SPIRAL: Tuning DSP Transforms to Computing Platforms

José M. F. Moura

Faculty

- Jeremy Johnson (Drexel)
- Robert Johnson (MathStar Inc.)
- David Padua (UIUC)
- Viktor Prasanna (USC)
- Markus Püschel (CMU)
- Manuela Veloso (CMU)

Students

- Franz Franchetti (TU Vienna)
- Gavin Haentjens (CMU)
- Pinit Kumhom (Drexel)
- Neungsoo Park (USC)
- David Sepiashvili (CMU)
- Bryan Singer (CMU)
- Yevgen Voronenko (Drexel)
- Jianxin Xiong (UIUC)

SPIRAL

http://www.ece.cmu.edu/~spiral

Sponsor

Work supported by DARPA (DSO), Applied & Computational Mathematics Program, OPAL, through grant managed by research grant DABT63-98-1-0004 administered by the Army Directorate of Contracting.

MOORE'S Law and High(est) Performance Scientific Computing

(single processor, off-the-shelf)

- Moore's Law: > processor-memory bottleneck
 - Short life cycles of computers
 - very complex architectures
 - vendor specific
 - special instructions (MMX, SSE, FMA, ...)
 - undocumented features

Effects on software/algorithms:

- > arithmetic cost model not accurate for predicting runtime (one cache miss = 10 floating point ops)
- better performance models hard to get
- best code is machine dependent (registers/caches size, structure)
- hand-tuned code becomes obsolete as fast as it is written
- compiler limitations
- Full performance requires (in part) assembly coding

Portable performance requires automation

Automatic Performance Tuning: Research

Linear Algebra: > ATLAS (J. Dongarra et al.) > LAPACK > PhiPACK (J. Demmel et al.)

Signal Processing:

FFTW (M. Frigo and S. Johnson)
SPIRAL

Automates

Implementation

- cuts development costs
- > code less error-prone

Optimization

> systematic exploration of alternatives both at algorithmic and code level

Platform-Adaptation

takes advantage of architecture specific features
porting without loss of performance

of DSP algorithms

> are performance critical

A library generator for highly optimized signal processing algorithms

CornegieMellon

Organization

Mathematical Framework

Transforms, Rules, and Formulas

Formula Generator

 $Transform \rightarrow Algorithm$

SPL and SPL Compiler

 $\textbf{Algorithm} \rightarrow \textbf{Implementation}$

Search Engine

How to find the best implementation

SPIRAL system

Everything taken together

Conclusions

DSP Algorithms: Example 4-point DFT

Cooley/Tukey FFT (size 4):

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Fourier transformDiagonal matrix (twiddles)II $DFT_4 = (DFT_2 \otimes I_2) \cdot T_2^4 \cdot (I_2 \otimes DFT_2) \cdot L_2^4$ III</

product of structured sparse matrices
 mathematical notation

DSP Algorithms: Terminology

Transform DFT_n parameterized matrix

Rule

$$DFT_{nm} \rightarrow (DFT_n \otimes I_m) \cdot D \cdot (I_n \otimes DFT_m) \cdot P$$

- a breakdown strategy
- product of sparse matrices

Ruletree

- recursive application of rules
- uniquely defines an algorithm
- efficient representation
- easy manipulation

Formula

$$DFT_8 = (F_2 \otimes I_4) \cdot D \cdot (I_2 \otimes (I_2 \otimes F_2 \cdots)) \cdot P$$

- few constructs and primitives
- uniquely defines an algorithm
- can be translated into code

MOre Cooley-Tukey Rules

DFT is symmetric \Rightarrow transpose the rule:

 $F_{RS} = L_{S}^{RS} \left(I_{R} \otimes F_{S} \right) T_{S}^{RS} \left(F_{R} \otimes I_{S} \right) \quad \text{CT rule transposed}$ Commuting tensor product factors $B \otimes A = L_{n}^{mn} \left(A \otimes B \right) L_{m}^{mn} \quad A \text{ and } B \text{ square size } m \text{ and } n$ Commutation property \Rightarrow further variations $F_{N} = L_{S}^{RS} \left(I_{S} \otimes F_{R} \right) L_{R}^{RS} T_{S}^{RS} \left(I_{R} \otimes F_{S} \right) L_{R}^{RS}$ $F_{N} = \left(F_{R} \otimes I_{S} \right) T_{S}^{RS} L_{S}^{RS} \left(F_{S} \otimes I_{R} \right)$ $\left(F_{2} \otimes I_{2} \right) x = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{2} \end{bmatrix} \quad \left(I_{2} \otimes F_{2} \right) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{2} \end{bmatrix}$

Different patterns for access, storage and flow of data

Haar Wavelets – Example

Discrete-Time Wavelet Transform

Discrete-Time Wavelet Transform (DTWT) rule

$$DTWT_{2^{n}} = \left(DTWT_{2^{n-1}} \oplus I_{2^{n-1}}\right) \underbrace{L_{2^{n-1}}^{2^{n}} \left(I_{2^{n-1}} \otimes_{l-2} W\right)}_{H}$$

Scaling (lowpass) and wavelet (highpass) filter coefficients

$$W = \begin{bmatrix} h_0 & h_1 & \cdots & h_{l-1} \\ h'_0 & h'_1 & \cdots & h'_{l-1} \end{bmatrix}$$

DTWT - convolution rule $H = ((\begin{bmatrix} 1 & 1 \end{bmatrix} \otimes \mathbf{I}_{m/2}) \cdot (C_{m/2}^{\mathrm{T}}(\underline{lo}) \oplus C_{m/2}^{\mathrm{T}}(\underline{le})) \cdot \mathbf{L}_{2}^{n} \oplus (\begin{bmatrix} 1 & 1 \end{bmatrix} \otimes \mathbf{I}_{m/2}) \cdot (C_{m/2}^{\mathrm{T}}(\underline{ho}) \oplus C_{m/2}^{\mathrm{T}}(\underline{he})) \cdot \mathbf{L}_{2}^{n}) \cdot (\begin{bmatrix} 1 \\ 1 \end{bmatrix} \otimes \mathbf{I}_{n})$

<u>lo</u>-lowpass odd coeffs., <u>le</u>-lowpass even coeffs. *ho*-highpass odd coeffs., *he*-highpass even coeffs.

DSP Transforms

discrete Fourier transform

Walsh-Hadamard transform

discrete cosine and sine Transforms (16 types)

modified discrete

cosine transform

two-dimensional transform

discrete wavelet transform

Others: filtering, Haar, Hartley, ...

 $DFT_n = \left[\exp\left(2kli\pi/n\right) \right]$ WHT $_{2^k} = DFT_2 \otimes \cdots \otimes DFT_2$ $DCT^{(II)}_{n} = \left[\cos(k(l+1/2)\pi/n)\right]$ $DCT^{(IV)}_{n} = \left[\cos((k+1/2)(l+1/2)\pi/n)\right]$ $DST^{(I)}_{n} = \left[\sin\left(kl\pi/n\right)\right]$ $MDCT_{n \times 2n} = \left[\cos \left((k + (n+1)/2)(l + 1/2)\pi / n \right) \right]$ $T \otimes T$ $DTWT_{2^{n}} = (DTWT_{2^{n-1}} \oplus I_{2^{n-1}}) \underbrace{L_{2^{n-1}}^{2^{n}} (I_{2^{n-1}} \otimes_{l-2} W)}_{=}$

