SPIRAL: Tuning DSP Transforms to Computing Platforms

José M. F. Moura

Faculty

- Jeremy Johnson (Drexel)
- Robert Johnson (MathStar Inc.)
- David Padua (UIUC)
- Viktor Prasanna (USC)
- Markus Püschel (CMU)
- Manuela Veloso (CMU)

Students

- Franz Franchetti (TU Vienna)
- Gavin Haentjens (CMU)
- Pinit Kumhom (Drexel)
- Neungsoo Park (USC)
- David Sepiashvili (CMU)
- Bryan Singer (CMU)
- Yevgen Voronenko (Drexel)
- Jianxin Xiong (UIUC) http://www.ece.cmu.edu/~spiral

Work supported by DARPA (DSO), Applied \& Computational Mathematics Program, OPAL, through grant managed by research grant DABT63-98-1-0004 administered by the Army Directorate of Contracting.

MOOre's Law and High(est) Performance Scientific Computing

(single processor, off-the-shelf)
Moore's Law: > processor-memory bottleneck
$>$ short life cycles of computers
$>$ very complex architectures

- vendor specific
- special instructions (MMX, SSE, FMA, ...)
- undocumented features

Effects on software/algorithms:
$>$ arithmetic cost model not accurate for predicting runtime (one cache miss = 10 floating point ops)
$>$ better performance models hard to get
$>$ best code is machine dependent (registers/caches size, structure)
$>$ hand-tuned code becomes obsolete as fast as it is written
$>$ compiler limitations
$>$ full performance requires (in part) assembly coding

Portable performance requires automation

Automatic Performance Tuning: Research

Linear Algebra:

$>$ ATLAS (J. Dongarra et al.)
$>$ LAPACK
$>$ PhiPACK (J. Demmel et al.)
Signal Processing:
$>$ FFTW (M. Frigo and S. Johnson)
$>$ SPIRAL

SPIRAL

Automates

Implementation	$>$ cuts development costs
Ocode less error-prone	
Optimization	$>$ systematic exploration of alternatives both at
algorithmic and code level	

SPIRAL Approach

given $\longrightarrow \quad$ DSP Transform (DFT, DCT, Wavelets etc.)

\dagger adapted
given \longrightarrow Computing Platform
(Pentium III, Pentium 4, Athlon, SUN, PowerPC, Alpha, ...)

Organization

- Mathematical Framework

Transforms, Rules, and Formulas

- Formula Generator

Transform \rightarrow Algorithm

- SPL and SPL Compiler

Algorithm \rightarrow Implementation

- Search Engine

How to find the best implementation

- SPIRAL system

Everything taken together

- Conclusions

DSP Algorithms: Example 4-point DFT

Cooley/Tukey FFT (size 4):

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Fourier transform Diagonal matrix (twiddles)

$$
D F T_{4}=\left(D F T_{2} \otimes I_{2}\right) \cdot T_{2}^{4} \cdot\left(I_{2} \otimes D F T_{2}\right) \cdot L_{2}^{4}
$$

Kronecker product Identity
Permutation

- product of structured sparse matrices
- mathematical notation

DSP Algorithms: Terminology

Transform $D F T_{n}$ parameterized matrix
Rule

$$
D F T_{n m} \rightarrow\left(D F T_{n} \otimes I_{m}\right) \cdot D \cdot\left(I_{n} \otimes D F T_{m}\right) \cdot P
$$

- a breakdown strategy
- product of sparse matrices

Ruletree

- recursive application of rules
- uniquely defines an algorithm
- efficient representation
- easy manipulation

Formula
$D F T_{8}=\left(F_{2} \otimes I_{4}\right) \cdot D \cdot\left(I_{2} \otimes\left(I_{2} \otimes F_{2} \cdots\right)\right) \cdot P$

- few constructs and primitives
- uniquely defines an algorithm
- can be translated into code

More Cooley-Tukey Rules

- DFT is symmetric \Rightarrow transpose the rule:

$$
F_{R S}=L_{S}^{R S}\left(I_{R} \otimes F_{S}\right) T_{S}^{R S}\left(F_{R} \otimes I_{S}\right) \quad \text { CT rule transposed }
$$

- Commuting tensor product factors

$$
B \otimes A=L_{n}^{m n}(A \otimes B) L_{m}^{m n} \quad A \text { and } B \text { square size } m \text { and } n
$$

