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Abstract

This paper studies the binary hypothesis test of detecting the presence or absence of a target in a highly
cluttered environment by using time reversal. In time reversal the backscatter of a signal transmitted into a scattering
environment is recorded, delayed, energy normalized, and retransmitted through the medium. We consider two
versions of the test—target channel frequency response assumed known or unknown—and, for each version, contrast
two approaches: conventional detection (where no time reversal occurs) and time reversal detection. This leads to
4 alternative formulations for which we derive the optimal detector and the generalized likelihood ratio test, when
the target channel frequency response is known or unknown, respectively. We derive analytical expressions for the
error probabilities and the threshold for all detectors, with the exception of the time reversal generalized likelihood
ratio test. Experiments with real world electromagnetic data for two channels (free space with a target immersed
in 20 scatterers; and a duct channel) confirm the analytical results and show that time reversal detection provides
significant gains over conventional detection. This gain is explained by the empirical distributtgpeasf the
target channel frequency response—richer scattering channels itypeseith heavier tails and larger time reversal

detection gains.

Index Terms

Time Reversal, Matched Filter, Detection, Adaptive Waveform, Waveform Reshape, Empirical Distribution,

Type.

. INTRODUCTION

Channel multipath significantly affects the performance of traditional detectors, e.g., the matched filter.
Usually, multipath is thought to be detrimental and a negative whose effects should be minimized. Time
reversal presents the opposite opportunity—multipath as a positive, the more the better. In time reversal
signal processing, a signal is first radiated through a rich scattering medium. The backscattered signal
is then recorded, delayed, time reversed, energy normalized, and retransmitted. The technique of time
reversal is not new, but a thorough theory of detection for this setting is lacking. This paper addresses this
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gap. We study time reversal detection of a target immersed in a rich scattering environment. We focus on
determining the performance gain, if any, provided by the time reversal based detector over conventional
detection techniques. We carry out the following plan: (1) formulate a time reversal approach to detection
and contrast it with the conventional approach; (2) derive the detectors for each of these approaches;
(3) detail the performance of the detectors analytically and experimentally; and, finally, (4) test the detectors
with real electromagnetic (EM) data collected with two different laboratory experiments. Our results are
conclusive: (1) time reversal detection provides significant gains over conventional detection; (2) the
time reversal detection gain is verified experimentally for the first time with electromagnetic real world
experiments; (3) the time reversal detection gain is directly related tdyfre of the target channel
frequency response—the gain is larger for heavy tailed channel types; (4) the time reversal detection gain
arises because the transmitter reshapes the waveform to best match the channel.

On time reversal Time reversal (TR), known in optics as phase conjugation, has been used to increase
resolution by exploiting scattering and multipath in inhomogeneous channels. Fink and collaborators have
published extensively on time reversal in acoustics and ultrasound, [2], [3], [4], [5], [6]. These works
demonstrated super-resolution focusing in the ultrasound domain. In their work, an ultrasound source is
placed in a water tank with a large number of scatterers. The scattered acoustic signal is recorded by ar
array of sensors and retransmitted through the same medium after being time reversed. Their experiment:
demonstrate that the acoustic energy refocus at the source with much higher resolution than predicted
by the Rayleigh resolution limit, i.e., they demonstrate super-resolution focusing. More recently, large-
scale acoustics experiments in the ocean confirmed the resolution ability of time reversal in real acoustic
propagation environments, [7], [8]. There is a growing literature on time reversal in these acoustic and
ultrasound fields, as well as on studies of time reversal in random environments, [9], and in several
applications domains, including imaging [10], [11], or communications,[12], [13], [14]. Focusing in the
electromagnetic domain has recently been demonstrated in [15], [16]. In [17], we presented a time reversal
based interference canceller to mitigate the effect of clutter in the electromagnetic domain. None of these
works have studied the problem of detection using time reversal, derived the detectors, and studied time
reversal detection analytically and by experimentation with real electromagnetic data. This is what this
paper pursues and accomplishes. To stress the focus on the impact of time reversal, we consider the
detection of a target in clutter with single antenna. This precludes the use of narrowband MUSIC and
subspace type algorithms where the number of clutter returns is restricted to be smaller than the number
of array elements.

The remainder of the paper is organized as follows. In section Il, we describe the time reversal

1The expressioitypeis used in its information theoretic sense of empirical distribution, [1].
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measurement protocol and present the statistics of the measurements. Section Il formalizes the single
binary hypothesis test problem with a single receiving antenna under study—target present or absent
in high clutter, the two approaches—conventional and time reversal—that we consider, and their two
versions—ideal and realistic—where the target channel response is known or unknown, respectively.
The section presents the optimal detectors and the generalized likelihood ratio tests for the ideal and
realistic versions of each approach. The section derives analytical expressions for the thresholds and
error probabilities for each detector, with the exception of the time reversal generalized likelihood ratio
test. Section IV derives an expression for the detection gain provided by time reversal detection over
conventional detection in the ideal case of known target channel response. Section V tests all detectors
in real world scenarios with electromagnetic data. The section presents experiments with two channels
(free space with many scatterers and a duct channel) that confirm the analytical results and show that
time reversal delivers significant detection gains. The section illustrates how these detection gains relate
to the empirical distribution otype of the target channel frequency response. We summarize our results
in section VI.

Notation Lower case boldface letters denote vectors and upper case boldface letters denote matrices;
(-)* stands for conjugaté;)’ for transpose, an@)’ for Hermitian transposei(A4) andJ(A) are the real
and the imaginary parts of, respectivelyx ®y is the Hadamard product or component wise product of
two vectors or two matrices (with the same dimensions), wAile B is the Kronecker product oA and
B; E{-} is the expected value of a random quantity;is the identity matrix of ordefn; vec{Y} stands
for the column vector that results when we stack the columns of the n¥taxd diagx} is a diagonal
matrix whose diagonal is the vectsr || - || is the vector or matrix Frobenius norm; finally, we recall that
the probability density function of th&-dimensional complex circular Gaussian random vegtavith
meany and covariance.y, e.g., [18], is

B 1
QX

When the vector is white}ly = 21, ando; is referred to as the variance of the random vector.

oy y -1 (1)

py()’) =CN (v, Zy)

vl

[I. TIME REVERSAL MEASUREMENTS

We consider an active radar (or sonar) system with a single receiving antenna. The transmitted signal
s(t) is a wideband signal with duratio?l’ and bandwidthB = 2t. Its discrete Fourier transform is
S(wg)y wg = %(QI +4q),q =0,1,---,Q — 1, and ¢, is a constant. Foreal-valuedtime dependent
signalss(t), the discrete Fourier transform of its time reversed versi@h — t), whereT, is the chosen
time window length, is simply given by/“«’-S*(w,); in other words, besides a phase shift, time reversal

becomes phase conjugation in the frequency domain (see, e.g., [19]).
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The paper studies the impact of time reversal in target detection in cluttered environments. We assume
that we have independent measurements of the clutter when no target is present and that the clutter remain
stationary. To emphasize the impact of the channel propagation effects (multipath) induced by the clutter
and to keep the focus on the role of time reversal on detection, we consider in this paper the extreme
case of either a&ingle antenna in the mono-static context, or a single transmitting antenna and a single
receiving antenna in the bistatic problem.

