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Abstract

This paper studies the binary hypothesis test of detecting the presence or absence of a target in a highly

cluttered environment by using time reversal. In time reversal the backscatter of a signal transmitted into a scattering

environment is recorded, delayed, energy normalized, and retransmitted through the medium. We consider two

versions of the test—target channel frequency response assumed known or unknown—and, for each version, contrast

two approaches: conventional detection (where no time reversal occurs) and time reversal detection. This leads to

4 alternative formulations for which we derive the optimal detector and the generalized likelihood ratio test, when

the target channel frequency response is known or unknown, respectively. We derive analytical expressions for the

error probabilities and the threshold for all detectors, with the exception of the time reversal generalized likelihood

ratio test. Experiments with real world electromagnetic data for two channels (free space with a target immersed

in 20 scatterers; and a duct channel) confirm the analytical results and show that time reversal detection provides

significant gains over conventional detection. This gain is explained by the empirical distribution ortype of the

target channel frequency response—richer scattering channels inducetypeswith heavier tails and larger time reversal

detection gains.

Index Terms

Time Reversal, Matched Filter, Detection, Adaptive Waveform, Waveform Reshape, Empirical Distribution,

Type.

I. I NTRODUCTION

Channel multipath significantly affects the performance of traditional detectors, e.g., the matched filter.

Usually, multipath is thought to be detrimental and a negative whose effects should be minimized. Time

reversal presents the opposite opportunity—multipath as a positive, the more the better. In time reversal

signal processing, a signal is first radiated through a rich scattering medium. The backscattered signal

is then recorded, delayed, time reversed, energy normalized, and retransmitted. The technique of time

reversal is not new, but a thorough theory of detection for this setting is lacking. This paper addresses this
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gap. We study time reversal detection of a target immersed in a rich scattering environment. We focus on

determining the performance gain, if any, provided by the time reversal based detector over conventional

detection techniques. We carry out the following plan: (1) formulate a time reversal approach to detection

and contrast it with the conventional approach; (2) derive the detectors for each of these approaches;

(3) detail the performance of the detectors analytically and experimentally; and, finally, (4) test the detectors

with real electromagnetic (EM) data collected with two different laboratory experiments. Our results are

conclusive: (1) time reversal detection provides significant gains over conventional detection; (2) the

time reversal detection gain is verified experimentally for the first time with electromagnetic real world

experiments; (3) the time reversal detection gain is directly related to thetype1 of the target channel

frequency response—the gain is larger for heavy tailed channel types; (4) the time reversal detection gain

arises because the transmitter reshapes the waveform to best match the channel.

On time reversal Time reversal (TR), known in optics as phase conjugation, has been used to increase

resolution by exploiting scattering and multipath in inhomogeneous channels. Fink and collaborators have

published extensively on time reversal in acoustics and ultrasound, [2], [3], [4], [5], [6]. These works

demonstrated super-resolution focusing in the ultrasound domain. In their work, an ultrasound source is

placed in a water tank with a large number of scatterers. The scattered acoustic signal is recorded by an

array of sensors and retransmitted through the same medium after being time reversed. Their experiments

demonstrate that the acoustic energy refocus at the source with much higher resolution than predicted

by the Rayleigh resolution limit, i.e., they demonstrate super-resolution focusing. More recently, large-

scale acoustics experiments in the ocean confirmed the resolution ability of time reversal in real acoustic

propagation environments, [7], [8]. There is a growing literature on time reversal in these acoustic and

ultrasound fields, as well as on studies of time reversal in random environments, [9], and in several

applications domains, including imaging [10], [11], or communications,[12], [13], [14]. Focusing in the

electromagnetic domain has recently been demonstrated in [15], [16]. In [17], we presented a time reversal

based interference canceller to mitigate the effect of clutter in the electromagnetic domain. None of these

works have studied the problem of detection using time reversal, derived the detectors, and studied time

reversal detection analytically and by experimentation with real electromagnetic data. This is what this

paper pursues and accomplishes. To stress the focus on the impact of time reversal, we consider the

detection of a target in clutter with asingleantenna. This precludes the use of narrowband MUSIC and

subspace type algorithms where the number of clutter returns is restricted to be smaller than the number

of array elements.