- Commutation property \Rightarrow further variations

$$
\begin{aligned}
& F_{N}=L_{S}^{R S}\left(I_{S} \otimes F_{R}\right) L_{R}^{R S} T_{S}^{R S}\left(I_{R} \otimes F_{S}\right) L_{R}^{R S} \\
& F_{N}=\left(F_{R} \otimes I_{S}\right) T_{S}^{R S} L_{S}^{R S}\left(F_{S} \otimes I_{R}\right) \\
& \left(F_{2} \otimes I_{2}\right) x=\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
\frac{x_{1}}{x_{2}} \\
x_{3}
\end{array}\right]\left(I_{2} \otimes F_{2}\right)=\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

- Different patterns for access, storage and flow of data

Haar Wavelets - Example

- Haar wavelets $=$ square waves

$$
h=\frac{1}{\sqrt{2}}[1,1], h^{1}=\frac{1}{\sqrt{2}}[1,-1]
$$

- First stage: $\mathbf{V}_{\mathbf{2}} \Rightarrow \mathrm{V}_{1} \oplus \mathrm{~W}_{1}$

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]=L_{2}^{4}\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]=L_{2}^{4}\left(I_{2} \otimes F_{2}\right) \quad\left[\begin{array}{c}
\underline{c}_{1} \\
\underline{d}_{1}
\end{array}\right]=H \underline{c}_{2}
$$

- The process is repeated for the upper half of the output

$$
H T_{2^{n}}=\left(H T_{2^{n-1}} \oplus I_{2^{n-1}}\right) \underbrace{L_{2^{n-1}}^{2^{n}}\left(I_{2^{n-1}} \otimes F_{2}\right)}_{H}, H T_{2}=F_{2}
$$

Discrete-Time Wavelet Transform

- Discrete-Time Wavelet Transform (DTWT) rule

$$
\operatorname{DTWT}_{2^{n}}=\left(\mathrm{DTWT}_{2^{n^{-1}}} \oplus \mathrm{I}_{2^{n^{-1}}}\right) \underbrace{L_{2^{n-1}}^{L^{n}}\left(\mathrm{I}_{2^{n^{1+}}} \otimes_{l-2} W\right)}_{H}
$$

- Scaling (lowpass) and wavelet (highpass) filter coefficients

$$
W=\left[\begin{array}{llll}
h_{0} & h_{1} & \cdots & h_{l-1} \\
h_{0}^{\prime} & h_{1}^{\prime} & \cdots & h_{l-1}^{\prime}
\end{array}\right]
$$

- DTWT - convolution rule

$$
\begin{aligned}
H= & \left(\left[\begin{array}{ll}
{[1} & 1
\end{array}\right] \otimes \mathrm{I}_{m / 2}\right) \cdot\left(C_{m / 2}^{\mathrm{T}}(\underline{l o}) \oplus C_{m / 2}^{\mathrm{T}}(\underline{l e})\right) \cdot \mathrm{L}_{2}^{n} \oplus \\
& \left.\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right] \otimes \mathrm{I}_{m / 2}\right) \cdot\left(C_{m / 2}^{\mathrm{T}}(\underline{(h o}) \oplus C_{m / 2}^{\mathrm{T}}(\underline{h e})\right) \cdot \mathrm{L}_{2}^{n}\right) \cdot\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes \mathrm{I}_{n}\right)
\end{aligned}
$$

$\underline{l o}$-lowpass odd coeffs., $\underline{l} \underline{e}$-lowpass even coeffs.
$\underline{h o}$-highpass odd coeffs., he-highpass even coeffs.

DSP Transforms

discrete Fourier transform
Walsh-Hadamard transform
discrete cosine and sine Transforms (16 types)

$$
\begin{aligned}
& D F T_{n}=[\exp (2 k l i \pi / n)] \\
& W H T_{2^{k}}=D F T_{2} \otimes \cdots \otimes D F T_{2} \\
& D C T^{(I I)}=[\cos (k(l+1 / 2) \pi / n)] \\
& D C T^{(I V)}{ }_{n}=[\cos ((k+1 / 2)(l+1 / 2) \pi / n)] \\
& D S T^{(I)}{ }_{n}=[\sin (k l \pi / n)]
\end{aligned}
$$

modified discrete cosine transform

$$
M D C T_{n \times 2 n}=[\cos ((k+(n+1) / 2)(l+1 / 2) \pi / n)]
$$

two-dimensional transform

$$
T \otimes T
$$

$$
\text { discrete wavelet transform } \mathrm{DTWT}_{2^{\mathrm{n}}}=\left(\mathrm{DTWT}_{2^{n-1}} \oplus \mathrm{I}_{2^{n-1}}\right) \underbrace{\mathrm{L}_{2^{n-1}}^{2^{n}}\left(\mathrm{I}_{2^{n-1}} \otimes_{l-2} W\right)}_{H}
$$

Others: filtering, Haar, Hartley, ...

Rules = Breakdown Strategies

$$
\begin{aligned}
& D C T_{2}^{(I I)} \rightarrow \operatorname{diag}(1,1 / \sqrt{2}) \cdot F_{2} \\
& D C T_{n}^{(I I)} \rightarrow P \cdot\left(D C T_{n / 2}^{(I I)} \oplus D C T_{n / 2}^{(I V)}\right) \cdot\left(I_{n / 2} \otimes F_{2}\right)^{Q}
\end{aligned}
$$

$$
D C T_{n}{ }^{(I V)} \rightarrow S \cdot D C T_{n}^{(I I)} \cdot D
$$

$$
D C T_{n}{ }^{(I V)} \rightarrow M_{1} \cdots M_{r}
$$

$$
D F T_{n} \rightarrow{\operatorname{Cos} D F T_{n}}+j \cdot{\operatorname{Sin} D F T_{n}}
$$

$$
D F T_{n} \rightarrow B \cdot\left(D C T_{n / 2}^{(I)} \oplus D S T_{n / 2}^{(I)}\right) \cdot C
$$

$$
D F T_{n m} \rightarrow\left(D F T_{n} \otimes I_{m}\right) \cdot D \cdot\left(I_{n} \otimes D F T_{m}\right) \cdot P
$$

$$
{\operatorname{Cos} D F T_{n}} \rightarrow \cdots \operatorname{Cos} D F T_{n / 2} \cdots D C T_{n / 4}^{(I I)} \cdots
$$

$$
{\operatorname{Sin} D F T_{n}} \rightarrow \cdots \operatorname{Sin}^{2} D F T_{n / 2} \cdots D C T_{n / 4}^{(I I)} \cdots
$$

$$
W H T_{2^{n}} \rightarrow \prod_{i=1}^{n}\left(I_{2^{n_{1}+\ldots+n_{i-1}}} \otimes W H T_{2^{n_{i}}} \otimes I_{2^{n_{i+1}+\ldots+m_{i}}}\right)
$$

$$
M D C T_{n \times 2 n} \rightarrow S \cdot D C T_{n}^{(I V)} \cdot P
$$

$$
\operatorname{DTWT}_{2^{n}}=\left(\mathrm{DTWT}_{2^{n+1}} \oplus \mathrm{I}_{2^{n^{n}}}\right) \underbrace{L_{2^{n+1}}^{L^{n}}\left(\mathrm{I}_{2^{n+1}}\right.}_{H} \otimes_{l-2} W)
$$

base case
recursive
translation
iterative
recursive
recursive
recursive
recursive
recursive
iterative/
recursive
translation
(\rightarrow) Electrical \& Computer