We introduce two frequency responses: (1) thetter frequency responsé.(w,), ¢ =0,--- ,Q — 1
is the response of the clutter when no target is present; and (Zpntpet channel frequency response
Hy(wy), ¢ =0,---,Q—1, is the difference between the channel response when a target is present and the
channel response when no target is present. As diighy,) represents all the changesi(w,) induced
by the presence of the target, and, in particular, it includes secondary backscatter, i.e., backscatter from
the clutter to the target that is then radiated back to the receiving antenna.

The problem we consider is the following. We assume that there is an initial phase where the clutter
frequency responsél.(w,) can be learned. Then, the deterministic padf the response that can be
computed by propagating the transmitted signals thratigly,) will be subtracted out and we work with
the resulting signals. We call this background subtraction. We explain this next.

Clutter response In this phase, we learn the clutter respof$gw,). We assume that no target is

present. The single antenna probes the channel with the wideband Siggal¢ =0, --- ,Q — 1, whose
energy is
12
by = QZ‘S@JQ)F' (2)
q=0

We repeat the probing to obtaih independent snapsholg(w,) where

Ya(wg) = Slwg)He(wg) + Uiwy) 3
q = O’...’Q_17l:1’...7[1'

In (3), U;(w,) is additive, zero mean, circular complex white Gaussian noise with diagonal covariance

021. The minimum mean square error estimate of the clutter response is

A s-1<wq>%2m<wq> @

2This assumption may not be applicable in many radar/sonar environments where the scattering characteristics must be described

= H.(w,) +5"

b« |

stochastically.
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For L sufficiently large the clutter response is well estimated from/Zihgrobing snapshots, i.e.,
ﬁC(Wq) ~ He(w,); (5)

so, we safely assume in the sequel thafw,) is accurately known.

Clutter suppression: background subtractionBecause the clutter response is assumed known, we can
suppress the clutter by simple background subtraction. Background subtraction is widely used in many
applications from radar to image or video processing. Assume that the backscatter of the channel when
probed by a signab(w,) is R(w,). Part of this signal is the backscatter from the clutter. The clutter
suppressed signal is then

Y (wy) = R(wy) — S(wg) Helwy)- (6)

We will formulate the detection problems that we study in this paper in terms of the residual 3igng)s

rather than the signalB(w,).

A. Time reversal. Measurement protocol

We assume that the clutter response has been learned as explained in (4). The second phase monito
the channel. The monitoring protocol in section lll when we use time reversal is in two steps, which are

repeated\/-times to obtain}/ snapshots.

1) Probing In this step, at thenth snapshot, the signal(w,), ¢ =0,--- ,Q — 1, is transmitted. When

a target is present, the channel backscattered signal received by the antenna is

Rin(wg) = S(wy) [He(wy) + He(wy)] + Vin(wy) (7)
q = 07 7Q_]-7 m:17 aM'
whereV,, (w,) is additive, zero mean, circular complex white Gaussian noise, with diagonal variance
o2I. In (7), H,(w,) is the target channel response, which, as explained above, is the difference
between the channel response when clutter and target are present and when only clutter is present
By background subtraction, see (6), the clutter suppressed signal is
Vin(wg) = Ru(wg) — S(wy)He(wy)
= S(wg)Hi(wg) + Vin(wy), (8)
qg = 0,---,Q—1, m=1,---M.
2) Time reversal In this step, we use time reverdawhich, as observed before, corresponds to phase

conjugation in the frequency domain. Time reversing the clutter suppressed received signal in (8),

3Global travel time delays are ignored.
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we obtain
YVio(wg) = S*(wg)Hi(wy) + V7 (wy), 9)
¢ = 0,---,Q—1, m=1,---M.
Next, the signal’’ (w,) is normalized to the energy;, of the original signalS(w,), ¢ =0,--- ,Q—1,

by an energy normalization facta,

. 10
\/ZQ Vo) (0

Note that the energy normalization factgy, changes from snapshot to snapshot, butniswnsince
it is computed from the received da¥g,(w,), ¢ =0,--- ,Q — 1.
The received signal is,
an(wq) = kY, (W) [Hi(wg) + He(w,)] (11)
+Win(wy),
q = 07 7Q_17m:17"' 7M‘
If no target is presentf;(w,) = 0 in equation (11). The termiV,,(w,), ¢ = 0,---,Q — 1, m =
1,---, M, is a circular complex zero mean white Gaussian noise with variafice
As in (8), the known componert,,Y,! (w,)H.(w,) from the backscattered signal received by the
antenna is subtracted out. The resulting signa¥isg =0,--- ,Q -1, m=1,--- , M,
Xin(wg) = an(wq) — kY (W) He(wg) (12)
= ki [S(wg) Hi(wy) + Vm(”q)]* Hi(wy)
+Win(wy)
= kS (wg) [Hi(wg)|” + (13)
Fon Vi (wq) Hy(wy) + Win(wy).
The set-up just described assumes that the clutter remains static or invariant so that the simple backgrounc
subtraction in (8) and (12) effectively suppresses the clutter response.

For detection by time reversal, we have both the direct sighalss,) in (8) and the time reversal
signals X,,(w,) in (13),¢=0,--- ,Q — 1, andm =1,--- , M.

