
Generating Platform-Adapted
DSP Libraries Using SPIRAL

www.ece.cmu.edu/~spiral

José Moura (CMU)

Jeremy Johnson (Drexel)
Robert Johnson (MathStar Inc.)

David Padua (UIUC)
Viktor Prasanna (USC)
Markus Püschel (CMU)

Bryan Singer (CMU)
Manuela Veloso (CMU)
Jianxin Xiong (UIUC)

Sponsor

Work supported by DARPA (DSO), Applied & Computational

Mathematics Program, OPAL, through grant managed by

research grant DABT63-98-1-0004 administered by the Army

Directorate of Contracting.

SPIRAL
Automates the

cuts development costs
coding less error-prone

takes advantage of architecture specific features
porting without loss of performance

code manipulation techniques like, e.g., unrolling
cannot be done by hand in reasonable time

allows systematic exploration of alternatives
both at algorithmic level and code optimizations

are performance critical

A library generator for highly optimized,
platform-adapted signal processing transforms

Implementation

Platform-Adaptation

Optimization

of DSP algorithms

Organization

• SPIRAL approach

• SPIRAL system

• Some experimental results

• Recent work

Key Observations

• For every DSP transform there are exponential
many different algorithms, which do not differ in
arithmetic cost

• The best algorithm is highly platform dependent

• The best algorithm is hard to determine

• Pentium
• SUN
• Alpha

SPIRAL Methodology

Uniprocessor:

DSP Transform
(DFT, DCT, Wavelets etc.)

Computer Architecture

given

given

• Multiprocessor
• Hardware

Possible
Implementations

Performance
Evaluation

In
te

lli
g

en
t

S
ea

rc
hPossible

Algorithms

adapted
implementation

S
P

IR
A

L
 S

ea
rc

h
 S

p
ac

e

DSP Algorithms: Example 4-point DFT
Cooley/Tukey FFT (size 4):

4
222

4
2224)()(LDFTITIDFTDFT ⋅⊗⋅⋅⊗=

Fourier transform

Identity Permutation

Diagonal matrix (twiddles)

Kronecker product

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1

j j

j j j

 − − − =

− − −
 − − − −

• product of structured sparse matrices
• mathematical notation

Transforms, Rules, & Formulas

DSP transform

Rule

Formula

() () PDFTIDIDFTDFT mnmnnm ⋅⊗⋅⋅⊗→

() ()() PFIIDIFDFT ⋅⊗⊗⋅⋅⊗= 222428

a matrix

• a breakdown strategy
• product of sparse matrices

• arises from recursive application of rules
• product of sparse matrices
• uniquely defines an algorithm

DFTnm

Algorithms = Ruletrees = Formulas

8DCTII

4DCTII 4DCTIV

R1

)()(2/22/2/ nnnn IFDCTIVDCTIIPDCTII ⊗⋅⊕⋅→

2DCTII
2DCTIV

R1

4DCTII

R6 SDCTIIPDCTIV nn ⋅⋅→

2F
R3

2DSTII
R6

2F
R4

R3
2DCTII

2DCTIV

R1

2DSTII
R6

2F

2F
R4

22 2
1

FDCTII ⋅→

Number of Formulas/Algorithms

Currently 12 transforms and 31 rules:

k

1
2
3
4
5
6
7
8
9

DFTs, size 2^k

1
6

40
296

27744
162570361280
~1.01 • 10^27
~2.31 • 10^61

~2.86 • 10^133

DCTIVs, size 2^k

1
10

126
31242

1924443362
7343815121631354242

~1.07 • 10^38
~2.30 • 10^76

~1.06 • 10^153

exponential search space

Formulas in SPL

(compose
(diagonal (2*cos(1/16*pi) 2*cos(3/16*pi) 2*cos(5/16*pi) 2*cos(7/16*pi)))
(permutation (1 3 4 2))
(tensor

(I 2)
(F 2)

)
(permutation (1 4 2 3))
(direct_sum

(compose
(F 2)
(diagonal (1 sqrt(1/2)))

)
(compose

(matrix
(1 1 0)
(0 (-1) 1)

)
(diagonal (cos(13/8*pi)-sin(13/8*pi) sin(13/8*pi) cos(13/8*pi)+sin(13/8*pi)))
(matrix
(1 0)
(1 1)
(0 1)

)
(permutation (2 1))

• • • •

• • • •

SPL Compiler, 4-point FFT

(compose (tensor (F 2) (I 2)) (T 4 2)
(tensor (I 2) (F 2)) (L 4 2))

f0 = x(1) + x(3)
f1 = x(1) - x(3)
f2 = x(2) + x(4)
f3 = x(2) - x(4)
f4 = (0.00d0,-1.00d0)*f(3)
y(1) = f0 + f2
y(2) = f0 - f2
y(3) = f1 + f4
y(4) = f1 - f4

r0 = x(1) + x(5)
r1 = x(1) - x(5)
r2 = x(2) + x(6)
r3 = x(2) - x(6)
r4 = x(3) + x(7)
r5 = x(3) - x(7)
r6 = x(4) + x(8)
r7 = x(4) - x(8)
y(1) = r0 + r4
y(2) = r1 + r5
y(3) = r0 - r4
y(4) = r1 - r5
y(5) = r2 + r7
y(6) = r3 - r6
y(7) = r2 - r7
y(8) = r3 + r6

fast algorithm
as

formula
as

SPL program
#codetype

complex real

The SPL Compiler

Parsing

Intermediate Code Generation

Intermediate Code Restructuring

Target Code Generation

Symbol TableAbstract Syntax Tree

I-Code

I-Code

FORTRAN, C

Template Table

SPL Formula Template DefinitionSymbol Definition

Optimization
I-Code

SPL Program

Search Methods Available in SPIRAL

• Exhaustive Search
• Dynamic Programming (DP)
• Random Search
• STEER (similar to a genetic algorithm)