Algorithms = Ruletrees = Formulas

DTWT Ruletree - Example

Formula for a DCT, size 16

$$
\begin{aligned}
& {[(2,16,9,5,3)(4,15,8,13,7)(6,14,10,12,11), 16]} \\
& \left(\left([(2 , 8 , 5 , 3) (4 , 7) , 8] \cdot \left(\left([(2,4,3), 4] \cdot\left(\left(\operatorname{diag}\left(1, \sqrt{\frac{1}{2}}\right) \cdot \mathrm{DFT}_{2}\right) \oplus\left([(1,2), 2] \cdot \mathrm{R}_{\frac{13}{8} \pi} \pi\right)^{[(1,2), 2]}\right) \cdot\right.\right.\right.\right. \\
& \left.\left(\mathbf{1}_{2} \otimes \mathrm{DFT}_{2}\right)^{[(2,4,3), 4]}\right) \oplus\left(\operatorname{diag}\left(\frac{1}{2 \cos \left(\frac{1}{16} \pi\right)}, \frac{1}{2 \cos \left(\frac{3}{16} \pi\right)}, \frac{1}{2 \cos \left(\frac{5}{16} \pi\right)}, \frac{1}{2 \cos \left(\frac{7}{16} \pi\right)}\right) \cdot\left(\mathbf{1}_{2} \otimes \mathrm{DFT}_{2}\right)^{[(2,4,3), 4] .}\right. \\
& \left.\left.\left.\left.\left(\left(\mathrm{DFT}_{2} \cdot \operatorname{diag}\left(1, \sqrt{\frac{1}{2}}\right)\right) \oplus\left([(1,2), 2] \cdot \mathrm{R}_{\frac{13}{8} \pi}\right)\right)^{[(1,2), 2]}\right) \cdot[(2,3,4), 4] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\right)\right)^{[(1,4)(2,3), 4]}\right) \cdot \\
& \left.\left(\mathbf{1}_{4} \otimes \mathrm{DFT}_{2}\right)^{[(2,8,5,3)(4,7), 8]}\right) \oplus\left([(2,5,4,3,7,6,8), 8] \cdot\left(\mathbf{1}_{2} \otimes\left(\mathbf{1}_{2} \oplus\left([(1,2), 2] \cdot \mathrm{R}_{\frac{7}{4} \pi}\right)\right)\right) \cdot\right. \\
& \left(\mathbf{1}_{2} \otimes \mathrm{DFT}_{2} \otimes \mathbf{1}_{2}\right) \cdot\left(\mathbf{1}_{4} \oplus\left([(1,2), 2] \cdot \mathrm{R}_{\frac{13}{8} \pi}\right) \oplus\left([(1,2), 2] \cdot \mathrm{R}_{\frac{1}{8} \pi}\right)\right) \cdot\left(\mathbf{1}_{1} \otimes \mathrm{DFT}_{2} \otimes\right. \\
& \left.\mathbf{1}_{4}\right) \cdot\left(\left([(1,2), 2] \cdot \mathrm{R}_{\frac{49}{32} \pi}\right) \oplus\left([(1,2), 2] \cdot \mathrm{R}_{\frac{5}{3} \pi}\right) \oplus\left([(1,2), 2] \cdot \mathrm{R}_{\frac{57}{32} \pi}\right) \oplus([(1,2), 2] \cdot\right. \\
& \left.\left.\left.\left.\mathrm{R}_{\frac{61}{32} \pi}^{2 \pi}\right)\right) \cdot[(2,8)(4,6), 8]\right)^{[(1,8)(2,7)(3,6)(4,5), 8]}\right) \cdot \\
& \left(\mathbf{1}_{8} \otimes \mathrm{DFT}_{2}\right)^{[(2,16,9,5,3)(4,15,8,13,7)(6,14,10,12,11), 16]}
\end{aligned}
$$

Helpful Concept

DSP Transforms

Formal Languages

DSP transform (of size) \longleftrightarrow Non-terminal symbol (with attribute)
Rule $\longleftrightarrow \quad$ Rule (production)
Formula/Algorithm \longleftrightarrow Element in Language (only terminals)

Mathematical Framework: Summary

- fast algorithms represented as ruletrees (easy generation/manipulation) and as formulas (can be translated into code)
- formulas built from few constructs and primitives
- many different algorithms/formulas generated from few rules (combinatorial explosion)
- these algorithms are (essentially) equal in arithmetic cost, but differ in data flow

Organization

- Mathematical Framework

Transforms, Rules, and Formulas

- Formula Generator

Transform \rightarrow Algorithm

- SPL and SPL Compiler

Algorithm \rightarrow Implementation

- Search Engine

How to find the best implementation

- SPIRAL system

Everything taken together

- Conclusions

Formula Generation

Formula Generator

cut here for other

- written in GAP/AREP (computer algebra system) optimization problems
- all computation/manipulation is symbolic
- exact arithmetic
- easy extensible rule and transform data base
- verification of rules and formulas

