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L CREEL P

00re’'s Law and High(est) Performance
lentific Computing
(single processor, off-the-shelf)

Moore's Law:  » processor-memory bottleneck
» short life cycles of computers
» very complex architectures
* vendor specific
e special instructions (MMX, SSE, FMA, ...)
e undocumented features

Effects on software/algorithms:

» arithmetic cost model not accurate for predicting runtime
(one cache miss = 10 floating point ops)
» better performance models hard to get
» best code is machine dependent (registers/caches size, structure)
» hand-tuned code becomes obsolete as fast as it is written
» compiler limitations
» full performance requires (in part) assembly coding

mm) Portable performance requires automation

SPIRAL
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utomaticC Performance Tuning: Research

Linear Algebra:
» ATLAS (J. Dongarra et al.)
» LAPACK
» PhiPACK (J. Demmel et al.)

Signal Processing:
» FFTW (M. Frigo and S. Johnson)
» SPIRAL
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SPIRAL

PIRAL

Automates

Implementation

Optimization

» cuts development costs
» code less error-prone

» systematic exploration of alternatives both at
algorithmic and code level

Platform-Adaptation » takes advantage of architecture specific features

» porting without loss of performance

of DSP algorithms  » are performance critical

L

A library generator for highly optimized
sighal processing algorithms

({) Electrical & Computer
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PIRAL Approach

given mmp DSP Transform
(DFT, DCT, Wavelets etc.)

|

Possible
Algorithms

¥

Possible
Implementations

¥

Performance
Evaluation

1

given mmp Computing Platform

(Pentium IlI, Pentium 4, Athlon,
SUN, PowerPC, Alpha, ...)
SPIRAL
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Intelligent Search
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SP Algorithms: Example 4-point DFT

Cooley/Tukey FFT (size 4):

1 1 1 1] (1 0 1 OfJr1 0002 2 0 01000
11 -1 -1 |01 0 1j01 001 .10 0j001O0
1-11 -1/ (1 0-10(0010(0 0 1 1({0100
1 -i -1 i] |01 0 -1)/0 0 0 i|jO O 1 -1J0 O O 1
Fourier transform Diagonal matrix (twiddles)
| |
_ 4 4
DFT, = (DFT, ? 1,) T, I, O DFT,) D%Z
|
Kronecker product Identity Permutation
‘ * product of structured sparse matrices
e = mathematical notation Electrical & Combuter
— A ENGINEERING



SP Algorithms: Terminology

Transform

Rule

Ruletree

Formula

SPIRAL

DFTn  parameterized matrix

DFT, - (DFT. O1_){l A ODFT, )P

» a breakdown strategy
e product of sparse matrices

DFTs e recursive application of rules
DET>» DET 4 « uniquely defines an algorithm

_ o efficient representation
DFT> DFT> °easy manipulation

DFT=(F, O1,)MDOl,O(l,0F,--))P

» few constructs and primitives
e uniquely defines an algorithm

e can be translated into code ({} Eﬁt&iﬁ%%ﬁﬁ Nutg



OlI'e Cooley-Tukey Rules

" DFT is symmetric = transpose the rule:

— 1 RS RS
F.=L: (| -0 |:S)TS (FFD |S) CT rule transposed
® Commuting tensor product factors

m m A and B square size m and n
BOA L"(A B)L, e
® Commutation property = further variations

Ry =L (ORI LT D FLY
Fu = (RO 1) TELS (RO 1)

10 1 0]] X, 1 10 0 X, |
(ROL)x=1754 of x| (LOR)=|557 1|[%
01 0-1] X | 0 01-1]|X;

e Different patterns for access, storage and flow of data
({) Electrical & Computer
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aal Wavelets — Example

® Haar wavelets = square waves
- > 1= g
h_\/§[111]1h \/5[1’ 1]

" First stage: V, =V, W,

0O 01 1
1-10 O
|0 0 1 -1]

H =

(1 10 O]
1-10 O
0 01 1
0 01

(1 10 O]

=15(1, OF,) {

G |_
QJ_HQZ

i@ The process is repeated for the upper half of the output

HT, = (HT,. O1.)L,

(1, A F), HE F,

({) Electrical & Computer
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IScrete-Time wavelet Transform

" Discrete-Time Wavelet Transform (DTWT) rule

DTWT,, = (DTWT,. 01, )15 (1, 0, W)

J

Vo

H
® Scaling (lowpass) and wavelet (highpass) filter coefficients
W:{h‘f h{ h',_l}
h h o Ry

" DTWT - convolution rule

=l 401,000 L) ¢
(01 oo el be)as) o,

lo-lowpass odd coeffs., |e-lowpass even coeffs.

ho-highpass odd coeffs., he-highpass even coeffs.