Very good100s-1000sAllSTEER

Poor to fairUser decidedAllRandom

Good10s-100sAll DP

BestAllVery smallExhaust

ResultsTimedSizes
FormulasPossible

• Search over new user-defined transforms and breakdown rules
• Search over formulas and options to SPL compiler

Summary: SPIRAL Architecture

DSP transform
(symbolically specified)

Formula generator
(rule based)

DSP algorithm as SPL program
(on out of many possible)

SPL compiler

C/Fortran program

Performance
evaluation

S
ea

rc
h

 e
n

g
in

e

fe
ed

b
ac

k
lo

o
p

Organization

• SPIRAL approach

• SPIRAL system

• Some experimental results

• Recent work

The SPIRAL System: Implementation
• Infrastructure of SPIRAL is based on the computer algebra system
and language GAP (http://www-gap.dcs.st-and.ac.uk/~gap/)

command line interface
symbolic (exact) computation with DSP formulas
full-fledged programming environment

• Formula generator and search engine implemented in GAP
• SPL compiler implemented in C

Formula
generator

Search
engine

SPL
compiler

G
A

P

The SPIRAL System: Main Features

• Easy installation from one source on

Unix based systems (configure – make)

native Windows systems (Visual C/Intel compiler make)

• DSP transforms: DFT, DCTs, DSTs, WHT, Haar transform, …

• new transforms can easily be included

• multi-dimensional transforms automatically supported

• composed DSP transforms supported

• verification of generated code

• programming environment included (GAP)

• online documentation

www.ece.cmu.edu/~spiraldownload at:

SPIRAL System Examples I

spiral> S := Transform("DFT", 1024);
spiral> Implement(S, rec(search := "DP",language := "c”));

size

search method:
dynamic programming

Implementing a DFT of size 1024 in C:

SPIRAL command prompt

target language

transform

C function in working directory

SPIRAL System Examples II

spiral> S := Transform("DCT2", 8);
spiral> S1 := TensorSPL(S, S);
spiral> Implement(S1, rec(search := “STEER",

language := "f77”));

search method:
STEER

Implementing an 8 x 8 DCT of type 2 in Fortran:

SPIRAL System Examples III

spiral> S1 := Transform("DFT", 8);
spiral> S2 := DiagSPL([1, 2, 4, 2, 3, 5, 1, -2]);
spiral> S3 := Transform(“DCT3”, 8);
spiral> S := S1 * S2 * S3;
spiral> Implement(S, rec(search := “TimedSearch",

timeLimit := 30,
language := “c”));

search method:
timed search 30 minutes

Implementing a composed transform in C:

a DCT type 3 followed by
scaling followed by
a DFT

Organization

• SPIRAL approach

• SPIRAL system

• Some experimental results

• Recent work

Search Space and Varying Performance

WHT(210): 51,819 (binary) ruletrees = formulas

• large spread in runtime
• not due to arithmetic cost
• good ones are rare

Comparison Search Methods I

Fastest Found Formulas Number of Formulas Timed

DCT, type IV, size 16

DP and STEER perform well

Comparison Search Methods II

across transforms of size 16

SPIRAL vs. FFTW
(lower = better)

Pentium III/Linux/gcc Athlon/Linux/gcc

Pentium III/Win2000/Intel compiler

comparable
performance

Organization

• SPIRAL approach

• SPIRAL system

• Some experimental results

• Recent work

Learning instead of Searching

• Method:
– Runs a number of formulas of one size
– Analyzes the cache misses caused by different parts of the formulas
– Then design fastest formulas of different sizes, even larger sizes!

• Designs fast formulas of sizes that it has never even timed before
• Designed fastest known formulas for WHT!

SPIRAL SIMD

• Portable SIMD Support (SSE; planned:
SSE2, AltiVec),
based on Compiler Support

• Handle A In and In A
• Support for Diagonals and Permutations
• Unrolled code and loop code

42 IDFT ⊗joint work with
Franz Franchetti, Christoph Űberhuber,
Technical University Vienna

FFT: Benchmark

0,00E+00
5,00E-07
1,00E-06
1,50E-06
2,00E-06
2,50E-06
3,00E-06
3,50E-06

16 32 64 128

Intel MKL SPIRAL SIMD

Experimental Results

Pentium4
SSE - float
Windows 2000
Intel C++ Compiler 5.0
Spiral 3.1

DCT2xDCT2: Speed-up

0

0,5

1

1,5

2

2,5

3

4x4 8x8 16x16 32x32 64x64

Speed-up

0

0,5

1

1,5

2

2,5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

WHT FFT

Summary

• SPIRAL

generates platform-adapted code for linear DSP transforms

is extensible to include new transforms

easily installs on a variety of platforms

• The generated code is verified and very competitive

www.ece.cmu.edu/~spiraldownload at:

