
SPIRAL: SPIRAL: Tuning DSP Transforms to Tuning DSP Transforms to
Computing PlatformsComputing Platforms

• Jeremy Johnson (Drexel)
• Robert Johnson (MathStar Inc.)
• David Padua (UIUC)
• Viktor Prasanna (USC)
• Markus Püschel (CMU)
• Manuela Veloso (CMU)

• Franz Franchetti (TU Vienna)
• Gavin Haentjens (CMU)
• Pinit Kumhom (Drexel)
• Neungsoo Park (USC)
• David Sepiashvili (CMU)
• Bryan Singer (CMU)
• Yevgen Voronenko (Drexel)
• Jianxin Xiong (UIUC)

Faculty Students

http://www.ece.cmu.edu/~spiral

José M. F. Moura

SponsorSponsor

Work supported by DARPA (DSO), Applied & Computational

Mathematics Program, OPAL, through grant managed by

research grant DABT63-98-1-0004 administered by the Army

Directorate of Contracting.

Moore’s Moore’s Law and High(Law and High(estest)) Performance Performance
Scientific ComputingScientific Computing

arithmetic cost model not accurate for predicting runtime
(one cache miss = 10 floating point ops)
better performance models hard to get
best code is machine dependent (registers/caches size, structure)
hand-tuned code becomes obsolete as fast as it is written
compiler limitations
full performance requires (in part) assembly coding

Moore’s Law: processor-memory bottleneck
short life cycles of computers
very complex architectures

• vendor specific
• special instructions (MMX, SSE, FMA, …)
• undocumented features

(single processor, off-the-shelf)

Effects on software/algorithms:

Portable performance requires automation

AutomaticAutomatic Performance Tuning: ResearchPerformance Tuning: Research

Linear Algebra:
ATLAS (J. Dongarra et al.)
LAPACK
PhiPACK (J. Demmel et al.)

Signal Processing:
FFTW (M. Frigo and S. Johnson)
SPIRAL

SPIRALSPIRAL
Automates

cuts development costs
code less error-prone

takes advantage of architecture specific features
porting without loss of performance

systematic exploration of alternatives both at
algorithmic and code level

are performance critical

Implementation

Platform-Adaptation

Optimization

of DSP algorithms

A library generator for highly optimized
signal processing algorithms

SPIRALSPIRAL ApproachApproach

DSP Transform
(DFT, DCT, Wavelets etc.)

Computing Platform

given

given

Possible
Implementations

Performance
Evaluation

In
te

lli
g

en
t

S
ea

rc
hPossible

Algorithms

S
P

IR
A

L
 S

ea
rc

h
 S

p
ac

e

(Pentium III, Pentium 4, Athlon,
SUN, PowerPC, Alpha, …)

adapted
implementation

OrganizationOrganization

Mathematical Framework

Formula Generator

SPL and SPL Compiler

Search Engine

SPIRAL system

Conclusions

Transforms, Rules, and Formulas

Transform → Algorithm

Algorithm → Implementation

How to find the best implementation

Everything taken together

DSPDSP Algorithms: Example 4Algorithms: Example 4--point DFTpoint DFT

Cooley/Tukey FFT (size 4):

product of structured sparse matrices
mathematical notation

−

−

−
−

=

−−
−−
−−

1000

0010

0100

0001

1100

1100

0011

0011

000

0100

0010

0001

1010

0101

1010

0101

11

1111

11

1111

iii

ii

4
222

4
2224)()(LDFTITIDFTDFT ⋅⊗⋅⋅⊗=

Fourier transform

Identity Permutation

Diagonal matrix (twiddles)

Kronecker product

DSPDSP Algorithms: TerminologyAlgorithms: Terminology

Transform

Rule

Formula

() () PDFTIDIDFTDFT mnmnnm ⋅⊗⋅⋅⊗→

() ()() PFIIDIFDFT ⋅⊗⊗⋅⋅⊗= 222428

parameterized matrix

• a breakdown strategy
• product of sparse matrices

• recursive application of rules
• uniquely defines an algorithm
• efficient representation
• easy manipulation

nDFT

Ruletree 8DFT

2DFT 4DFT

2DFT 2DFT

• few constructs and primitives
• uniquely defines an algorithm
• can be translated into code