Rules = Breakdown Strategies

 $DCT_{2}^{(II)} \rightarrow diag\left(1, 1/\sqrt{2}\right) \cdot F_{2}$ $DCT_{n}^{(II)} \to P \cdot \left(DCT_{n/2}^{(II)} \oplus DCT_{n/2}^{(IV)} \right) \cdot \left(I_{n/2} \otimes F_{2} \right)^{Q}$ $DCT_{n}^{(IV)} \rightarrow S \cdot DCT_{n}^{(II)} \cdot D$ $DCT_{n}^{(IV)} \to M_{1} \cdots M_{r}$ $DFT_n \rightarrow CosDFT_n + j \cdot SinDFT_n$ $DFT_n \rightarrow B \cdot (DCT_{n/2}^{(I)} \oplus DST_{n/2}^{(I)}) \cdot C$ $DFT_{nm} \rightarrow (DFT_n \otimes I_m) \cdot D \cdot (I_n \otimes DFT_m) \cdot P$ $CosDFT_n \rightarrow \cdots CosDFT_{n/2} \cdots DCT_{n/A}^{(II)} \cdots$ $SinDFT_n \rightarrow \cdots SinDFT_{n/2} \cdots DCT_{n/4}^{(II)} \cdots$ $WHT_{2^n} \to \prod (I_{2^{n_1+\ldots+n_{i-1}}} \otimes WHT_{2^{n_i}} \otimes I_{2^{n_{i+1}+\ldots+n_t}})$ $MDCT_{n\times 2n} \to S \cdot DCT_{n}^{(IV)} \cdot P$ $DTWT_{2^{n}} = (DTWT_{2^{n-1}} \oplus I_{2^{n-1}}) L_{2^{n-1}}^{2^{n}} (I_{2^{n-1}} \otimes_{l-2} W)$

Algorithms = Ruletrees = Formulas

SPIRAL

Formula for a DCT, size 16

$$\begin{split} & [(2,16,9,5,3)(4,15,8,13,7)(6,14,10,12,11),16] \cdot \\ & (([(2,8,5,3)(4,7),8] \cdot (([(2,4,3),4] \cdot ((\operatorname{diag}(1,\sqrt{\frac{1}{2}}) \cdot \operatorname{DFT}_2) \oplus ([(1,2),2] \cdot \operatorname{R}_{\frac{13}{8}\pi})^{[(1,2),2]}) \cdot \\ & (\mathbf{1}_2 \otimes \operatorname{DFT}_2)^{[(2,4,3),4]}) \oplus (\operatorname{diag}(\frac{1}{2\cos(\frac{1}{16}\pi)}, \frac{1}{2\cos(\frac{3}{16}\pi)}, \frac{1}{2\cos(\frac{5}{16}\pi)}, \frac{1}{2\cos(\frac{7}{16}\pi)}) \cdot (\mathbf{1}_2 \otimes \operatorname{DFT}_2)^{[(2,4,3),4]} \cdot \\ & ((\operatorname{DFT}_2 \cdot \operatorname{diag}(1,\sqrt{\frac{1}{2}})) \oplus ([(1,2),2] \cdot \operatorname{R}_{\frac{13}{8}\pi})^{[(1,2),2]}) \cdot [(2,3,4),4] \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix})^{[(1,4)(2,3),4]} \cdot \\ & (\mathbf{1}_4 \otimes \operatorname{DFT}_2)^{[(2,8,5,3)(4,7),8]}) \oplus ([(2,5,4,3,7,6,8),8] \cdot (\mathbf{1}_2 \otimes (\mathbf{1}_2 \oplus ([(1,2),2] \cdot \operatorname{R}_{\frac{7}{4}\pi}))) \cdot \\ & (\mathbf{1}_2 \otimes \operatorname{DFT}_2 \otimes \mathbf{1}_2) \cdot (\mathbf{1}_4 \oplus ([(1,2),2] \cdot \operatorname{R}_{\frac{13}{8}\pi}) \oplus ([(1,2),2] \cdot \operatorname{R}_{\frac{13}{8}\pi})) \cdot (\mathbf{1}_1 \otimes \operatorname{DFT}_2 \otimes \\ & \mathbf{1}_4) \cdot (([(1,2),2] \cdot \operatorname{R}_{\frac{49}{32}\pi}) \oplus ([(1,2),2] \cdot \operatorname{R}_{\frac{59}{32}\pi}) \oplus ([(1,2),2] \cdot \operatorname{R}_{\frac{57}{32}\pi}) \oplus ([(1,2),2] \cdot \\ & \operatorname{R}_{\frac{61}{32}\pi})) \cdot [(2,8)(4,6),8])^{[(1,8)(2,7)(3,6)(4,5),8]}) \cdot \\ & (\mathbf{1}_8 \otimes \operatorname{DFT}_2)^{[(2,16,9,5,3)(4,15,8,13,7)(6,14,10,12,11),16]} \end{split}$$