B. Time reversal measurements: vector notation

Before we state formally the hypothesis testing problem, we express the time reversal measurements

in vector notation. We collect for each snapshotthe frequency responsés,(w,) in a @-dimensional
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vectory,, and then stack these vectors in é/-dimensional vectoy, i.e.,

Ym = [Ymlwo) - Yim(wo-1)]" (14)
y = Vec{[yla"' 7yM]} (15)

Similarly, the@-dimensional vectors, x,,, h;, v,,, andw,, collect the spectrum of the transmitted signal
S(wy), the signalsX,, (w,) in (13), the target channel frequency respofsé.,), and the noise¥,, (w,)

and W,,(w,). The vectorsx,,, v,,, andw,, are then stacked in th@\/-dimensional vectors, v, and

w, respectively. Finally, we introduce

S = diag(s} (16)
2 = [yh xn)" (7)
1 = [1---1)7" (18)
k = [k, -, kn]" (19)
K = diagk}. (20)

The vectork vectorizes the energy normalization gains, while the diagonal mEirbas these gains in
the diagonal. Thel/-dimensional vectol is a vector of ones. Th&Q-dimensional vector,, vectorizes
all the Y (w,) and X,,(w,) data for snapshot.. However, we use a slightly different notation for the

2Q) M -dimensional vector. This vector
T
2= [y"x"]". (21)

concatenates the vectay$s andx rather than simply stacking the vectars. The vectorz stacks the data
for all the M snapshots. We emphasize thatzip andz, we stack the time reversed, i.e., the conjugates,
y;, andy* with x,, andx, respectively.
We now use these vectors to write compactly the signals at the different phases of the time reversal

measurement protocol, using the Hadamargroduct introduced in section I. We have

Ym = [S(wg)He(wg) + Vinlwy)] (22)

= Sh; + v,,, m=1,---, M (23)

Xm = (kS (@) [Hi(w)[* + ko Hi(wq) Vi () (24)
+Win(wy)]

= kny:, ©Oh +w, (25)

= knS'h; O hy + kv, O hy + Wy, (26)

m=1,---, M.
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where in (22) and (24) we indicate explicitly the entriesyof and x,,, respectively. Equations (23)
through (26) assume a target is present. If no target is presenththen0, and the received datg,,
andx,, are simply the noises,, andw,,, respectively.

Remark In the set-up described in section II-A, we collect a total2d# data snapshots, i.el/
snapshots o§,, and M snapshots ok,,, where eactx,, is obtained by transmitting the corresponding
time reversed signal,,. In practice, other transmission strategies may be adopted while keeping the total
number of data snapshots unchanged. For instance, we can transmit alMingle1 snapshot ofy,,
and My = 2M — 1 snapshots ok,,, keepingMy + My = 2M. It is anticipated that the performance of
time reversal detection will vary with different transmission strategies. In this paper, we use the simple

strategy where we alternate eagh) transmission with arx,, transmission, i.e. My = My = M.

C. Noise and data statistics

Finally, to complete the model, we summarize the statistics assumed. The noisewgasoa circular

complex Gaussian random vector, i.e.,
Vin ~ CN(0,071g), (27)

see (1) for the notation used and the explicit expression for the probability density function. The real and
imaginary components of,, are, respectivelyR{v,,} ~ N(0, %51@) and 3{v,,} ~ N(0, %31@), e.g.,

[20]. Similarly, the noise vectow,, is the complex Gaussian random vector
W, ~ CN(0,0210). (28)

The noisesv,, andw,, are uncorrelated and independent of the transmitted signal.
We now consider the statistics of the datax, andz. When no target is preserit, = 0, and it is

straightforward to derive from the statistics of, and w,,, that

y ~ CN (0,0 Iy ®1p) (29)
X CN (0,0'12” IM®IQ), (30)

where,® is the tensor product introduced in section I. We explicitly indidate® I, to emphasize that
the vectorsy andx are the result of stacking/ vectors of dimensiord). From (29) and (30), and noting
further that, when no target is presegt, and x are statistically independent, the probability density

function of z, denoted byp(z|H,), is given by
0 O'SIM X IQ 0

0 0 2Ty ® Ig
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When a target is present, the statisticsyoére still straightforward

Ym(“q) ~ CN (S(Wq>Ht<wq)a ‘712;) (32)
y ~ CN (Yt =1®Shy, 0.1y ® IQ) ; (33)

however, the statistics af, under the time reversal protocol, are more complicated due to the energy
normalization factors:,,,. We indicate the conditional statistics xfgiven k,,’s. Then, conditioned on the

vector of energy normalization factoks see (19),

Xin(wg) ~ CN (knS(wy) [Hi(wy) |, (34)
0ok |5 (wo)|” [H(w))|” + o)
x ~ CN(x,=k®[S*h; ®h,], (35)
o K? @ diagh; © hy} + 021y ® 1),

where K is the diagonal matrix of normalization factors defined in (20). To get the statisties wé
need to consider the cross statisticsydfandx conditioned on alk,,; we will not provide details here.
After some manipulations, we find that the probability density functiore afhen a target is present,

denoted byp(z|H, ), is

1® S*h*
p(z[H;)) = CN ! : (36)
k ® [S*h; ® h]

031M®IQ O',%K@dlag{h:}
oK @ diag{h;} 0?K? @ diag{h; ©® h;} + 021, ® Ig

[11. TIME REVERSAL DETECTION: SINGLE ANTENNA

We consider now the hypothesis test of detecting a target buried in a rich cluttered environment with
a singleantenna. Under the null hypothedis, the data is target signal free, while under the alternative
hypothesisH; the measured data contains a target signal. We start by detailing in subsection IlI-A the
detection problems we consider. In the remaining subsections of the section we describe the detectors an

their error performance.

A. Detection Problems

Under the measurement protocols described in the previous section, we first learn the clutter and
then use background subtraction. This allows us to derive a simpler equivalent detection problem where,
underH], the measured data, after canceling the effect of the clutter, are equivalent to the Bjghals

and X,,(w,), ¢ = 0,---,Q —1, m = 1,--- , M, given by (8) and (13), or are equivalently described
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by equations (23) and (26). For detection purposes, we can then ignore the role of the clutter response
H.(w,) and assume the equivalent signal modglw,) and X,,,(w,), ¢ =0,--- ,Q —1, m=1,--- | M,
where only the effective target channel respofséy,) is explicit.

Ideal and realistic scenariosFor this detection problem, we consider two different versions. In the first
one, we refer to agleal scenario, the target channel resporitéw, ), or, in vector formh;,, is assumed
known. In the other version, termeaealistic, the target channel responde is assumed not known.
Although unrealistic, the ideal scenario provides straightforward bounds on the detection performance
achievable by the realistic scenario and enables an analytical expression for the performance gain providec
by time reversal.

Time reversal and conventional detectionNVe develop two approaches to the target in clutter detection
problem: the conventional approach and the time reversal approach. In the conventional approach, the
measurements are simply the direct measuremegiits,). In the time reversal detection, besides the
direct measuremenis(w,) we also have the time reversed measureméiits,). We study conventional
detection so that we can benchmark the detection gain, if any, provided by time reversal detection. In
terms of measurement protocol, it reduces to the probing step 1. Like with time reversal, we will consider
two scenarios: (1)deal, where we know the target channel respohseand (2)realistic where we do
not know the target channel resporise

Detectors We have then four detection problems. The next four subsections consider the following
detectors (1) conventional detector channel matched filter (CDCMF) for the ideal conventional detection
problem; (2) time reversal channel matched filter (TRCMF) for the ideal time reversal detection problem;
(3) change detection generalized likelihood ratio test (CD-GLRT) or energy detector (ED) for the realistic
conventional detection problem; and, finally, (4) time reversal generalized likelihood ratio test (TR-GLRT)
for the realistic time reversal detection problem.

The first two detectors, CDCMF and TRCMF, and the last two detectors, the ED (also called CD-
GLRT) and the TR-GLRT, are the optimal detectors and the generalized likelihood ratio detectors for the
corresponding detection problems. Next, we will state each of these detection problems formally, then
determine the corresponding likelihood ratio test statistic, the probability of false &aynthe threshold
n, and, finally, the probability of detectioR,. Before we do this, we recall a few preliminaries needed.

Preliminaries The likelihood ratio test statisti€ is [21], [22]

_ p(z[Hy) [Ty P(20[H)

l(z) = - M ’

p(Z|H0) Hm:1 p(Zm‘H())

wherep(z|H,) and p(z|H,) are the probability density functions of the data conditionedHgrand H,

(37)

respectively. The factorization on the right hand side of equation (37) follows because conditioned on

either hypothesis the measurements for different snapshots are independent.
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Recall the definitions of=a and . If 7 is the threshold
PFA = / Pre (L|H0) dL (38)
n

P = /Oopg(L]Hl)dL, (39)

wherep, (L|H,) andp, (L|H;) are the probability density functions of the test statigtiender the null

hypothesidsH, and the alternative hypothedis;, respectively. We use the error function

2 x
erf(z) = = / e dt, zeR. (40)
0

B. Ideal Conventional Detection: Channel Matched Filter (CDCMF)

We start by studying the conventional approach to the target in clutter detection problem. We use the
equivalent formulation presented in section IlI-A.
Detection problemThe ideal conventional detection problem is equivalent to the following binary

hypothesis problem:
Hy: y =Sh+ v (1)
Hy: y = V.
We recall that in thiddeal scenarioh; in (41) is known.
The data probability density functions (pdfjy|H;) and p(y|H,) conditioned onH; and H, follow
from (33) and (29) and are, respectively (see, e.g., (1) for the expression of complex Gauss probability

density functions),

M 1 _ lym=shy|?

p(y|H,) = HIWG i (42)
M 1 L

p(y|Ho) = glme 7 (43)

where we used the conditional independence assumption of the data snapshots.

Likelihood ratio test/cpcmr(x). Replacing (42) and (43) in (37), taking the logarithm of the resulting
expression, discarding the constant terms, and normalizing by the cofstash,|| yields the linear
statistic for the CDCMF detector

_ (Sht)H Zi\ri[: Ym
leoeme(y) = R ( UUHSh,sHl > : (44)

The test statistic (44) shows that the detector uses the knowledge of the target channel response—the
detector is achannelmatched filter, i.e., it is matched to the known signal compois@ntat the output

of the channel.
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Probability of false alarmPga cpcwr: In the null hypothesid,, standard manipulations show that the

variable inside the parenthesis in (44) is a circular Gaussian complex vafiafle, /7). This leads to
Lepemr(y) ~ N (0, M/2). (45)

From (38) and (45), the probability of false alatfaa cpcur for the CDCMF-detector is

oo

1
PFA,CDCMF = T
M coemr 'V 27TM/2

1 2
= / —e Vdt.
" cocvE /T
VM

Using the error function in (40)Pra.cocme IS cOmpactly written as

1
Peacoevr = 3 (1 —erf <n(\:/D%AF>) : (47)

Thresholdncpcve. From (47), the detection threshold is

t2
eI gt (46)

neoeme = V Merf ™ (1 — 2Pea cocmie), (48)

whereerf'(-) is the inverse error function.
Probability of detectionPs cpeme. In the alternative hypothesi;, standard manipulations show that

the quantity in parenthesis in the expression of the decision statistic (€4Y igl;, M) where

Q115w t(wg)]?
Llsh _ /T SCn) e

dy = (49)
Oy o
The pdf of the test statistic undéf; is then
Ceoemr(y) ~ N (di, M/2). (50)

The detection probability’; cpcme follows from (39), and, by making use of the error function (40), can

be expressed simply as

1 —d
Pococve = B (1 —erf (mc— \M/5\41)> Y
1 1 _ d
_ 5 §erf (erf 1 (1 — 2P, CDCMF) - /—]1\4) :

C. Ideal time reversal: Channel matched filter (TRCMF)

Detection problemBecause the target channel respohses assumed known we need to consider only
the dataX,,(w,) andx received under the time reversal step 2. These signals are modified from (13)
and (35) by assuming the noise = 0 under the alternative hypothesis and by setting all energy

normalization factors to the deterministic known constant

E,
km =k = o1 ¢ 5 5
> a0 1S | He(wy)l

(52)
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The detection problem is equivalent to

Hy: x =kS*hy Oh;+ w
1 t t (53)
Hy: x = W.
Note that, becaush, is assumed known, the transmitted sigh@th; can be generated by the transmitter

with no need for the probing step 1. The data pdfs urtleandH, follow from the assumptions ow,,

1 bamckyiom?

p(x[H;) = gwe i (54)
M 1 e l?

p(x|Hy) = Ewe o (55)

Likelihood ratio testtrcue(x). Replacing these expressions in the expression of the likelihood ratio (37),
taking the logarithm, discarding constant known terms, and normalizing the test statistic by the known

quantity 2o, ||ky; © hy||, yields the linear test statistic

(vi © 0" Yy X
14 x) =R m= ) 56
TReMF{X) ( Tullyi & b 9
Probability of false alarmPea trevr The test statistic given by (56) is linear and, given the assumptions

on the noisew,,, it can be shown that the quantity insit-) in (56) is a complex random variable with
probability density functio N (0, M). This implies, [20], that

lrremr(x) ~ N(0, M/2). (57)
Just like for the CDCMD detector, we find th&a tremr 1S
1 TITRCMF
B =—|1—erf
FA,TRCMF 5 ( €r < \/M >>, (58)

which is exactly like (47).
Thresholdnrrcur The thresholdjrreme for the TRCMF detector follows by inverting (48)

nrreme = V Merf ™! (1 — 2 Pea tremE)- (59)

Probability of detectionP, tremr It is straightforward to show that, conditioned Bh, the pdf ofltrcmr(x)

is
ltreme(X) ~ N (do, M/2) (60)
where
o apelvi o _ | VIS S @)L o
Ow Ow
The detection probability is obtained as for the CDCMD detector. We get
Po1reme = (1 — erf (U\/—M%)) (62)

| — DN —

N ds
erf [ erf™ (1 — 28 — .
( ( FA, TRCMF) \/M)

DO | —
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D. Realistic conventional detection: Energy detector

Detection problemWe now consider the conventional detection problem when we do not know the
target channel responde. The set-up of the problem is like in (41) for ideal conventional detection,
except that novh, is unknown. The data pdig(y|H;) andp(y|H,) underH; andH, are given again as
in (42) and (43), respectively.

Likelihood ratio testlep(y). Becauseh, is unknown, we adopt as detector the generalized likelihood

ratio test (GLRT)
maxp, p(y|Hi)

p(y[Ho)
We could refer to this detector as the change detection generalized likelihood ratio detector (CD-GLRT).

(63)

However, as will be shown below, the detector has an energy detection like structure. Thus, we refer to
this detector as the energy detector (ED).

The maximum in the numerator of (63) is at the maximum likelihood estimaile oihderH;

hy = arg max p(y |H).
t

This yields
M
Using (64) in (63), taking the logarithm, neglectlng constants, yields
M N M R N
S (Iyml? = llym = Shef?) = 3 (29((Sh) "y} - She|?) (65)
m=1 m=1
~ M ~
= 2R{(Sh)" ) ym} — M||Sh,| (66)
m=1
= M|Sh,|’ (67)
_ I e vl
= Tem (68)
Normalizing (68) bys?/2 results finally in
lep(y) = 2/2 I Z Ymll. (69)

Probability of false alarmPeep(y). In the null hypothesidi, and noise only case, the test statistic

for the energy detector is given by
2

<& _1 Vin(wy)
len(y Z 023 (70)

q=0
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where, like before},,(w,) ~ CN(0,02),¢q =0,---,Q —1,m = 1,--- M are circular complex Gaussian
random variables. Since the real and imaginary part$,ofv,) are independent and each of them is
N(0,02%/2), this implies that each term in the sum in (70),

M
Zmzl Vm(wq) ~ CN(07 2)
Moao?2/2

2
Therefore Zﬁfil Vin(wy)| / (Mc2/2) is the sum of the squares of twd (0, 1) random variables, and so

a centraly-square distribution witl2 degrees of freedom. This implies thiab(y) has a centrak-square

distribution with 2¢) degrees of freedom

len(y) ~ X50(0). (71)

From (71), we compute the probability of false alafiq gp. Let v, ,(x) denote the cumulative distribution
function of a non-centra{-square random variable withdegrees of freedom and non-centrality parameter
(. Then Peagp IS

Peaep = 1 — ¢20.0(nep), (72)

wherengp is the threshold.
Thresholdngp. Inverting (72) gives the thresholg:p for the energy detector as

Nep = ¢2_¢570 (1 — Peagp) (73)

where1), . (-) is the inverse function of the cumulative distributigp,,(-).

Probability of detection/; gp. The test statistic under the alternative hypothésiss

Q1 |0 Yinf)|

oY) =D 57 (74)
q=0 v
whereY,,(w,) ~ CN(S(wy)Hi(wy),02),q=0,---,Q —1,m=1,--- M. Each term
M 2
Zom Yol)| - (20 [S () | Hilw,)

i.e., it is non-central-square distributed witR degrees of freedom. It follows thétp(y) is noncentral

x-square distributed witR() degrees of freedom

lep(y) ~ X%Q(M) (76)

where the noncentral parameter is given by

Q-1
p=2M Y [S(wy)|’| Hilwy)*/o?. (77)

q=0
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Hence, the detection probabilith, gp for the energy detector takes the form

Poep =1 —vqu (Mep) =1 — Yo <¢(}1Q,0) (1— PFA,ED)) ; (78)

The probabilities of false alarnP-agp and detectionPsep, and the thresholdep can be found by
standard approximations to thesquare distribution as found for example in [23] or as tabulated in

standard scientific computation packages.

E. Realistic time reversal: Generalized likelihood ratio test (TR-GLRT)

Detection problemThe detection problem is now the following:

* v*
Hli zZ = yt -+
Xt W
- (79)
v*
Hol z = s
AY%

wherey, and x; are the means given in (33) and in (35). It is important to note that in the detection
formulation in (79) we have conjugated the data received in the probingystephis is of course an
information preserving transformation so no loss or gain of information is achieved. However, it greatly
simplifies the target channel response estimate as we will see below. The detection problem in (79) is
difficult to study analytically. We consider the approximate problem where we neglect the information
provided by the energy normalization factots. In the study of this detector we will take, to be
deterministic. This is actually a good approximation. In our simulations in section V, we will observe that
k., has small variability. Also, we have performed a noise analysis elsewhere that shows that the second
order moment of;,,, is small in either the high or low SNR regimes.