DFT is symmetric ⇒ transpose the rule:

CT rule transposed

Commuting tensor product factors
A and B square size m and n

Commutation property ⇒ further variations

Different patterns for access, storage and flow of data

()mn mn

n mB A L A B L⊗ = ⊗

() ()
() ()

RS RS RS RS

N S S R R S R S R

RS RS

N R S S S S R

F L I F L T I F L

F F I T L F I

= ⊗ ⊗

= ⊗ ⊗

() ()RS RS

RS S R S S R SF L I F T F I= ⊗ ⊗

() ()
0 0

1 1
2 2 2 2

2 2

3 3

1 0 1 0 1 1 0 0
0 1 0 1 1 1 0 0
1 0 1 0 0 0 1 1
0 1 0 1 0 0 1 1

x x
x xxF I I Fx x
x x

−
−

− −

 = =⊗ ⊗

MoreMore CooleyCooley--Tukey RulesTukey Rules

Haar wavelets = square waves

First stage: V2 ⇒V1⊕W1

The process is repeated for the upper half of the output

11 1

2 2
[1, 1], [1, 1]h h= = −

()4 4

2 2 2 2
1

2
1

1 1 0 0 1 1 0 0

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

0 0 1 1 0 0 1 1

H L L I F
c

H c
d

−
−

− −

= = ⊗

 = =

() ()1 1 1 1

2

2 2 22 2 2 22
,

n

n n n nn

H

HTHT I L I F HT F− − − −= ⊕ ⊗ =

HaarHaar Wavelets Wavelets –– ExampleExample

DiscreteDiscrete--TimeTime Wavelet TransformWavelet Transform
Discrete-Time Wavelet Transform (DTWT) rule

Scaling (lowpass) and wavelet (highpass) filter coefficients

DTWT - convolution rule

() ()
H

Wl

n

n 22

2

2222 1-n1-1-n1-nn ILIDTWTDTWT −⊗⊕=

[]() () ()()(
[]() () ()())

⊗

⋅⋅⊕⋅⊗

⊕⋅⊕⋅⊗=

n
n

mmm

n
mmm

heChoC

leCloCH

I
1

1
LI11

LI11

2
T

2/
T

2/2/

2
T

2/
T

2/2/

′′′

=
−

−

110

110

l

l

hhh

hhh
W

lo-lowpass odd coeffs., le-lowpass even coeffs.

ho-highpass odd coeffs., he-highpass even coeffs.

DSPDSP TransformsTransforms

()[]nkliDFT n /2exp π=

222 DFTDFTWHT k ⊗⊗=

()()[]nlkDCT n
II /2/1cos)(π+=

()()[]nlkDCT n
IV /)2/1(2/1cos)(π++=

()[]nklDST n
I /sin)(π=

()[]nlnkMDCT nn /)2/1)(2/)1((cos2 π+++=×

Others: filtering, Haar, Hartley, …

discrete Fourier transform

Walsh-Hadamard transform

discrete cosine and sine
Transforms (16 types)

