

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

LUH RED SCAN LPS RAY CONS SCP BLK HS CFD GAUSS AVG.

A
v
e
ra

g
e
 C

o
e
ff

ic
ie

n
t

o
f

V
a
ri

a
ti

o
n

 (
C

O
V

)

Latency IPC

• We need to take core criticality into account.

• Prioritize requests from GPU cores with less latency

tolerance

• Contention is present in entire memory hierarchy.

• In this work, we only consider main memory contention

• We propose CLAMS, a criticality aware memory scheduling

mechanism

Exploiting Core Criticality for Enhanced GPU Performance

Outline

• Introduction and Motivation

• Core Criticality: Metrics and Analysis

• Design of Criticality Aware Memory Scheduler

• Infrastructure Setup and Evaluation

• Conclusions

5Exploiting Core Criticality for Enhanced GPU Performance

• We need to quantify core criticality.

• Use latency tolerance as a measure of core

criticality.

1. Classify warps into short- and long-latency warp

• Short-latency: compute instruction/data in private cache

• Long-latency: stalled due to pending memory requests

2. Calculate short-latency ratio

• Ratio of short-latency warps over total issued warps

3. Assign criticality rank

• Quantize short-latency ratio

– 8 discrete steps, with step size of 1/8.

– rank-1: short-latency ratio < 1/8, Most critical

– rank-8: short-latency ratio > 7/8, Least critical

Core Criticality: Metrics

6Exploiting Core Criticality for Enhanced GPU Performance

• ThCR : Criticality-Rank-Threshold

– Core is critical if current rank <= ThCR

– Takes any integer value from 1 to 8.

• PCC(ThCR): Percentage of critical cores for given ThCR

– PCC(ThCR) of 100%, all cores critical

– PCC(ThCR) of 0%, all cores non-critical

7

0

1

2

3

4

5

6

7

8

Core-1 Core-2 Core-3

R
a
n

k

ThCR = 7, PCC(7)=100%

ThCR = 4,

PCC(4)=33%

ThCR = 1,

PCC(1)=0%

Core Criticality: Metrics

Exploiting Core Criticality for Enhanced GPU Performance

1. PCC is dependent on the chosen criticality-rank threshold

2. PCC varies within an application over time

3. PCC varies across applications

4. PCC reduces significantly as main memory bandwidth increases

8

Core Criticality: Metrics

0%

20%

40%

60%

80%
A

v
e

ra
g

e
 P

C
C

(1
) 1xB 2xB 4xB

Exploiting Core Criticality for Enhanced GPU Performance

• If PCC(ThCR) is low for any given ThCR, then

– GPU cores have similar latency tolerance

– Memory scheduler should preserve locality

• PCC(ThCR) is calculated periodically and requires

– Exchange of global information across cores and MCs

– Hardware overhead of calculation

• Expensive approach!

• We need a metric which can be calculated at the MCs

9

Core Criticality: Metrics and Analysis

Exploiting Core Criticality for Enhanced GPU Performance

• We use Percentage of Critical Requests (PCR).

– Tag memory requests with core’s current rank

– Calculate the percentage of critical memory requests present in

the MC request buffer

• Eliminates the exchange of global information between

GPU cores and MCs

• Similar to PCC, PCR needs to be calculated for a given

ThCR.

10

Core Criticality: Metrics and Analysis

Exploiting Core Criticality for Enhanced GPU Performance

• PCR patterns for an application similar to PCC

11

Core Criticality: Metrics and Analysis

0%

20%

40%

60%

80%

100%

P
C

R

PCR(1) PCR(4) PCR(7)

SCP
Time

0%

20%

40%

60%

80%

100%

P
C

C

PCC(1) PCC(4) PCC(7)

Time
SCP

0%

20%

40%

60%

80%

100%

P
C

R

PCR(1) PCR(4) PCR(7)

CONS

0%

20%

40%

60%

80%

100%

P
C

C

PCC(1) PCC(4) PCC(7)