Let
2 k‘mH* 2
Q(q) — O-’L) t (wfI)O-'u (80)
km He(wg)oy ki | Hi(wg) [P0y + o,
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The pdfsp(z; h|H,) and p(z,,|H,) conditioned onk,, under hypothesell; andH, are given by

M Q-1 *(w,) — S*(w, ) H (w ’
plz: hefH) = ,HHMHMQ {‘ ?:f(:; ZH)Z;;@)] v
Yir(wg) = S*(wg) H (wg) ] } (81)
Xon(wg) = Fin | Hiw,) 28" (wy)
_ MlQ‘: e { o (V)P ISEOPRIH)E (6)
+aw2:v R i X (We) Yo (We) 05 + 00 Vi (wq) S (wg)| Hi(wg) }
o (Xl + Vo)
M oQ1 X (wg)|? Yo (wy)|?
o = A 2500w

Likelihood ratio testtr.cLr{z). Like for the realistic conventional detection problem in subsection I11-D
that lead to the energy detector, here we do not khewVe adopt again the generalized likelihood ratio
test, see (63). Taking the logarithm of the ratio of the two pdfs (82) and (83) evaluated at the maximum

likelihood estimate oh,, the test statistic is

ltroirr(z) = Inp(z[H;) — Inp(z|Ho)
N (1 X (W) 2 [Yin(wy)?
_ 3 {! 0% )| (2 )|

0,

m=1 gq=0
2

(W) B2, + 18w, 02) | ()

2

2R [ X (w0) Yo ()02 + 02V, () S w)] Hiw) } | (84)

Wheref[t(wq) is the maximum likelihood estimate @f,(w,) to be determined below. This is not a linear
test statistic, which is to be expected given that the channel is no longer known.

Maximum likelihood (ML) estimatl;t under H;. We derive the maximum likelihood estimate bf
underH;. Like before, we neglect the dependency of the energy normalization fdgioom the target

channel response and so it is only an approximation to the true ML estimate. Taking the partial derivative
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of —Inp(z; h;|H,) with respect toH; (w,), and ignoring the constant terms, yields, after noticing that

O|He(wy)|?
JaHt*((wj)l - Ht(wq)! [24]1

a[_lgl]];(tf(;":tJHl)} B 012;10121; mzz:l [<|Ym(wq)’2 koo + ‘S<Wq)‘ g )Ht(wq) (85)
( X (Wq) Y (wy)o2 + Y, (wq)S*(wq)a2)] =0 (86)

After dividing the numerator and the denominator g2, we obtain

ZM [YM(Wq)S*(‘Uq) + kaM("-’q)XM(‘Uq)]

m=1 o2 o2

~

Hi(wy) =

w

S Ps@)\ 4 V(o) k}

(87)

m=1 o2 o2,

Equation (87) completes the structure of the TR-GLRT test statistic. It is a surprisingly intuitively pleasing
expression for the estimate of the target channel response. The fractions in the denominator are approximat
channel input signal to noise ratios for the probing and time reversal steps, respectively, while the fractions
in the numerator are approximately these signal to noise ratios normalized by the target channel response
If the noisesv andw are small, the numerator is then approximately the denominator thfipes,), so
that the right hand side, and so the ML channel estimate, is close to the true value of the target channel
response. A final note regarding the ML estimate (87) is that this intuitive expression results because
we formulated the time reversal detection problem using the time reversed signal received in the probing
step 1.

In section V, we study the probabilities of false ala tr-cLrr @and detectionPp tr-cLrT, and the

thresholdnrr.cLrr by Monte Carlo simulation since it cannot be determined analytically.

IV. TIME REVERSAL DETECTION GAIN

We now quantify the performance gain provided by time reversal detection over conventional detection,
i.e., what is the gain in performance achieved by the TRCMF over the CDCMF for the known target
channel. We notice that, for both detectors, the threshold under a fixed false alarm probability is exactly
the same, see (48) and (59). This observation allows us to compare the two detectors by computing the
ratio of d2 andd? defined in (61) and (49), respectively [21], [22]. In other words, the SNR gain (SNRG)
provided by time reversal is

oxng = B _ T 1860 LI S@PIH @l 8)

B (S IS

where the signal energy B, = %Zf;ol |S(w,)|? and we assumed thaf = o2 . We have the following

Result.
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Result 1: The SNR gairSNRG of the time reversal matched filter over the conventional matched filter
is
SNRG > 1. (89)
Equality holds when(Vq : |H(w,)| = a € R*}, wherea is a nonnegative constant.

Proof: The result follows by direct application of Schwartz inequality. We can factor the denominator
in (89) as

2

Q-1 Q-1 Q-1
> 15(@g)][S(w)] !Ht(wq)\ <) |SWw \ZZ |S(wg)[* [Hi(w,)I", (90)
q=0 q:O q=0 ™
| fql |9q‘ ‘fq‘z |9q‘2
with equality when
[S (W)l [He(wg)[* = a®|S(w,)|- (91)

There are a number of interesting observations we can make regarding Result 1.

1) Time reversal gainEquation (89) shows that the TRCMF has a net performance gain over the
CDCMF. How large this gain is depends on the target channel resggn$®r instance, for a flat
channel, e.g., single point scatterer and no multipath, wh&tév,)| = a, a > 0 is a constant,

SNRG = 1. When the target response has large variations across a frequency range as induced by a
rich scattering environment, the gain can be very significant. This observation will be experimentally
verified in Section V where we measure the target channel response for real electromagnetic channels
and compute SNRG.

2) Time reversal: joint optimization at the receiver and the transmiBeth detectors, the time reversal
TRCMF and the conventional CDCMF are perfectly matched to the (noiseless) signalattplug
of the channel, i.e., they are channel matched. They are optimal for their corresponding detection
problems. The performance gain of the time reversal matched filter detector over the conventional
matched filter detector is the result of the implicit optimization achieved by time reversal at both the
transmitter and the receiver. However, besides optimizing the SNR at the receiver, the TRCMF de-
tector also optimizeautomaticallythe signal at théransmitter

3) Time reversal: Waveform reshapinghe time reversal detection gain can be explained byatite-
matic reshaping of the signal achieved by the transmitter, which adjusts better the transmitted signal
to the target channel frequency response. The target channel frequency response is induced by the
scattering environment since the backscatter from the target is not simply the direct path from the
target to the receiver but it is also the secondary scattering from the scatterers to the target and then

from the target to the receiver. A richer scattering environment induces a richer target response.
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4) Time reversal and target channglpe There are potentially large gains to be achieved by time
reversal. To see this, we rework the expression of the gain. We discuss the simpler case where the
transmitted signal is a (time domain) sinc pulseS$e,) = 1, ¥q. Then the gain (89) can be rewritten

as

QX0 [Hilwy)I*

(S0 1))
LS | Hw,)

(5 S8 1A w)P)

We define thetarget channel typeas the empirical distribution of the (magnitude) of the target

SNRG =

(92)

channel response. If we consider the empirical distribution, i.e., the normalized histogram, of the
values of the target channel respongk(w,)|, Equation (92) is interpreted as the ratio of the fourth
order absolute moment, over the square of the second order absolute momgof the empirical
distribution or target channel type

y=H (93)
Ha

The ratioy is not the kurtosis;, which is the ratio of the fourth ordeenterednoment over the square
of the variance. We will compute for real channels in Section V. Here, we get an intuitive feeling
for SNRG by looking at the value of the kurtosisfor a few distributions for which it is readily
available. For a normal random variable= 3 = 4.7 dB. Of interest will be leptokurtitdistributions.
For example, the Laplace (or double-sided exponential) standard distribution-hds= 7.78 dB,

while the student ot-distribution with 5 degrees of freedom has= 9 = 9.54 dB.