modified discrete
cosine transform

TT ⊗two-dimensional transform

() ()
H

Wl

n

n 22

2

2222 1-n1-1-n1-nn ILIDTWTDTWT −⊗⊕=discrete wavelet transform

RulesRules = Breakdown Strategies= Breakdown Strategies

() ()Q
n

IV
n

II
n

II
n FIDCTDCTPDCT 22/

)(
2/

)(
2/

)(⊗⋅⊕⋅→

DDCTSDCT II
n

IV
n ⋅⋅→)()(

() 2
)(

2 2/1,1 FdiagDCT II ⋅→

r
IV

n MMDCT 1
)(→

1 1 12 2 2 2
1

()n n n n n ni i i t

n

i

WHT I WHT I+ + + +− +

=
→ ⊗ ⊗∏ … …

nnn SinDFTjCosDFTDFT ⋅+→

)(
4/2/

II
nnn DCTCosDFTCosDFT →

)(
4/2/

II
nnn DCTSinDFTSinDFT →

() () PDFTIDIDFTDFT mnmnnm ⋅⊗⋅⋅⊗→

CDSTDCTBDFT I
n

I
nn ⋅⊕⋅→)()(

2/
)(
2/

PDCTSMDCT IV
nnn ⋅⋅→×

)(
2

base case

recursive

translation

iterative

recursive

recursive

recursive

recursive

recursive

translation

iterative/
recursive

() ()
H

Wl

n

n 22

2

2222 1-n1-1-n1-nn ILIDTWTDTWT −⊗⊕=

AlgorithmsAlgorithms = Ruletrees = Formulas= Ruletrees = Formulas
)(

8
IIDCT

)(
4

IIDCT
)(

4
IVDCT

R1
)()(2/2

)(
2/

)(
2/

)(
n

IV
n

II
n

II
n IFDCTDCTPDCT ⊗⋅⊕⋅→

2F
R3 R6

2F
R4

R3

R1

R6

2F

2F
R4

2
)(

2
2

1
FDCT II ⋅→

)(
2

IIDCT

)(
2

IIDST

)(
2

IVDCT

)(
2

IIDST

)(
2

IIDCT

R1
R6 SDCTPDCT II

n
IV

n ⋅⋅→)()(

)(
4

IIDCT)(
2

IVDCT

DTWTDTWT Ruletree Ruletree –– ExampleExample

DTWTn

DTWTn/2 C(lo) Cm/2(le) C(ho) C(he)

DTWT-convolution rule

DTWTn/4
filters

Overlap-add rule

Cb(le)

Circulant rule

K(le0)

Circular convolution rule

1DFT−
s sDFT

m=n+l-1

le0=le padded with
b-1 zeroes

s=l/2+b-1

FormulaFormula for a DCT, size 16for a DCT, size 16

HelpfulHelpful ConceptConcept

DSP Transforms Formal Languages

DSP transform (of size)

Rule

Formula/Algorithm

Non-terminal symbol (with attribute)

Rule (production)

Element in Language (only terminals)

MathematicalMathematical Framework: SummaryFramework: Summary

fast algorithms represented as ruletrees (easy generation/manipulation)
and as formulas (can be translated into code)

formulas built from few constructs and primitives

many different algorithms/formulas generated from few rules
(combinatorial explosion)

these algorithms are (essentially) equal in arithmetic cost,
but differ in data flow

OrganizationOrganization

Mathematical Framework

Formula Generator

SPL and SPL Compiler

Search Engine

SPIRAL system

Conclusions

Transforms, Rules, and Formulas

Transform → Algorithm

Algorithm → Implementation

How to find the best implementation

Everything taken together

FormulaFormula GenerationGeneration

recursive
application

Formula Generator

data base (extensible!)

data type

rules control

transforms formulasruletrees

translation

search engine formula
translation

(spl compiler)
export

runtime

written in GAP/AREP (computer algebra system)

all computation/manipulation is symbolic

exact arithmetic

easy extensible rule and transform data base

verification of rules and formulas

cut here for other
optimization problems

OrganizationOrganization

Mathematical Framework

Formula Generator

SPL and SPL Compiler

Search Engine

SPIRAL system

Conclusions

Transforms, Rules, and Formulas

Transform → Algorithm

Algorithm → Implementation

How to find the best implementation

Everything taken together

FormulasFormulas in SPLin SPL

(compose
(diagonal (2*cos(1/16*pi) 2*cos(3/16*pi) 2*cos(5/16*pi) 2*cos(7/16*pi)))
(permutation (1 3 4 2))
(tensor

(I 2)
(F 2)

)
(permutation (1 4 2 3))
(direct_sum

(compose
(F 2)
(diagonal (1 sqrt(1/2)))

)
(compose

(matrix
(1 1 0)
(0 (-1) 1)