Organization

- Mathematical Framework

Transforms, Rules, and Formulas

- Formula Generator

Transform \rightarrow Algorithm

- SPL and SPL Compiler

Algorithm \rightarrow Implementation

- Search Engine

How to find the best implementation

- SPIRAL system

Everything taken together

- Conclusions

Formulas in SPL

(compose
(diagonal ($2 * \cos (1 / 16 * p i) 2 * \cos (3 / 16 * p i) 2 * \cos (5 / 16 * p i) 2 * \cos (7 / 16 * p i)$)
(permutation (1342))
(tensor
(I 2)
(F 2)
)
(permutation (1423))
(direct_sum
(compose
(F 2)
(diagonal (1 sqrt (1/2)))
)
(compose
(matrix
$\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$
($0(-1) 1$)
)
(diagonal ($\cos (13 / 8 * p i)-\sin (13 / 8 * p i) \sin (13 / 8 * p i) \cos (13 / 8 * p i)+\sin (13 / 8 * p i)$)
(matrix
(10)
$\left(\begin{array}{ll}1 & 1\end{array}\right)$
(01)
)
(permutation (21))

SPIRAL

SPL Syntax (Subset)

- matrix operations:
(compose formula formula ...)
(tensor formula formula ...)
(direct_sum formula formula ...)
- direct matrix description:
(matrix (a11 a12 ...) (a21 a22 ...) ...)
(diagonal (d1 d2 ...))
(permutation (p1 p2 ...))
- parameterized matrices:
(I n)
(F n)
- scalars:
1.5, 2/7, cos(..), w(3), pi, 1.2e-04
- definition of new symbols: \longleftarrow allows extension of SPL
(define name formula)
(template formula (i-code-list)
- directives for code generation
\#codetype real/complex
\#unroll on/off

SPL Compiler, 4-point FFT

fast algorithm as
formula as
SPL program

f0	$=x(1)+x(3)$
f1	$=x(1)-x(3)$
£2	$=x(2)+x(4)$
f3	$=x(2)-x(4)$
f4	$=(0.00 \mathrm{dO},-1.00 \mathrm{dO} 0 \times \mathrm{f}(3)$
$\mathrm{y}(1)$	$=\mathrm{f0}+\mathrm{f} 2$
$y(2)$	$=\mathrm{f0}-\mathrm{f} 2$
$y(3)$	$=\mathrm{f} 1+\mathrm{f} 4$
y(4)	$=\mathrm{f} 1-\mathrm{f} 4$

$$
\begin{aligned}
& r 0=x(1)+x(5) \\
& r 1=x(1)-x(5) \\
& r_{2}=x(2)+x(6) \\
& r 3=x(2)-x(6) \\
& r 4=x(3)+x(7) \\
& r 5=x(3)-x(7) \\
& r 6=x(4)+x(8) \\
& r 7=x(4)-x(8) \\
& y(1)=r 0+r 4 \\
& y(2)=r 1+r 5 \\
& y(3)=r 0-r 4 \\
& y(4)=r 1-r 5 \\
& y(5)=r 2+r 7 \\
& y(6)=r 3-r 6 \\
& y(7)=r 2-r 7 \\
& y(8)=r 3+r 6
\end{aligned}
$$

SPIRAL
Electrical \& Computer
ENGINEERING

SPL Compiler: Summary

Built-in optimizations:

- single static assignment code
- no reuse of temporary vars
- only scalar temporary vars
- constants precomputed

C, FORTRAN function

Extensible through templates

SIMD Short Vector Extensions

- Extension to instruction set architecture
- Available on most current architectures (SSE on Pentium, AltiVec on Motorola G4)
- Originally for multimedia (like MMX for integers)
- Requires fine grain parallelism
- Large potential speed-up

Problems:

- SIMD instructions are architecture specific
- No common API (usually assembly hand coding)
- Performance very sensitive to memory access
- Automatic vectorization very limited

Vector Code Generation from SPL Formulas

Naturally vectorizable construct

(Current) generic construct completely vectorizable:

$$
\prod_{i=1}^{k} P_{i} D_{i}\left(A_{i} \otimes I_{v}\right) E_{i} Q_{i} \quad \begin{array}{ll}
\boldsymbol{P}_{i} Q_{i} & \text { permutations } \\
\boldsymbol{D}_{\dot{v}} E_{i} \\
A_{i} & \text { diagonals } \\
v
\end{array} \quad \begin{aligned}
& \text { arbitrary formulas } \\
& \text { SIMD vector length }
\end{aligned}
$$

Vectorization in two steps:

1. Formula manipulation using manipulation rules
2. Code generation (vector code + C code)

Organization

- Mathematical Framework

Transforms, Rules, and Formulas

- Formula Generator

Transform \rightarrow Algorithm

- SPL and SPL Compiler

Algorithm \rightarrow Implementation

- Search Engine

How to find the best implementation

- SPIRAL system

Everything taken together

- Conclusions

Number of Formulas/Algorithms

\# DFT, size $2^{\wedge} k$	\# DCT-IV, size $2^{\wedge} k$	
1	1	1
2	6	10
3	40	126
4	296	31242
5	27744	1924443362
6	162570361280	7343815121631354242
7	$\sim 1.01 \cdot 10^{\wedge} 27$	$\sim 1.07 \cdot 10^{\wedge} 38$
8	$\sim 2.31 \cdot 10^{\wedge} 61$	$\sim 2.30 \cdot 10^{\wedge} 76$
9	$\sim 2.86 \cdot 10^{\wedge 133}$	$\sim 1.06 \cdot 10^{\wedge} 153$

- differ in data flow not in arithmetic cost
- exponential search space

Why Search?

- maaaany different formulas
- large spread in runtimes, even for modest size
- not due to arithmetic cost

Search Methods Available in SPIRAL

- Exhaustive Search
- Dynamic Programming (DP)
- Random Search
- Hill Climbing
- STEER (similar to a genetic algorithm)

	Possible Sizes	Formulas Timed	Results
Exhaust	Very small	All	Best
DP	All	10s-100s	(very) good
Random	All	User decided	fair/good
Hill Climbing	All	$100 s-1000 s$	Good
STEER	All	$100 s-1000 s$	(very) good

Search over

- algorithm space and
- implementation options (degree of unrolling)

STEER

DCT Type IV Size 16

Fastest Found Formulas

Number of Formulas Timed

Experimental Results

high performance code
(compared with FFTW)

search methods (applicable to all transforms)

different transforms

Vectorized code

WHT

DFT

$>$ speed-ups up to a factor of 2.5
$>$ beats hand-tuned Intel MKL (< 1024)
$>$ SIMD platforms supported
(Pentium III, SSE)
(() Electrical \& Computer

Learning to Generate Fast Algorithms

- Learns from given dataset (formulas+runtimes) how to design a fast algorithm (breakdown strategy)
- Learns from a transform of one size, generates the best algorithm for many sizes
- Tested for DFT and WHT

Fast Formula Generation Results

Size	Number of Formulas Generated	Generated Included the Fastest Known	Top N Fastest Known Formulas in Generated
2^{12}	101	yes	77
2^{13}	86	yes	4
2^{14}	101	yes	70
2^{15}	86	yes	11
2^{16}	101	yes	68
2^{17}	86	yes	15
2^{18}	101	yes	25
2^{19}	86	yes	16
2^{20}	101	yes	16

Organization

- Mathematical Framework

Transforms, Rules, and Formulas

- Formula Generator

Transform \rightarrow Algorithm

- SPL and SPL Compiler

Algorithm \rightarrow Implementation

- Search Engine

How to find the best implementation

- SPIRAL system

Everything taken together

- Conclusions

SPIRAL System

Extensibility of SPIRAL

New transforms are readily included on the high level
(easy, due to SPIRAL's framework)
New constructs and primitives (potentially required by radically different transforms) are readily included in SPL
(moderate effort, due to template mechanism)
New instructions sets available (e.g., SSE) are included by extending the SPL compiler
(doable one time effort)

SPIRAL System: Summary

- Available for download: www. ece. cmu .edu/~spiral
- Easy installation (Unix: configure/make; Windows: install shield)
- Unix/Linux and Windows 98/ME/NT/2000/XP
- Current transforms: DFT, DHT, WHT, DCT/DST type I - IV, MDCT, Filters, Wavelets, Toeplitz, Circulants
- Extensible

Organization

- Mathematical Framework

Transforms, Rules, and Formulas

- Formula Generator

Transform \rightarrow Algorithm

- SPL and SPL Compiler

Algorithm \rightarrow Implementation

- Search Engine

How to find the best implementation

- SPIRAL system

Everything taken together

- Conclusions

Closing the gap between math domain (algorithms) and implementation domain (programs)

- Mathematical computer representation of algorithms
- Automatic translation of algorithms into code

Optimization as intelligent search/learning in the space of alternatives

- High level: Mathematical manipulation of algorithms
- Low level: Coding degrees of freedom