The remainder of the paper is organized as follows. In section II, we describe the time reversal

1The expressiontype is used in its information theoretic sense of empirical distribution, [1].
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measurement protocol and present the statistics of the measurements. Section III formalizes the single

binary hypothesis test problem with a single receiving antenna under study—target present or absent

in high clutter, the two approaches—conventional and time reversal—that we consider, and their two

versions—ideal and realistic—where the target channel response is known or unknown, respectively.

The section presents the optimal detectors and the generalized likelihood ratio tests for the ideal and

realistic versions of each approach. The section derives analytical expressions for the thresholds and

error probabilities for each detector, with the exception of the time reversal generalized likelihood ratio

test. Section IV derives an expression for the detection gain provided by time reversal detection over

conventional detection in the ideal case of known target channel response. Section V tests all detectors

in real world scenarios with electromagnetic data. The section presents experiments with two channels

(free space with many scatterers and a duct channel) that confirm the analytical results and show that

time reversal delivers significant detection gains. The section illustrates how these detection gains relate

to the empirical distribution ortypeof the target channel frequency response. We summarize our results

in section VI.

Notation Lower case boldface letters denote vectors and upper case boldface letters denote matrices;

(·)∗ stands for conjugate,(·)T for transpose, and(·)H for Hermitian transpose;R(A) andI(A) are the real

and the imaginary parts ofA, respectively;x¯y is the Hadamard product or component wise product of

two vectors or two matrices (with the same dimensions), whileA⊗B is the Kronecker product ofA and

B; E{·} is the expected value of a random quantity;Im is the identity matrix of orderm; vec{Y} stands

for the column vector that results when we stack the columns of the matrixY and diag{x} is a diagonal

matrix whose diagonal is the vectorx; ‖ · ‖ is the vector or matrix Frobenius norm; finally, we recall that

the probability density function of theQ-dimensional complex circular Gaussian random vectory with

meany and covarianceΣy, e.g., [18], is

py(y) = CN (y, Σy) =
1

πQ |Σy|e
−[y−y]HΣ−1

y [y−y]. (1)

When the vector is white,Σy = σ2
yI, andσ2

y is referred to as the variance of the random vector.

II. T IME REVERSAL MEASUREMENTS

We consider an active radar (or sonar) system with a single receiving antenna. The transmitted signal

s(t) is a wideband signal with duration2T and bandwidthB = 2π
T

. Its discrete Fourier transform is

S(ωq), ωq = 2π
T (Q−1)

(q1 + q), q = 0, 1, · · · , Q − 1, and q1 is a constant. Forreal-valued time dependent

signalss(t), the discrete Fourier transform of its time reversed versions(Tc − t), whereTc is the chosen

time window length, is simply given byejωqTcS∗(ωq); in other words, besides a phase shift, time reversal

becomes phase conjugation in the frequency domain (see, e.g., [19]).
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The paper studies the impact of time reversal in target detection in cluttered environments. We assume

that we have independent measurements of the clutter when no target is present and that the clutter remains

stationary. To emphasize the impact of the channel propagation effects (multipath) induced by the clutter

and to keep the focus on the role of time reversal on detection, we consider in this paper the extreme

case of either asingle antenna in the mono-static context, or a single transmitting antenna and a single

receiving antenna in the bistatic problem.

We introduce two frequency responses: (1) theclutter frequency responseHc(ωq), q = 0, · · · , Q − 1,

is the response of the clutter when no target is present; and (2) thetarget channel frequency response

Ht(ωq), q = 0, · · · , Q−1, is the difference between the channel response when a target is present and the

channel response when no target is present. As such,Ht(ωq) represents all the changes toHc(ωq) induced

by the presence of the target, and, in particular, it includes secondary backscatter, i.e., backscatter from

the clutter to the target that is then radiated back to the receiving antenna.