Helpful Concept

DSP Transforms

Formal Languages

DSP transform (of size)	←→	Non-terminal symbol (with attribute)
Rule	\longleftrightarrow	Rule (production)
Formula/Algorithm	← →	Element in Language (only terminals)

Mathematical Framework: Summary

- fast algorithms represented as ruletrees (easy generation/manipulation) and as formulas (can be translated into code)
- formulas built from few constructs and primitives
- many different algorithms/formulas generated from few rules (combinatorial explosion)
- these algorithms are (essentially) equal in arithmetic cost, but differ in data flow

Organization

Mathematical Framework

Transforms, Rules, and Formulas

Formula Generator

Transform \rightarrow **Algorithm**

SPL and SPL Compiler

Algorithm \rightarrow Implementation

Search Engine

How to find the best implementation

SPIRAL system

Everything taken together

Conclusions

Organization

Mathematical Framework

Transforms, Rules, and Formulas

Formula Generator

 $Transform \rightarrow Algorithm$

SPL and SPL Compiler

Algorithm \rightarrow Implementation

Search Engine

How to find the best implementation

SPIRAL system

Everything taken together

Conclusions

Formulas in SPL

. . . .

```
( compose
    (diagonal (2*cos(1/16*pi) 2*cos(3/16*pi) 2*cos(5/16*pi) 2*cos(7/16*pi)))
    ( permutation (1342) )
    ( tensor
      (I2)
      (F2)
    )
    ( permutation (1423) )
    ( direct sum
      ( compose
        (F2)
        ( diagonal ( 1 sqrt(1/2) ) )
      )
      ( compose
        ( matrix
         (110)
         (0(-1)1)
        )
        (diagonal (cos(13/8*pi)-sin(13/8*pi) sin(13/8*pi) cos(13/8*pi)+sin(13/8*pi)))
        ( matrix
         (10)
         (11)
          (01)
        )
        (permutation (21))
```


SPL Syntax (Subset)

SPIRAL

```
matrix operations:
   (compose formula formula ...)
   (tensor formula formula ...)
   (direct sum formula formula ...)
direct matrix description:
   (matrix (all al2 ...) (a21 a22 ...) ...)
   (diagonal (d1 d2 ...))
   (permutation (p1 p2 ...))
parameterized matrices:
   (I n)
   (F n)
scalars:
   1.5, 2/7, cos(...), w(3), pi, 1.2e-04
(define name formula)
   (template formula (i-code-list)
directives for code generation
   #codetype real/complex
                                   controls loop unrolling
   #unroll on/off
```


- Extension to instruction set architecture
- Available on most current architectures (SSE on Pentium, AltiVec on Motorola G4)
- Originally for multimedia (like MMX for integers)
- Requires fine grain parallelism
- Large potential speed-up

Problems:

- SIMD instructions are architecture specific
- No common API (usually assembly hand coding)
- Performance very sensitive to memory access
- Automatic vectorization very limited

Vector Code Generation from SPL Formulas

Naturally vectorizable construct

(Current) generic construct completely vectorizable:

 $\prod_{i=1}^{k} P_i D_i (A_i \otimes I_v) E_i Q_i$ $\begin{array}{ccc} P_i, Q_i & \text{permutations} \\ D_i, E_i & \text{diagonals} \\ A_i & \text{arbitrary formulas} \\ v & \text{SIMD vector length} \end{array}$

