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Era of Throughput Architectures

GPUs are scaling:  Number of CUDA Cores,  DRAM bandwidth

2016:

GTX 1080

(Pascal) 

2560 cores

(320 GB/sec) 

2010:

GTX 480 

(Fermi) 

448 cores

(178 GB/sec) 

2012:

GTX 680 

(Kepler) 

1536 cores

(192 GB/sec) 
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• Number of CUDA Cores are scaling rapidly

• Memory bandwidth is scaling at a much slower pace
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Current Trend

• Modern Schedulers (e.g., FR-FCFS)

– assume that all memory requests are equally critical 

towards performance.

– maximize memory data throughput.

• Inability of FR-FCFS to distinguish memory 

requests from different GPU cores lead to

– GPU cores experiencing significant variation in 

average memory access latencies

– some GPU cores becoming more “critical” than others
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Coefficient of Variation (COV) in 

Average Memory Access Latencies
• To understand further,

– consider the COV (ratio of Standard Deviation over Arithmetic Mean) in memory

access latencies

– some GPU cores experience higher avg. memory latency than others

– these cores are less latency tolerant (“critical”)

– latency variations correlate with IPC variation

4

0

0.1

0.2

0.3

0.4

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

LUH RED SCAN LPS RAY CONS SCP BLK HS CFD GAUSS AVG.

A
v
e
ra

g
e
 C

o
e
ff

ic
ie

n
t 

o
f 

V
a
ri

a
ti

o
n

 (
C

O
V

)

Latency IPC

• We need to take core criticality into account.

• Prioritize requests from GPU cores with less latency 

tolerance

• Contention is present in entire memory hierarchy.

• In this work, we only consider main memory contention

• We propose CLAMS, a criticality aware memory scheduling 

mechanism

Exploiting Core Criticality for Enhanced GPU Performance



Outline

• Introduction and Motivation

• Core Criticality: Metrics and Analysis

• Design of Criticality Aware Memory Scheduler

• Infrastructure Setup and Evaluation

• Conclusions
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• We need to quantify core criticality.

• Use latency tolerance as a measure of core 

criticality. 

1. Classify warps into short- and long-latency warp

• Short-latency: compute instruction/data in private cache 

• Long-latency: stalled due to pending memory requests

2. Calculate short-latency ratio

• Ratio of short-latency warps over total issued warps

3. Assign criticality rank

• Quantize short-latency ratio

– 8 discrete steps, with step size of 1/8.

– rank-1: short-latency ratio < 1/8, Most critical

– rank-8: short-latency ratio > 7/8, Least critical

Core Criticality: Metrics
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• ThCR : Criticality-Rank-Threshold

– Core is critical if current rank <= ThCR

– Takes any integer value from 1 to 8.

• PCC(ThCR ): Percentage of critical cores for given ThCR

– PCC(ThCR ) of 100%, all cores critical

– PCC(ThCR ) of 0%, all cores non-critical
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ThCR = 7, PCC(7)=100% 
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PCC(4)=33% 

ThCR = 1,

PCC(1)=0% 

Core Criticality: Metrics
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1. PCC is dependent on the chosen criticality-rank threshold

2. PCC varies within an application over time

3. PCC varies across applications

4. PCC reduces significantly as main memory bandwidth increases
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Core Criticality: Metrics
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• If PCC(ThCR ) is low for any given ThCR, then

– GPU cores have similar latency tolerance

– Memory scheduler should preserve locality

• PCC(ThCR ) is calculated periodically and requires

– Exchange of global information across cores and MCs

– Hardware overhead of calculation

• Expensive approach!

• We need a metric which can be calculated at the MCs
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Core Criticality: Metrics and Analysis
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• We use Percentage of Critical Requests (PCR).

– Tag memory requests with core’s current rank

– Calculate the percentage of critical memory requests present in 

the MC request buffer

• Eliminates the exchange of global information between 

GPU cores and MCs

• Similar to PCC, PCR needs to be calculated for a given 

ThCR.
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Core Criticality: Metrics and Analysis
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• PCR patterns for an application similar to PCC
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Core Criticality: Metrics and Analysis
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• Similar observations hold for PCR

• PCR considers criticality of requests instead of 

their corresponding cores
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• Scope of criticality aware memory scheduler

• Distribution of criticality-rank differences across DRAM requests

– criticality-rank differences: difference between highest and lowest criticality-rank 

of requests in MC at the same time

• diff-0 denotes % of DRAM cycles, all memory requests have same 

rank
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Core Criticality: Analysis
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• Significant rank difference in LUH, RAY, SCAN
• High scope

• Rank difference is 0 for most of the time for CFD, 

GAUSS
• Low scope
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Outline

• Introduction and Motivation

• Core Criticality: Metrics and Analysis

• Design of Criticality Aware Memory Scheduler

• Infrastructure Setup and Evaluation

• Conclusions
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• Two major challenges

– Co-existence of critical and non-critical requests

• Finding appropriate value of ThCR

– Low ThCR -> less critical cores

– High ThCR -> too many critical cores

– Balancing DRAM locality and criticality

• Switching between schedulers optimized for criticality or locality

• Calculate PCR(ThCR) periodically and compare with Switching-

Mode-Threshold(ThSM)

– PCR(ThCR) > ThSM, locality mode

– PCR(ThCR) <= ThSM, criticality mode

• Need to find appropriate value of ThSM
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Design of CLAMS
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• Three different approaches

– Static-CLAMS

• Single and fixed set values for ThCR and ThSM

– Semi-Dyn-CLAMS

• Dynamically calculates ThCR, based on fixed ThSM and

PCR(k)  ∀ k information at MC

– Dyn-CLAMS

• Calculates both, ThCR and ThSM.