The problem we consider is the following. We assume that there is an initial phase where the clutter

frequency responseHc(ωq) can be learned. Then, the deterministic part2 of the response that can be

computed by propagating the transmitted signals throughHc(ωq) will be subtracted out and we work with

the resulting signals. We call this background subtraction. We explain this next.

Clutter response In this phase, we learn the clutter responseHc(ωq). We assume that no target is

present. The single antenna probes the channel with the wideband signalS(ωq), q = 0, · · · , Q− 1, whose

energy is

Es =
1

Q

Q−1∑
q=0

|S(ωq)|2. (2)

We repeat the probing to obtainL independent snapshotsYcl(ωq) where

Ycl(ωq) = S(ωq)Hc(ωq) + Ul(ωq) (3)

q = 0, · · · , Q− 1, l = 1, · · · , L.

In (3), Ul(ωq) is additive, zero mean, circular complex white Gaussian noise with diagonal covariance

σ2
uI. The minimum mean square error estimate of the clutter response is

Ĥc(ωq) = S−1(ωq)
1

L

L∑

l=1

Ycl(ωq) (4)

= Hc(ωq) + S−1(ωq)
1

L

L∑

l=1

Ul(ωq).

2This assumption may not be applicable in many radar/sonar environments where the scattering characteristics must be described

stochastically.
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For L sufficiently large the clutter response is well estimated from theL probing snapshots, i.e.,

Ĥc(ωq) ≈ Hc(ωq); (5)

so, we safely assume in the sequel thatHc(ωq) is accurately known.

Clutter suppression: background subtractionBecause the clutter response is assumed known, we can

suppress the clutter by simple background subtraction. Background subtraction is widely used in many

applications from radar to image or video processing. Assume that the backscatter of the channel when

probed by a signalS(ωq) is R(ωq). Part of this signal is the backscatter from the clutter. The clutter

suppressed signal is then

Y (ωq) = R(ωq)− S(ωq)Hc(ωq). (6)

We will formulate the detection problems that we study in this paper in terms of the residual signalsY (ωq)

rather than the signalsR(ωq).

A. Time reversal: Measurement protocol

We assume that the clutter response has been learned as explained in (4). The second phase monitors

the channel. The monitoring protocol in section III when we use time reversal is in two steps, which are

repeatedM -times to obtainM snapshots.

1) Probing In this step, at themth snapshot, the signalS(ωq), q = 0, · · · , Q− 1, is transmitted. When

a target is present, the channel backscattered signal received by the antenna is

Rm(ωq) = S(ωq) [Ht(ωq) + Hc(ωq)] + Vm(ωq) (7)

q = 0, · · · , Q− 1, m = 1, · · · , M.

whereVm(ωq) is additive, zero mean, circular complex white Gaussian noise, with diagonal variance

σ2
vI. In (7), Ht(ωq) is the target channel response, which, as explained above, is the difference

between the channel response when clutter and target are present and when only clutter is present.

By background subtraction, see (6), the clutter suppressed signal is

Ym(ωq) = Rm(ωq)− S(ωq)Hc(ωq)

= S(ωq)Ht(ωq) + Vm(ωq), (8)

q = 0, · · · , Q− 1, m = 1, · · ·M.

2) Time reversal In this step, we use time reversal3, which, as observed before, corresponds to phase

conjugation in the frequency domain. Time reversing the clutter suppressed received signal in (8),

3Global travel time delays are ignored.
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we obtain

Y ∗
m(ωq) = S∗(ωq)H

∗
t (ωq) + V ∗(ωq), (9)

q = 0, · · · , Q− 1, m = 1, · · ·M.

Next, the signalY ∗
m(ωq) is normalized to the energyEs of the original signalS(ωq), q = 0, · · · , Q−1,

by an energy normalization factorkm

km =

√
QEs∑Q−1

q=0 |Ym(ωq)|2
. (10)

Note that the energy normalization factorkm changes from snapshot to snapshot, but isknownsince

it is computed from the received dataYm(ωq), q = 0, · · · , Q− 1.

The received signal is,

Rd
m(ωq) = kmY ∗

m(ωq) [Ht(ωq) + Hc(ωq)] (11)

+Wm(ωq),

q = 0, · · · , Q− 1,m = 1, · · · ,M.

If no target is present,Ht(ωq) = 0 in equation (11). The termWm(ωq), q = 0, · · · , Q − 1, m =

1, · · · ,M , is a circular complex zero mean white Gaussian noise with varianceσ2
w.

As in (8), the known componentkmY ∗
m(ωq)Hc(ωq) from the backscattered signal received by the

antenna is subtracted out. The resulting signal is,∀ : q = 0, · · · , Q− 1, m = 1, · · · ,M ,

Xm(ωq) = Rd
m(ωq)− kmY ∗

m(ωq)Hc(ωq) (12)

= km [S(ωq)Ht(ωq) + Vm(ωq)]
∗ Ht(ωq)

+Wm(ωq)

= kmS∗(ωq) |Ht(ωq)|2 + (13)

kmV ∗
m(ωq)Ht(ωq) + Wm(ωq).

The set-up just described assumes that the clutter remains static or invariant so that the simple background

subtraction in (8) and (12) effectively suppresses the clutter response.

For detection by time reversal, we have both the direct signalsYm(ωq) in (8) and the time reversal

signalsXm(ωq) in (13), q = 0, · · · , Q− 1, andm = 1, · · · ,M .

B. Time reversal measurements: vector notation

Before we state formally the hypothesis testing problem, we express the time reversal measurements

in vector notation. We collect for each snapshotm the frequency responsesYm(ωq) in a Q-dimensional
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vectorym and then stack these vectors in theQM -dimensional vectory, i.e.,

ym = [Ym(ω0) · · ·Ym(ωQ−1)]
T (14)

y = vec {[y1, · · · ,yM ]} . (15)

Similarly, theQ-dimensional vectorss, xm, ht, vm, andwm collect the spectrum of the transmitted signal

S(ωq), the signalsXm(ωq) in (13), the target channel frequency responseHt(ωq), and the noisesVm(ωq)

and Wm(ωq). The vectorsxm, vm, andwm are then stacked in theQM -dimensional vectorsx, v, and

w, respectively. Finally, we introduce

S = diag{s} (16)

zm =
[
yH

m xT
m

]T
(17)

1 = [1 · · · 1]T (18)

k = [k1, · · · , kM ]T (19)

K = diag{k}. (20)

The vectork vectorizes the energy normalization gains, while the diagonal matrixK has these gains in

the diagonal. TheM -dimensional vector1 is a vector of ones. The2Q-dimensional vectorzm vectorizes

all the Y ∗
m(ωq) and Xm(ωq) data for snapshotm. However, we use a slightly different notation for the

2QM -dimensional vectorz. This vector

z =
[
yH xT

]T
, (21)

concatenates the vectorsy∗ andx rather than simply stacking the vectorszm. The vectorz stacks the data

for all the M snapshots. We emphasize that inzm andz, we stack the time reversed, i.e., the conjugates,

y∗m andy∗ with xm andx, respectively.

We now use these vectors to write compactly the signals at the different phases of the time reversal

measurement protocol, using the Hadamard¯ product introduced in section I. We have

ym = [S(ωq)Ht(ωq) + Vm(ωq)] (22)

= Sht + vm, m = 1, · · · ,M (23)

xm =
[
kmS∗(ωq) |Ht(ωq)|2 + kmHt(ωq)V

∗
m(ωq) (24)

+Wm(ωq)]

= kmy∗m ¯ ht + wm (25)

= kmS∗h∗t ¯ ht + kmv∗m ¯ ht + wm, (26)

m = 1, · · · , M.
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where in (22) and (24) we indicate explicitly the entries ofym and xm, respectively. Equations (23)

through (26) assume a target is present. If no target is present, thenht = 0, and the received dataym

andxm are simply the noisesvm andwm, respectively.

Remark In the set-up described in section II-A, we collect a total of2M data snapshots, i.e.,M

snapshots ofym andM snapshots ofxm, where eachxm is obtained by transmitting the corresponding

time reversed signalym. In practice, other transmission strategies may be adopted while keeping the total

number of data snapshots unchanged. For instance, we can transmit a singleMY = 1 snapshot ofym

andMX = 2M − 1 snapshots ofxm, keepingMY + MX = 2M . It is anticipated that the performance of

time reversal detection will vary with different transmission strategies. In this paper, we use the simple

strategy where we alternate eachym transmission with anxm transmission, i.e.,MX = MY = M .

C. Noise and data statistics

Finally, to complete the model, we summarize the statistics assumed. The noise vectorvm is a circular

complex Gaussian random vector, i.e.,

vm ∼ CN (0, σ2
vIQ), (27)

see (1) for the notation used and the explicit expression for the probability density function. The real and

imaginary components ofvm are, respectively,R{vm} ∼ N (0, σ2
v

2
IQ) and I{vm} ∼ N (0, σ2

v

2
IQ), e.g.,

[20]. Similarly, the noise vectorwm is the complex Gaussian random vector

wm ∼ CN (0, σ2
wIQ). (28)

The noisesvm andwm are uncorrelated and independent of the transmitted signal.

We now consider the statistics of the datay, x, andz. When no target is present,ht = 0, and it is

straightforward to derive from the statistics ofvm andwm that

y ∼ CN (
0, σ2

v IM ⊗ IQ

)
(29)

x ∼ CN (
0, σ2

w IM ⊗ IQ

)
, (30)

where,⊗ is the tensor product introduced in section I. We explicitly indicateIM ⊗ IQ to emphasize that

the vectorsy andx are the result of stackingM vectors of dimensionQ. From (29) and (30), and noting

further that, when no target is present,y∗ and x are statistically independent, the probability density

function of z, denoted byp(z|H0), is given by

p(z|H0) = CN




 0

0


 ,


 σ2

vIM ⊗ IQ 0

0 σ2
wIM ⊗ IQ





 . (31)
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When a target is present, the statistics ofy are still straightforward

Ym(ωq) ∼ CN (
S(ωq)Ht(ωq), σ

2
v

)
(32)

y ∼ CN (
yt = 1⊗ Sht, σ

2
vIM ⊗ IQ

)
; (33)

however, the statistics ofx, under the time reversal protocol, are more complicated due to the energy

normalization factorskm. We indicate the conditional statistics ofx givenkm’s. Then, conditioned on the

vector of energy normalization factorsk, see (19),

Xm(ωq) ∼ CN (
kmS(ωq) |Ht(ωq)|2 , (34)

σ2
vk

2
m |S(ωq)|2 |Ht(ωq)|2 + σ2

w

)

x ∼ CN (xt = k⊗ [S∗h∗t ¯ ht] , (35)

σ2
vK

2 ⊗ diag{h∗t ¯ ht}+ σ2
wIM ⊗ IQ

)
,

whereK is the diagonal matrix of normalization factors defined in (20). To get the statistics ofz, we

need to consider the cross statistics ofy∗ andx conditioned on allkm; we will not provide details here.

After some manipulations, we find that the probability density function ofz when a target is present,

denoted byp(z|H1), is

p(z|H1) = CN




 1⊗ S∗h∗t

k⊗ [S∗h∗t ¯ ht]


 , (36)


 σ2

vIM ⊗ IQ σ2
vK⊗ diag{h∗t}

σ2
vK⊗ diag{ht} σ2

vK
2 ⊗ diag{h∗t ¯ ht}+ σ2

wIM ⊗ IQ





 .

III. T IME REVERSAL DETECTION: SINGLE ANTENNA

We consider now the hypothesis test of detecting a target buried in a rich cluttered environment with

a singleantenna. Under the null hypothesisH0, the data is target signal free, while under the alternative

hypothesisH1 the measured data contains a target signal. We start by detailing in subsection III-A the

detection problems we consider. In the remaining subsections of the section we describe the detectors and

their error performance.