Vectorization in two steps:

- 1. Formula manipulation using manipulation rules
- 2. Code generation (vector code + C code)

Organization

Mathematical Framework

Transforms, Rules, and Formulas

Formula Generator

 $Transform \rightarrow Algorithm$

SPL and SPL Compiler

Algorithm \rightarrow Implementation

Search Engine

How to find the best implementation

SPIRAL system

Everything taken together

Conclusions

Number of Formulas/Algorithms

K	# DFT, size 2^k	# DCT-IV, size 2^k
1	1	1
2	6	10
3	40	126
4	296	31242
5	27744	1924443362
6	162570361280	7343815121631354242
7	~1.01 • 10^27	~1.07 • 10^38
В	~2.31 • 10^61	~2.30 • 10^76
9	~2.86 • 10^133	~1.06 • 10^153

- differ in data flow not in arithmetic cost
 - exponential search space

SPIRAL

Why Search?

- maaaany different formulas
- large spread in runtimes, even for modest size
- not due to arithmetic cost

Search Methods Available in SPIRAL

- Exhaustive Search
- Dynamic Programming (DP)
- Random Search
- Hill Climbing
- STEER (similar to a genetic algorithm)

	Possible Sizes	Formulas Timed	Results
Exhaust	Very small	All	Best
DP	All	10s-100s	(very) good
Random	All	User decided	fair/good
Hill Climbing	All	100s-1000s	Good
STEER	All	100s-1000s	(very) good

Search over

- algorithm space and
- implementation options (degree of unrolling)

DCT Type IV Size 16

Fastest Found Formulas

Experimental Results

Vectorized Code

Learning to Generate Fast Algorithms

- Learns from given dataset (formulas+runtimes) how to design a fast algorithm (breakdown strategy)
- Learns from a transform of one size, generates the best algorithm for many sizes
- Tested for DFT and WHT

	Number of Formulas	Generated Included the	Top N Fastest Known Formulas
Size	Generated	Fastest Known	in Generated
2 ¹²	101	yes	77
2 ¹³	86	yes	4
2 ¹⁴	101	yes	70
2 ¹⁵	86	yes	11
2 ¹⁶	101	yes	68
2 ¹⁷	86	yes	15
2 ¹⁸	101	yes	25
2 ¹⁹	86	yes	16
2 ²⁰	101	yes	16

Fast Formula Generation Results

Organization

Mathematical Framework

Transforms, Rules, and Formulas

Formula Generator

Transform \rightarrow **Algorithm**

SPL and SPL Compiler

Algorithm \rightarrow Implementation

Search Engine

How to find the best implementation

SPIRAL system

Everything taken together

Conclusions

Extensibility of SPIRAL

New transforms are readily included on the high level

(easy, due to SPIRAL's framework)

New constructs and primitives (potentially required by radically different transforms) are readily included in SPL

(moderate effort, due to template mechanism)

New instructions sets available (e.g., SSE) are included by extending the SPL compiler

(doable one time effort)

SPIRAL System: Summary

- Available for download: www.ece.cmu.edu/~spiral
- Easy installation (Unix: configure/make; Windows: install shield)
- Unix/Linux and Windows 98/ME/NT/2000/XP
- Current transforms: DFT, DHT, WHT, DCT/DST type I IV, MDCT, Filters, Wavelets, Toeplitz, Circulants
- Extensible

Organization

Mathematical Framework

Transforms, Rules, and Formulas

Formula Generator

 $Transform \rightarrow Algorithm$

SPL and SPL Compiler

Algorithm \rightarrow Implementation

Search Engine

How to find the best implementation

SPIRAL system

Everything taken together

Conclusions

Conclusions

Closing the gap between math domain (algorithms) and implementation domain (programs)

- Mathematical computer representation of algorithms
- Automatic translation of algorithms into code

Optimization as intelligent search/learning in the space of alternatives

- High level: Mathematical manipulation of algorithms
- Low level: Coding degrees of freedom