)
(diagonal (cos(13/8*pi)-sin(13/8*pi) sin(13/8*pi) cos(13/8*pi)+sin(13/8*pi)))
(matrix
(1 0)
(1 1)
(0 1)

)
(permutation (2 1))

• • • •

• • • •

SPLSPL Syntax (Subset)Syntax (Subset)
matrix operations:

(compose formula formula ...)
(tensor formula formula ...)
(direct_sum formula formula ...)

direct matrix description:
(matrix (a11 a12 ...) (a21 a22 ...) ...)
(diagonal (d1 d2 ...))
(permutation (p1 p2 ...))

parameterized matrices:
(I n)
(F n)

scalars:
1.5, 2/7, cos(..), w(3), pi, 1.2e-04

definition of new symbols:
(define name formula)
(template formula (i-code-list)

directives for code generation
#codetype real/complex
#unroll on/off

allows extension of SPL

controls loop unrolling

SPLSPL Compiler, 4Compiler, 4--point FFTpoint FFT

(compose (tensor (F 2) (I 2)) (T 4 2)
(tensor (I 2) (F 2)) (L 4 2))

f0 = x(1) + x(3)
f1 = x(1) - x(3)
f2 = x(2) + x(4)
f3 = x(2) - x(4)
f4 = (0.00d0,-1.00d0)*f(3)
y(1) = f0 + f2
y(2) = f0 - f2
y(3) = f1 + f4
y(4) = f1 - f4

r0 = x(1) + x(5)
r1 = x(1) - x(5)
r2 = x(2) + x(6)
r3 = x(2) - x(6)
r4 = x(3) + x(7)
r5 = x(3) - x(7)
r6 = x(4) + x(8)
r7 = x(4) - x(8)
y(1) = r0 + r4
y(2) = r1 + r5
y(3) = r0 - r4
y(4) = r1 - r5
y(5) = r2 + r7
y(6) = r3 - r6
y(7) = r2 - r7
y(8) = r3 + r6

fast algorithm
as

formula
as

SPL program
#codetype

complex real

SPLSPL Compiler: SummaryCompiler: Summary

Parsing

Intermediate Code Generation

Intermediate Code Restructuring

Target Code Generation

Symbol Table Abstract Syntax Tree

I-Code

I-Code

C, FORTRAN function

Template Table

SPL Formula Template DefinitionSymbol Definition

Optimization
I-Code

SPL Program

Built-in optimizations:

• single static assignment code
• no reuse of temporary vars
• only scalar temporary vars
• constants precomputed

Extensible through templates

SIMDSIMD Short Vector ExtensionsShort Vector Extensions

+ x

vector length = 4
(4-way)

Extension to instruction set architecture
Available on most current architectures
(SSE on Pentium, AltiVec on Motorola G4)
Originally for multimedia (like MMX for integers)
Requires fine grain parallelism
Large potential speed-up

SIMD instructions are architecture specific
No common API (usually assembly hand coding)
Performance very sensitive to memory access
Automatic vectorization very limited

Problems:

Vector Vector Code Generation from SPL FormulasCode Generation from SPL Formulas

Naturally vectorizable construct

A

x y

4IA ⊗
vector length

iiii

k

i
i QEIADP)(

1
υ⊗∏

=

Pi, Qi permutations
Di, Ei diagonals
Ai arbitrary formulas
ν SIMD vector length

(Current) generic construct completely vectorizable:

Vectorization in two steps:

1. Formula manipulation using manipulation rules
2. Code generation (vector code + C code)

OrganizationOrganization

Mathematical Framework

Formula Generator

SPL and SPL Compiler

Search Engine

SPIRAL system

Conclusions

Transforms, Rules, and Formulas

Transform → Algorithm

Algorithm → Implementation

How to find the best implementation

Everything taken together

NumberNumber of Formulas/Algorithmsof Formulas/Algorithms

k

1
2
3
4
5
6
7
8
9

DFT, size 2^k

1
6

40
296

27744
162570361280
~1.01 • 10^27
~2.31 • 10^61

~2.86 • 10^133

DCT-IV, size 2^k

1
10

126
31242

1924443362
7343815121631354242

~1.07 • 10^38
~2.30 • 10^76

~1.06 • 10^153

differ in data flow not in arithmetic cost
exponential search space

WhyWhy Search?Search?