CONS
Time Time

• Similar observations hold for PCR

• PCR considers criticality of requests instead of

their corresponding cores

Exploiting Core Criticality for Enhanced GPU Performance

• Scope of criticality aware memory scheduler

• Distribution of criticality-rank differences across DRAM requests

– criticality-rank differences: difference between highest and lowest criticality-rank

of requests in MC at the same time

• diff-0 denotes % of DRAM cycles, all memory requests have same

rank

12

Core Criticality: Analysis

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f
D

R
A

M
 C

y
c
le

s

diff-7
diff-6
diff-5
diff-4
diff-3
diff-2
diff-1
diff-0

• Significant rank difference in LUH, RAY, SCAN
• High scope

• Rank difference is 0 for most of the time for CFD,

GAUSS
• Low scope

Exploiting Core Criticality for Enhanced GPU Performance

Outline

• Introduction and Motivation

• Core Criticality: Metrics and Analysis

• Design of Criticality Aware Memory Scheduler

• Infrastructure Setup and Evaluation

• Conclusions

13Exploiting Core Criticality for Enhanced GPU Performance

• Two major challenges

– Co-existence of critical and non-critical requests

• Finding appropriate value of ThCR

– Low ThCR -> less critical cores

– High ThCR -> too many critical cores

– Balancing DRAM locality and criticality

• Switching between schedulers optimized for criticality or locality

• Calculate PCR(ThCR) periodically and compare with Switching-

Mode-Threshold(ThSM)

– PCR(ThCR) > ThSM, locality mode

– PCR(ThCR) <= ThSM, criticality mode

• Need to find appropriate value of ThSM

14

Design of CLAMS

Exploiting Core Criticality for Enhanced GPU Performance

• Three different approaches

– Static-CLAMS

• Single and fixed set values for ThCR and ThSM

– Semi-Dyn-CLAMS

• Dynamically calculates ThCR, based on fixed ThSM and

PCR(k) ∀ k information at MC

– Dyn-CLAMS

• Calculates both, ThCR and ThSM.

• Working modes of CLAMS

– Decided based on per bank’s memory requests

– Locality mode

– Criticality mode

15

Design of CLAMS

Exploiting Core Criticality for Enhanced GPU Performance

• rank-4 provides a mix of both, critical and non-critical requests

– We choose ThCR = 4

• But, many applications have different distribution such as SCP

– Assuming ThSM = 20% -> locality mode most of the time

– Assuming ThSM = 80% -> criticality mode most of the time

• Potentially degrade DRAM row buffer locality

16

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f
R

e
q

u
e
s
ts

rank-8

rank-7

rank-6

rank-5

rank-4

rank-3

rank-2

rank-1

Design of Static-CLAMS

Take away:

1. We need to adapt ThCR based on the application

2. ThCR and ThSM should not be determined independently

Exploiting Core Criticality for Enhanced GPU Performance

• Computes ThCR

– Based on fixed ThSM value, and PCR(k) ∀ k ∈ {1...8}

information at MC

– We find a value for ThCR such that PCR(ThCR) is

≦ThSM and is as close to it as possible

• This will switch scheduler into criticality mode

• In case no such ThCR can be found, switch to

locality mode

17

Design of Semi-Dyn-CLAMS

Exploiting Core Criticality for Enhanced GPU Performance

Design of Semi-Dyn-CLAMS
• Lets look at SCP

• Assume ThSM = 40%, and ThCR can take any value in {1,4,7}.

• ThCR = 1, is chosen for first half of execution as PCR(1) <= 40%. Scheduler

works in criticality mode.

• For second half of execution, for no ThCR, is PCR(ThCR) <= 40%. Scheduler

switches to locality mode.

– Most of the requests are critical and cannot be prioritized

18

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f

R
e
q

u
e

s
ts

PCR(1) PCR(4) PCR(7)

Time

1

2

1

2

• ThCR is obtained using the PCR(k) information at the MC

• But, actual working mode of scheduler determined based on

the requests to be issued to a particular bank.

• Aware of requests destined to each bank

• Aware of all requests in the MC

Take away:

1. Semi-Dyn-CLAMS aggressively uses criticality mode

2. Only goes to locality mode, when too many critical requests

present in the MC buffer

3. Can lead to significant loss in locality and performance

4. No feedback on ThSM when new value of ThCR is calculated.

Exploiting Core Criticality for Enhanced GPU Performance

• Even though Semi-Dyn-CLAMS facilitates

criticality mode

– Actual mode based on requests to each bank

• Can be locality mode even though PCR(ThCR) <= ThSM

• Dyn-CLAMS attempts to improve the loss in

locality.

• Dynamically calculates ThCR and updates ThSM

based on the new value of ThCR.

19

Design of Dyn-CLAMS

Key Idea:

1. Gauge the negative effect of loss in row locality on latency

tolerance

2. Mitigate the loss by lowering ThSM while maintaining the value

of ThCR.

Exploiting Core Criticality for Enhanced GPU Performance

• Initialize ThSM = 40%, and ThCR = 8

• Calculate ThCR based on Semi-Dyn-CLAMS

– ThCR updated to 1

• Update ThSM to new value of PCR(ThCR)

• In second half of execution

– Scheduler goes into locality mode, similar to Semi-Dyn-CLAMS

20

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f

R
e

q
u

e
s
ts

PCR(1) PCR(4) PCR(7)

Time

3

2

1

ThSM

Design of Dyn-CLAMS

3

1

2

Take away:

1. Dynamically updating ThCR allows scheduler to aggressively

work in criticality mode

2. By reducing ThSM, the scheduler’s starts to improve locality by

using locality mode for the banks

1. chances of a bank’s PCR(ThCR) > ThSM increase

Exploiting Core Criticality for Enhanced GPU Performance

Outline

• Introduction and Motivation

• Core Criticality: Metrics and Analysis

• Design of Criticality Aware Memory Scheduler

• Simulation Setup and Evaluation

• Conclusions

21Exploiting Core Criticality for Enhanced GPU Performance

Simulation Setup
• Evaluated on GPGPU-Sim, a cycle accurate GPU

simulator

• Baseline configuration similar to scaled-up version of

GTX480
– 32 SMs, 32-SIMT lanes, 32-threads/warp

– 16KB L1 (4-way, 128B cache block) + 48KB Shared Mem/SM

– 6 partitions/channels

• Applications classified into 2 groups

– Group A: Moderate to High scope

– Group B: Low scope

22Exploiting Core Criticality for Enhanced GPU Performance

Performance with CLAMS (Normalized to FR-FCFS)

• Performance improvement for Group A applications

23

0.9

1

1.1

1.2

N
o

rm
a
li

z
e
d

 I
P

C

Static-CLAMS Semi-Dyn-CLAMS Dyn-CLAMS

FR-FCFS-Cap-Best Static-CLAMS-Best

 Static-CLAMS = 4.6%

 Static-CLAMS-Best = 9.3%

 FR-FCFS-Cap-Best = 4%

 Semi-Dyn-CLAMS = 6.5%

 Dyn-CLAMS = 8.4%

Group A Group B

More results and detailed description

of Dyn-CLAMS effects in the paper

Exploiting Core Criticality for Enhanced GPU Performance

Take Away Messages

• Variation in average memory access latencies across the GPU

cores, makes some GPU cores more “critical” than others.

• Memory schedulers being agnostic to the criticality of GPU cores can

lead to sub-optimal performance

• We need to orchestrate the exploitation of core-criticality and DRAM

locality

• Dyn-CLAMS provides an average performance improvement of

8.4%.

24Exploiting Core Criticality for Enhanced GPU Performance

Exploiting Core Criticality for

Enhanced GPU Performance

Adwait Jog, Onur Kayıran, Ashutosh Pattnaik,

Mahmut T. Kandemir, Onur Mutlu,

Ravishankar Iyer, Chita R. Das.

SIGMETRICS ‘16