• Working modes of CLAMS

– Decided based on per bank’s memory requests

– Locality mode

– Criticality mode

15

Design of CLAMS
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• rank-4 provides a mix of both, critical and non-critical requests

– We choose ThCR = 4

• But, many applications have different distribution such as SCP

– Assuming ThSM = 20% -> locality mode most of the time

– Assuming ThSM = 80% -> criticality mode most of the time

• Potentially degrade DRAM row buffer locality
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Design of Static-CLAMS

Take away:

1. We need to adapt ThCR based on the application

2. ThCR and ThSM should not be determined independently
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• Computes ThCR

– Based on fixed ThSM value, and PCR(k)  ∀ k ∈ {1...8} 

information at MC

– We find a value for ThCR such that PCR(ThCR) is 

≦ThSM and is as close to it as possible

• This will switch scheduler into criticality mode

• In case no such ThCR can be found, switch to 

locality mode
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Design of Semi-Dyn-CLAMS
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Design of Semi-Dyn-CLAMS
• Lets look at SCP

• Assume ThSM = 40%, and ThCR can take any value in {1,4,7}.

• ThCR = 1, is chosen for first half of execution as PCR(1) <= 40%. Scheduler 

works in criticality mode.

• For second half of execution, for no ThCR, is PCR(ThCR) <= 40%. Scheduler 

switches to locality mode.

– Most of the requests are critical and cannot be prioritized
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• ThCR is obtained using the PCR(k) information at the MC

• But, actual working mode of scheduler determined based on 

the requests to be issued to a particular bank. 

• Aware of requests destined to each bank

• Aware of all requests in the MC

Take away:

1. Semi-Dyn-CLAMS aggressively uses criticality mode

2. Only goes to locality mode, when too many critical requests 

present in the MC buffer

3. Can lead to significant loss in locality and performance

4. No feedback on ThSM when new value of ThCR is calculated.
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• Even though Semi-Dyn-CLAMS facilitates 

criticality mode

– Actual mode based on requests to each bank

• Can be locality mode even though PCR(ThCR) <= ThSM

• Dyn-CLAMS attempts to improve the loss in 

locality.

• Dynamically calculates ThCR and updates ThSM 

based on the new value of ThCR.
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Design of Dyn-CLAMS

Key Idea:

1. Gauge the negative effect of loss in row locality on latency 

tolerance

2. Mitigate the loss by lowering ThSM  while maintaining the value 

of ThCR.
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• Initialize ThSM = 40%, and ThCR = 8

• Calculate ThCR based on Semi-Dyn-CLAMS

– ThCR updated to 1

• Update ThSM to new value of PCR(ThCR)

• In second half of execution

– Scheduler goes into locality mode, similar to Semi-Dyn-CLAMS
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Take away:

1. Dynamically updating ThCR allows scheduler to aggressively 

work in criticality mode

2. By reducing ThSM, the scheduler’s starts to improve locality by 

using locality mode for the banks 

1. chances of a bank’s PCR(ThCR) > ThSM increase
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Outline

• Introduction and Motivation

• Core Criticality: Metrics and Analysis

• Design of Criticality Aware Memory Scheduler

• Simulation Setup and Evaluation

• Conclusions
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Simulation Setup
• Evaluated on GPGPU-Sim, a cycle accurate GPU 

simulator

• Baseline configuration similar to scaled-up version of 

GTX480 
– 32 SMs, 32-SIMT lanes, 32-threads/warp 

– 16KB L1 (4-way, 128B cache block) + 48KB Shared Mem/SM 

– 6 partitions/channels

• Applications classified into 2 groups

– Group A: Moderate to High scope

– Group B: Low scope
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Performance with CLAMS (Normalized to FR-FCFS)

• Performance improvement for Group A applications
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 Static-CLAMS = 4.6%

 Static-CLAMS-Best = 9.3%

 FR-FCFS-Cap-Best = 4%

 Semi-Dyn-CLAMS = 6.5%

 Dyn-CLAMS = 8.4%
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More results and detailed description 

of Dyn-CLAMS effects in the paper
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Take Away Messages

• Variation in average memory access latencies across the GPU 

cores, makes some GPU cores more “critical” than others.

• Memory schedulers being agnostic to the criticality of GPU cores can 

lead to sub-optimal performance

• We need to orchestrate the exploitation of core-criticality and DRAM 

locality

• Dyn-CLAMS provides an average performance improvement of 

8.4%.
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