V. PERFORMANCESTUDY: EXPERIMENTAL RESULTS

This section studies with a mix of real electromagnetic (EM) data and simulated noise the performance
gain provided by time reversal detection over conventional detection. We recall from section Il that
the conventional detection channel matched filter (CDCMF) and the energy detector (ED) address the
conventional detection problem (41) where no time reversal occurs, while the time reversal channel
matched filter (TRCMF) and the time reversal generalized ratio test (TR-GLRT) consider the time reversal
detection problem (79) where the time reversed backscattered signals are retransmitted. Also, the CDCMF
and the TRCMF, which are channel matched, assume full knowledge of the target channel résponise

while the ED and the TR-GLRT have no knowledge of the channel and are the generalized likelihood ratio

“As noted in section |, the expressitypeis used as an information theoretic concept to refer to the empirical distribution, see [1], of

the channel frequency response.
5Leptokurtic distributions have a positive kurtosis excess, i.e., a kurtosis larger than 3, the kurtosis of the normal distribution.
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tests for the corresponding problems. Accordingly, we pursue the following performance comparisons:
(1) Time reversal gain over conventional detection—target channel response kmavoompare the
TRCMF with the CDCMF; (2)Time reversal gain over conventional detection—target channel response
unknown:we compare the TR-GLRT with the ED; and Bgrformance loss due to lack of knowledge of

the target channel responseie compare the TRCMF with the TR-GLRT and the CDCMF with the ED.

The test statistics for the four detectors were derived in section Ill. In that section, we also studied
analytically the performance of the three detectors, the CDCMF, ED, and TRCMF, deriving analytical
expressions for the probabilities of false alafg, and detection;, as well as the thresholdg in
terms of either the error function or the cumulative distribution functionyefquare variables. For the
TR-GLRT, we cannot derive these analytical expressions. We study its performance experimentally.

We start by describing the two experimental setups used to collect the electromagnetic data: Channel |
is propagation in free space in a cluttered environment; and channel Il is propagation in a duct. We detail
each of these.

Channel I: Free space propagation in cluttered environm&he experimental setup is shown in Fig. 1.

The time domain waveform is produced by stepped frequency synthesis. The transmitted sigraHzas
bandwidth with center frequency atGHz, which corresponds to a wavelength= 6 cm. This signal

is generated with an Agilent 89610A vector network analyzer, block VNA in Fig. 1. We capture both,
the in-phase (I channel) and quadrature (Q channel) streams of the impulse response. The transmitte:
and receiver antennas are two horn antennas, indicated by the letters A and B in the figure, both with
operational bandwidths fronh to 6 GHz. These two antennas are mounted in a slider that moves in rails
as shown in the figure, with their positions computer controlled; Fig. 1 shows in dark and light grey
two different possible positions for the antennas A and B. The baseline separating these antennas car
be up to 2 m (roughly 33\;) as shown in the figure. The total GHz bandwidth is divided evenly into

@ — 1 = 200 bins. The radiated signal is scattered by 20 scatterers, shown as circles in Fig. 1. The
scatterers are a mixture of copper pipes and solid dielectric pipesivittm diameter and.2 cm outer
diameter, respectively. The scatterers are placed in front of an absorbing wall which is 2.6 m (roughly
43 )\.) away from the antennas. A target, represented as a triangle, is immersed in the cloud of scatterers.
The target is simply an additional copper pipe of the samiecm diameter. The impulse respons&)

of the scattering environment of Channel | is the left plot in Fig. 3. The observation time window length

is 100 nano-seconds.

Channel II: duct.The experimental setup is shown in Fig. 2. Again, the stepped frequency synthesis
is performed to produce the time domain signal. The signal is transmitted throdigh metal pipe with

metal caps. The diameter of the ducBis5 cm. It operates like a resonant cavity, with a rich scattering
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Fig. 1. Channel I: Free space. Transmit antenna A and receive antenna B are horn antennas. Operating frequency-rah@eHz.

Scatterers are a mixture of 20 copper and solid dielectric pipes, represented as circles. The target is a copper pipe, represented as a triangle
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Fig. 2. Channel Il: Duct. Operating frequency range is3 GHz. 3 m metal pipe duct with diameter 63 m with metal caps. Transmitting

and receiving antennas are monopole probes.
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Fig. 3. Left-Impulse responge (¢) of Channel I: free space propagation scattering environment. Right—Impulse reép@nsef Channel II:

duct. Both time domain impulse responses are obtained by the inverse FFT of the frequency measurements, i.e., stepped frequency synthesis
Channel | is measured betweér 6 GHz with center frequency df GHz; Channel Il is measured betwe2r 3 GHz with center frequency

of 2.5 GHz.
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Fig. 4. Channel I: LeftHH:(wq)| and phase ofi;(wq). Right-type or empirical distribution of target channel respofsév, ).

Target Impulse Response
T T T

Histogram of Channel Il
40 T T T T

Frequency bin

Number of frequency per bin

Phase [}
.
°

T IVER 1 L
- I I 1 I I I I i i i

0 20 20 0 30 00 120 w0 160 180 200 -0.1 0 01 02 03 04 05 06 07 08 09
Frequency bin Target response voltage bin [millivolt]

Fig. 5. Channel II: LeftHH:(wq)| and phase ofi:(wg). Right-type or empirical distribution of target channel respoHs&vq ).

environment. The transmitting and receiving antennas are monopole probes. The transmitted signal has
1 GHz bandwidth with center frequency atb GHz, which corresponds to a wavelength= 12 cm.
This signal is generated with the same block VNA as with the channel I. We capture both, the in-phase
(I channel) and quadrature (Q channel) streams of the impulse response. The @&t bandwidth
is divided evenly intoQQ — 1 = 200 bins. The impulse responge.(t) is the right plot in Fig. 3. The
observation time window length &)0 nano-seconds.