Electrical & C ut
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SP Transforms

discrete Fourier transform DFT , = [exp (2k|i 71/ n)]
Walsh-Hadamard transform WHT ok = DFT, U.--UDFT,

DCT™,, =[cos(k(l +1/2)7/n)

discrete cosine and sine (av) _
Transiorms (16 types) DCT™, =[cos((k +1/2)(1 +1/2)7z/n)|

DST ), =[sin(kl 77/ n)|

modified discrete  \peT — [cos((k +(n+1)/2)(1 +1/2)n/ n)]

cosine transform nx2n

two-dimensional transform TOT

discrete wavelet transform  DTWT,, = (DTWT,,. 01, )13, (1. 0, W)

J

'

H
Others: filtering, Haar, Hartley, ...
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SPIRAL

ules = Breakdown Strategies
DCT " _ diag (11/~/2)CF,

DCTn(”) - P |:(DCTn(/HZ) D DCTn(/I\Z/))E(I n/2 D FZ)Q recursive

pDcT ) o smcT " D

DCT ™) - M, M,

DFT, - CosDFT, + j[BnDFT,

DFT, - B{DCT!) O DST{))[C

DFT,, - (DFT,O1,, )OI, 0DFT, )P
CosDFT, - ---CosDFT,,,---DCT) ---
SnDFT, - ---SnDFT,_,---DCT!} .-

n
WHT,, = [] (e o OWHT, L)
1=

MDCT ., — SIDCT ™) [P
DTWT,, = (DTWT,.. 01,0, ) L2 (1: 01, W)
H

base case

translation

iterative

recursive

recursive

recursive
recursive

recursive

iterative/
recursive

translation

({) Electrical & Computer
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lgorithms = Ruletrees = Formulas

DCT"
/\DCT”(”) - I:)mDC-I-n(/Hz) [ DCTn(/IX)) mFZ N In/2)
R1
DCT," DCT,™
A Re |DCTY) - PIDCT!"[B
pCT™ DCTV DCT""
R3 ‘ R6 R1
F2 DSTZ(”)
R4 DCT," DCT,™
|:2 R3 \ R6
Fz DSTZ(”)
1 R4
DCT!" o —[F
2 \/E 2 FZ

~—

Electrical & Computer

A ENGINEERING



~—

SPIRAL

TWT Ruletree — Example

/ / \\A\ADTWT-convolution rule

DTWT,»

— 71\

DTWT,,

filters

DTWT,

C(lo) C,,(Ie) C(ho) C(he) mEntl-1

J Overlap-add rule

Cy(le)
l Circulant rule
le,=1e padded with
b-1 zeroes
K(ley)
/ \fi rcular convolution rule
D|_—|-S-1 DFT, s=1/2+b-1

({) Electrical & Computer
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ormulafor a DCT, size 16

[(2,16,9,5,3)(4,15, 8,13, 7)(6, 14,10, 12, 11), 16] -
((1(2,8,5,3)(4,7), 8]-(([(2, 4, 3), ]((diag{l \/-I}-DFT'A}[I}{[{I 2), 2] Ryg, )[(12)2]).