DCT, type IV, size 16

• maaaany different formulas
• large spread in runtimes, even for modest size
• not due to arithmetic cost

~31000 formulas

SearchSearch Methods Available in SPIRALMethods Available in SPIRAL

Exhaustive Search
Dynamic Programming (DP)
Random Search
Hill Climbing
STEER (similar to a genetic algorithm)

Good100s-1000sAllHill Climbing

(very) good100s-1000sAllSTEER

fair/goodUser decidedAllRandom

(very) good10s-100sAll DP

BestAllVery smallExhaust

ResultsTimedSizes
FormulasPossible

Search over
• algorithm space and
• implementation options (degree of unrolling)

STEERSTEER
Population n:

Population n+1:

……

……

Mutation

Cross-Breeding expand
differently

swap
expansions

Survival of Fittest

DCTDCT Type IV Size 16Type IV Size 16

Fastest Found Formulas Number of Formulas Timed

Experimental Experimental ResultsResults

high performance code
(compared with FFTW)

different transforms

search methods
(applicable to all transforms)

VectorizedVectorized CodeCode
n

o
rm

al
iz

ed
 r

u
n

ti
m

e
n

o
rm

al
iz

ed
 r

u
n

ti
m

e

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

transform size

transform size

transform size

2-dim DCT

WHT DFT

speed-ups up to a factor of 2.5
beats hand-tuned Intel MKL (< 1024)
SIMD platforms supported

(Pentium III, SSE)

LearningLearning to Generate Fast Algorithmsto Generate Fast Algorithms

• Learns from given dataset (formulas+runtimes) how to design a
fast algorithm (breakdown strategy)
• Learns from a transform of one size, generates the best algorithm
for many sizes
• Tested for DFT and WHT

OrganizationOrganization

Mathematical Framework

Formula Generator

SPL and SPL Compiler

Search Engine

SPIRAL system

Conclusions

Transforms, Rules, and Formulas

Transform → Algorithm

Algorithm → Implementation

How to find the best implementation

Everything taken together

SPIRAL SPIRAL SystemSystem

DSP transform
specifies

user

goes for a coffee

Formula Generator

SPL Compiler S
ea

rc
h

 E
n

g
in

e

runtime (performance)

controls
implementation options

controls
algorithm generation

fast algorithm
as SPL formula

C/Fortran/SIMD
codeS
 P

 I
R

 A
 L

(o
r an

 esp
resso

 fo
r sm

all tran
sfo

rm
s)

platform-adapted
implementation

comes back

ExtensibilityExtensibility of SPIRALof SPIRAL

New constructs and primitives (potentially required by radically
different transforms) are readily included in SPL

New transforms are readily included on the high level

New instructions sets available (e.g., SSE) are included by
extending the SPL compiler

(easy, due to SPIRAL’s framework)

(moderate effort, due to template mechanism)

(doable one time effort)

SPIRALSPIRAL System: SummarySystem: Summary

Available for download: www.ece.cmu.edu/~spiral

Easy installation (Unix: configure/make; Windows: install shield)

Unix/Linux and Windows 98/ME/NT/2000/XP

Current transforms: DFT, DHT, WHT, DCT/DST type I – IV,

MDCT, Filters, Wavelets, Toeplitz, Circulants

Extensible

OrganizationOrganization

Mathematical Framework

Formula Generator

SPL and SPL Compiler

Search Engine

SPIRAL system

Conclusions

Transforms, Rules, and Formulas

Transform → Algorithm

Algorithm → Implementation

How to find the best implementation

Everything taken together

ConclusionsConclusions

Mathematical computer representation of algorithms

Automatic translation of algorithms into code

Closing the gap between math domain (algorithms) and
implementation domain (programs)

High level: Mathematical manipulation of algorithms

Low level: Coding degrees of freedom

Optimization as intelligent search/learning in the space of
alternatives