We first study thetype of each of these two channels and compute the corresponding SNRG given
by (88). The plots on the left of Fig. 4 show the magnitude and phase of the target channel réspopse
for channel I, while the plot on the right shows t{geor empirical distribution. The plots in Fig. 5 show
the corresponding results for the channel 1l. Note the longer, heavier tail of the type of channel Il
Although the number of frequency bins is for both chanr@ls- 201, we compute the SNRG (88), or
the ratioy in (93), with only the 40 equally spaced bins that are used below in studying the performance
of the four detectors. We obtain SNRG- 2.36 dB and SNRG@ = 9.05 dB, respectively. These gains
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show that the richer the scattering environment is the larger the gains to be expected.

We now study experimentally the error performance of the four detectors. We follow the set-up explained
in Section Il where we first learn the clutter frequency respalsev,) when no target is present and
then use background subtraction to suppress the clutter. This leads to the conventional detection problern
defined by (41) and to the time reversal detection problem defined by (79) in Section Ill. To study
performance, we plot the probability of detectiépg as a function of the signal to noise ratio (SNR) for
a fixed probability of false alarn¥=s. To obtainnoisybackscatterer at different SNR, we add numerically
generated zero mean white Gaussian noise to the real data EM backscatter. The SNR is defined by
g ELISh) S5 S i)

E{llwll*} Qo

This noise is background noise. Through the experiments, we&@ep) = 1, ¢ = 0,--- ,Q — 1, and

(94)

o, = a;, = 1. The total signal energy;||Sh,||* is scaled to meet different SNR levels.

We determine the threshold the Pra, and theP, by Monte Carlo for the TR-GLRT when we fix the
P-p = 1072. We generate@000 independent trials and computed the test statistic given by (84), using
the ML-estimate for the target channel response in (87). The resulling test statistics are sorted in
ascending order. The threshold is then selected to resultfg, a 1072, Once the threshold is chosen,
to compute theP,, we generat&000 new independent data snapshots containing both target and noise.
We then compute the test statistic and compare it with the corresponding threshold. The percentage of
the number of times that the test statistic exceeds the threshold when the target is present is counted a
the detection probability’s.

For the other three detectors, CDCMF, TRCMF, and ED the thresholds anbfptla¢ fixed P can
be determined analytically with the expressions provided in section Ill. To confirm the validity of the
experiments, we used the same procedure and the &&ifiendependent trials to compute the thresholds
n and the probabilitied, and P-4 for each of these detectors. We repeated the study for a different value
of the false alarm probability, namely-s = 1073, with 40,000 Monte Carlo independent runs.

Figures 6 and 7 show, foPa = 1072 and Pra = 1073, the analytical and experimental results for
channel I, with target channel response in Fig. 4, for the four detectors: conventional detector channel
matched filter (CDCMF), time reversal channel matched filter (TRCMF), energy detector (ED), and time
reversal GLRT (TR-GLRT). The analytical results correspond to the plots labeled with the prefix “Ana.”

In Figures 8 and 9, we show the corresponding experimental results for channel B, i.e., the duct channel,
whose type is shown in Fig. 5.
We make a few comments. First, we note that there is a very good agreement between the experimenta

results and the theoretical performance predictions in section Il for the CDCMF, TRCMF, and ED
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Fig. 6. Detection probability vs. SNR for CDCMF, TRCMF, ED, and TR-GLRT for channel | (Fig. 4). False alarnggte- 10~2. The
total number of data snapshots2sfor CDOCMF and ED,My = 2; for TRCMF, Mx = 2; and for TR-GLRT,Mx =1 and My = 1.

detectors; this gives good indication that the number of independent snapshots used to determine the
thresholds and the error probabilities is statistically significant.

A second comment is with respect to the detection gain SNRG provided by time reversal over con-
ventional detection. From the plots, we see that SNRG for channel | is @bbdB and abou® dB for
channel Il, in agreement with the theoretical predictions computed from the channel type plots in Figs. 4
and 5, respectively.

When the target channel response is not known, and we use the generalized likelihood ratio tests, the
time reversal gain is abowt dB for channel | and2.8 dB for channel Il. Also, the performance loss
when the target channel response is not known with respect to when it is known can be significant. For
instance there is about&dB loss at the target detection probability Bf, = 0.5 shown in Fig. 6. This
loss can be mitigated if more snapshots are available. Further, note that even for the same total numbel
of snapshots, the performance gain provided by time reversal over conventional detection can increase
significantly if, as noted in the Remark in section 1I-B, the number of snapsWigtof the time reversed
signal is increased, while the number of snapshots of the direct sigpails decreased. Thus we keep
Mx + My = 2M. In the limit, we can sefV/x = 2M — 1 and My = 1.

VI. SUMMARY

The paper studies the question of how much detection gain does time reversal provide over conven-
tional detection. For each of these two approaches to the target in clutter binary hypothesis testing, we
consider two scenariosdeal detection where we assume known the target channel frequency response
H,(w,) andrealistic where H,(w,) is assumed unknown. We derive the corresponding test statistics in

section IlI: the conventional detection channel matched filter (CDCMF), the time reversal channel matched
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Detection probability vs. SNR for CDCMF, TRCMF, ED, and TR-GLRT for channel Il (Fig. 2). False alarnPrate= 10~ 5.

The total number of data snapshotisfor CDCMF and ED,My = 2; for TRCMF, Mx = 2; and for TR-GLRT,Mx =1 and My = 1.
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filter (TRCMF), the energy detector (ED), which is the generalized likelihood ratio test for the realistic
conventional detection problem, and the time reversal generalized likelihood ratio test (TRGLRT) for
the realistic time reversal detection problem. For the first three detectors, CDCMF, TRCMF, and ED we
derive analytical expressions for the threshold and for the error probabilities. Finally, we test all four
detectors with real electromagnetic data collected in the laboratory for two channels—free space cluttered
environment channel and a duct channel.

The analysis and experiments show that time reversal can provide significant detection gains and that
these gains are directly related to how rich the target channel response is: channels where the clutter
induces a richer target channel frequency response will lead to larger gains for time reversal detection over
conventional detection. Time reversal provides a simple methodology to adapt the transmitted waveform
to the channel. It is this automatic adaptation that explains the detection gains.

A more comprehensive experimental study comparing time reversal detection with matched filter de-
tection is carried out in [25].
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