{13®DFT }[i'“ A, 4]}'3}{(11&%{ amsl[ =) ! Erm[ S}’ ArnHE =) ! .EmH[ L *n]} {13®DFT }[[34 Al
10 00"
: e 1100 o
iz 1 R ML2220Y. . [(1.4)(2,3)4]3.
((DFTydiag(L, /3))@([(1, 2), 2 Rag, JODA){(2,3,4).4-| o 1 1 o | )
0o 11

(Li@DFTy) {35348 @3(((2,5,4,3,7,6,8), 8]-(1®(1@ ([(1, 2), 2]- Rz,)))-
{13 @'@'DFTJ@].;} {14 [Il'{[{] 2}1 ] Rl+ﬂ}m{[{1 2}1 ] Rlﬂ}} {11 @'@'DFT;@'
14) - (([(1,2),2] - Rag .} @ ([(1,2),2] - Rm ) @ ([(1,2),2]- R%ﬂ}m{[(hﬂlh 2] -
Rﬁ,ﬂ}} [(2,8)(4, ;3} g]}[il,ﬂlie T 13 6] EJ,H]}

{15 @ DFT. }[{a 16,9.5,3)(4,15,8,13,7)(6,14,10,12,11),16]
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elpful concept

DSP Transforms Formal Languages

DSP transform (of size) «—— Non-terminal symbol (with attribute)
Rule — Rule (production)

Formula/Algorithm < Element in Language (only terminals)

~—
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athematical Framework: Summary

= fast algorithms represented as ruletrees (easy generation/manipulation)
and as formulas (can be translated into code)

= formulas built from few constructs and primitives

= many different algorithms/formulas generated from few rules
(combinatorial explosion)

= these algorithms are (essentially) equal in arithmetic cost,
but differ in data flow

SPIRAL

Electrical & Comput
S € EREREERRE



@rganization

%
T

SPIRAL

Mathematical Framework
Transforms, Rules, and Formulas
Formula Generator

Transform - Algorithm

SPL and SPL Compiler

Algorithm - Implementation

Search Engine
How to find the best implementation

SPIRAL system
Everything taken together

Conclusions

O

Electrical & Computer

ENGINEERING



O r m u I a Gen eration data base (extensible!)

data type
Formula Generator
recursive
application runtime
rules | control| search engine f+ formula
translation
transforms » ruletrees » formulas » (spl compiler)
export
translation
cut here for other
= written in GAP/AREP (computer algebra system) | optimization problems

= all computation/manipulation is symbolic

= exact arithmetic

= easy extensible rule and transform data base
= verification of rules and formulas

Electrical & Comput
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ormulas in spL

( conpose

(
(
(

—~~ N

]

SPIRAL

di agonal ( 2*cos(1/16*pi) 2*cos(3/16*pi) 2*cos(5/16*pi) 2*cos(7/16*pi) ) )
pernmutation ( 1 342 ) )

t ensor

(1 2)

(F2)

pernmutation ( 142 3 ) )
di rect _sum
( conpose
(F2)
( diagonal ( 1 sqrt(1/2) ) )
)
( compose
( matrix
(110)
(0(-1) 1)

( diagonal ( cos(13/8*pi)-sin(13/8*pi) sin(13/8*pi) cos(13/8*pi)+sin(13/8*pi) ) )
( matrix

(10)

(11)

(01)
( permutation ( 2 1) )

({) Electrical & Computer
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SPIRAL

PL Syntax (Subset)

= matri x operations:
(conpose formula fornmula ...)
(tensor fornula fornula ...)
(direct_ sumfornula fornmula ...)
= direct matrix description:
(matrix (all al2 ...) (a2l a22 ...) ...)
(diagonal (dl1 d2 ...))
(permutation (pl p2 ...))
= paraneterized matri ces:

(1 n)
(F n)
= scal ars:
1.5, 2/7, cos(..), W(3), pi, 1.2e-04
= definition of new synbol s: . allows extension of SPL

(define nane formnul a)
(tenplate formula (i-code-1list)
= directives for code generation

#codet ype real / conpl ex _
#unrol | on/ of f . controls loop unrolling

({) Electrical & Computer
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PL compiler, 4-point FFT

fast algorithm

(conmpose (tensor (F 2) (1 2)) (T 4 2) as

(tensor (1 2) (F 2)) (L 4 2)) formula

SPL program

#codet ype

conpl ex
fo = x(1) + x(3) ro = x(1) + x(5)
fl = x(1) - x(3) ri = x(1) - x(5)
f2 = x(2) + x(4) r2 = x(2) + x(6)
f3 = x(2) - x(4) r3 = x(2) - x(6)
f4 = (0.00dO, -1.00d0)*f(3) r4 = x(3) + x(7)
y(l) =f0 + f2 r5 = x(3) - x(7)
y(2) =f0 - f2 ré = x(4) + x(8)
y(3) =f1 + f4 r7 = x(4) - x(8)
y(4) =f1- f4 y(1) =r0 +r4
y(2) =rl1 +r5
y(3) =10 - r4
y(4) =rl1 - r5
y(5) =r2 +r7
y(6) =r3 - rb6
y(7) =r2 - r7
y(8) =r1r3 +r6
‘iP[R.;\%I: ({ Electrical & Computer
ENGINEERING



PL Compiler: Summary

SPL Program
|

SPL Formula
Parsing

Symbol Definition] Template Definition

Abstract Syntax Tree - Symbol Table Template Table

T

SPIRAL

| ntermediate Code Gener ation
| ntermediate Code Restructuring

Optimization

Target Code Generation

C, FORTRAN function

Built-in optimizations:

» single static assignment code
* N0 reuse of temporary vars

* only scalar temporary vars

e constants precomputed

Extensible through templates

({) Electrical & Computer
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vector length =4

IMD short Vector Extensions / (4-way)

H B N H B BpON =

» Extension to instruction set architecture
» Available on most current architectures
(SSE on Pentium, AltiVec on Motorola G4)
» Originally for multimedia (like MMX for integers)
» Requires fine grain parallelism
= Large potential speed-up

Problems:

» SIMD instructions are architecture specific

* No common API (usually assembly hand coding)
* Performance very sensitive to memory access

= Automatic vectorization very limited

SPIRAL

Electrical & Comput
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SPIRAL

Naturally vectorizable construct

ADI,

vector length

(Current) generic construct completely vectorizable:

P,Q permutations

Kk
I_j PIDI(A [] Iu)EiQi D,E diagonals

A arbitrary formulas

\Y SIMD vector length

Vectorization in two steps:

1. Formula manipulation using manipulation rules
2. Code generation (vector code + C code)

({) Electrical & Computer
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umber of Formulas/Algorithms

k # DFT, size 2"k # DCT-IV, size 2"k
1 1 1
2 6 10
3 40 126
4 296 31242
5 27744 1924443362
6 162570361280 7343815121631354242
7 ~1.01« 10" 27 ~1.07 « 10" 38
8 ~2.31+ 1061 ~2.30+ 10"76
9 ~2.86 ¢« 101133 ~1.06 « 100153

- = differ in data flow not in arithmetic cost
= exponential search space

~—
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Ny Search?

1800

1600
1400
1200

DCT, type IV, size 16

1000
~31000 formulas

800

600

Number of Formulas

400

200

0
200 300 400 500 600 700
Formula Runtime (in nanoseconds)

« maaaany different formulas
 large spread in runtimes, even for modest size
* not due to arithmetic cost

Electrical & Comput
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SPIRAL

earch Methods Available in SPIRAL

Exhaustive Search

Dynamic Programming (DP)

Random Search

Hill Climbing
STEER (similar to a genetic algorithm)
Possible Formulas
Sizes Timed Results
Exhaust | Very small All Best
DP All 10s-100s (very) good
Random All User decided fair/good
Hill Climbing All 100s-1000s Good
STEER All 100s-1000s | (very) good

Search over

 algorithm space and

 implementation options (degree of unrollin

g) |
} Electrical & Computer
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TEER

Population n: , Mutation
/
/

/ ) : expand
7 Cross-Breeding differently

Population n+1:

\
\
\ swap
\ expansions
\
‘ m
\
\
1 \

\ Survival of Fittest

Electrical & Comput
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SPIRAL

CT Type IV Size 16

Formula runtime in nanoseconds

1000

8

8

3

g

Fastest Found Formulas

DP 1-Best STEER Exhaustive

Number of Formulas Timed

35000

31242

30000

25000

20000

15000

10000

Number of formulas timed

5000

423
0 ks e

DP 1-Best STEER Exhaustive

({) Electrical & Computer
ENGINEERING



SPIRAL

Xperimental Rresults

Runtime Divided by DP 1-Best

Runtime / DFT Runtime

search methods
(applicable to all transforms)

—%— DP1-Best ' '
—&— DP 1-Best Local Unrolling
——#—- DP 4-Best

1.15
——{3- DP 4-Best Local Unrolling
—l— STEER

- —B&— STEER Lecal Unrolling
--&-- Timed Search /
-

0.95

0a

0.85

SPIRAL/FFTW Runtimes

high performance code
(compared with FFTW)

2 T T !

& c c c c c

Al c c c c : oo % osun
: ; : : —— pdlinux [
—=— athlon
-+ p3linux |

different transforms

Electrical & Computer
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SPIRAL

ectorized code

normalized runtime

normalized runtime

WHT

5 I |
SPIRAL SIMD ——
e SPIRAL 3.1 --%--
X
3*_':.'I_‘.*:.—..—.*..-..—..—.*L--_x__-_*___*_..n*‘-'*-_-*
/ r
—
T

1 e
0
2'1 26 23 211] 212 214

transform size
2-dim DCT
1o | SPIRAL SIMD —— X
SPIRAL 3.1 --%-- -

10 promeeee _ﬁ __________ *____.':;===*"" """"""""" 1
8 ................................. —
,6 h\_ _________________________________ _|-
l ................................. —
2 ................................. —
90— P P

24 % 22 29 % 25 21w 24 25 % 2 26 26

transform size

normalized runtime

DFT

20
SPIRAL SIMD ——
SPIRAL 3.1 --%--
1% Tutel MKL 5.1 - - —
FFTW 2.1.3 -8~

wrae

0

94 96 28
transform size

211] 9 12

» speed-ups up to a factor of 2.5
» beats hand-tuned Intel MKL (< 1024)
» SIMD platforms supported

(Pentium Ill, SSE)
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SPIRAL

earning to Generate Fast Algorithms

e Learns from given dataset (formulas+runtimes) how to design a
fast algorithm (breakdown strategy)
e Learns from a transform of one size, generates the best algorithm

for many sizes

» Tested for DFT and WHT

Fast Formula Generation Results

Number of Generated Top N Fastest
Formulas Included the Known Formulas
Size | Generated | Fastest Known in Generated
212 101 yes 77
213 86 yes 4
214 101 yes 70
215 86 yes 11
216 101 yes 68
25 86 yes 15
018 101 yes 25
219 86 ves 16
220 101 yes 16

({) Electrical & Computer
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PIRAL syst user
ystem L

specifies oes for a coffee
DSP transform <«—-c<22_ B -- goes foracoffee |

controls
algorithm generation

A 4

Formula Generator

fast algorithm
as SPL formula

controls
implementation options

A 4

SPL Compiler |'

Search Engine

SPIRAL

C/Fortran/SIMD
code

(swuJojsue; |jews 10j ossaidsa ue 10)

runtime (performance)

v

comes back

platform-adapted
Implementation
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SPIRAL

New transforms are readily included on the high level

(easy, due to SPIRAL’s framework)

New constructs and primitives (potentially required by radically
different transforms) are readily included in SPL

(moderate effort, due to template mechanism)

New instructions sets available (e.g., SSE) are included by
extending the SPL compiler

(doable one time effort)

({) Electrical & Computer
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PIRAL system: Summary

= Available for download: ww. ece. cnu. edu/ ~spi r al
» Easy installation (Unix: configure/make; Windows: install shield)
= Unix/Linux and Windows 98/ME/NT/2000/XP
» Current transforms: DFT, DHT, WHT, DCT/DST type | — IV,
MDCT, Filters, Wavelets, Toeplitz, Circulants

= Extensible

SPIRAL

Electrical & Comput
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onclusions

Closing the gap between math domain (algorithms) and
implementation domain (programs)

= Mathematical computer representation of algorithms

= Automatic translation of algorithms into code

Optimization as intelligent search/learning in the space of
alternatives

= High level: Mathematical manipulation of algorithms

= Low level: Coding degrees of freedom

e
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