A. Detection Problems

Under the measurement protocols described in the previous section, we first learn the clutter and

then use background subtraction. This allows us to derive a simpler equivalent detection problem where,

underH1, the measured data, after canceling the effect of the clutter, are equivalent to the signalsYm(ωq)

and Xm(ωq), q = 0, · · · , Q − 1, m = 1, · · · ,M , given by (8) and (13), or are equivalently described
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by equations (23) and (26). For detection purposes, we can then ignore the role of the clutter response

Hc(ωq) and assume the equivalent signal modelYm(ωq) andXm(ωq), q = 0, · · · , Q− 1, m = 1, · · · ,M ,

where only the effective target channel responseHt(ωq) is explicit.

Ideal and realistic scenariosFor this detection problem, we consider two different versions. In the first

one, we refer to asideal scenario, the target channel responseHt(ωq), or, in vector form,ht, is assumed

known. In the other version, termedrealistic, the target channel responseht is assumed not known.

Although unrealistic, the ideal scenario provides straightforward bounds on the detection performance

achievable by the realistic scenario and enables an analytical expression for the performance gain provided

by time reversal.

Time reversal and conventional detectionWe develop two approaches to the target in clutter detection

problem: the conventional approach and the time reversal approach. In the conventional approach, the

measurements are simply the direct measurementsY (ωq). In the time reversal detection, besides the

direct measurementsY (ωq) we also have the time reversed measurementsX(ωq). We study conventional

detection so that we can benchmark the detection gain, if any, provided by time reversal detection. In

terms of measurement protocol, it reduces to the probing step 1. Like with time reversal, we will consider

two scenarios: (1)ideal, where we know the target channel responseht; and (2) realistic where we do

not know the target channel responseht.

Detectors We have then four detection problems. The next four subsections consider the following

detectors (1) conventional detector channel matched filter (CDCMF) for the ideal conventional detection

problem; (2) time reversal channel matched filter (TRCMF) for the ideal time reversal detection problem;

(3) change detection generalized likelihood ratio test (CD-GLRT) or energy detector (ED) for the realistic

conventional detection problem; and, finally, (4) time reversal generalized likelihood ratio test (TR-GLRT)

for the realistic time reversal detection problem.

The first two detectors, CDCMF and TRCMF, and the last two detectors, the ED (also called CD-

GLRT) and the TR-GLRT, are the optimal detectors and the generalized likelihood ratio detectors for the

corresponding detection problems. Next, we will state each of these detection problems formally, then

determine the corresponding likelihood ratio test statistic, the probability of false alarmPFA, the threshold

η, and, finally, the probability of detectionPD. Before we do this, we recall a few preliminaries needed.

Preliminaries The likelihood ratio test statistic̀ is [21], [22]

`(z) =
p(z|H1)

p(z|H0)
=

∏M
m=1 p(zm|H1)∏M
m=1 p(zm|H0)

, (37)

wherep(z|H0) andp(z|H1) are the probability density functions of the data conditioned onH0 andH1,

respectively. The factorization on the right hand side of equation (37) follows because conditioned on

either hypothesis the measurements for different snapshots are independent.
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Recall the definitions ofPFA andPD. If η is the threshold

PFA =

∫ ∞

η

p` (L|H0) dL (38)

PD =

∫ ∞

η

p` (L|H1) dL, (39)

wherep` (L|H0) and p` (L|H1) are the probability density functions of the test statistic` under the null

hypothesisH0 and the alternative hypothesisH1, respectively. We use the error function

erf(x) =
2√
π

∫ x

0

e−t2dt, x ∈ R. (40)

B. Ideal Conventional Detection: Channel Matched Filter (CDCMF)

We start by studying the conventional approach to the target in clutter detection problem. We use the

equivalent formulation presented in section III-A.

Detection problem.The ideal conventional detection problem is equivalent to the following binary

hypothesis problem:

H1 : y = Sht+ v

H0 : y = v.
(41)

We recall that in thisideal scenario,ht in (41) is known.

The data probability density functions (pdf)p(y|H1) and p(y|H0) conditioned onH1 andH0 follow

from (33) and (29) and are, respectively (see, e.g., (1) for the expression of complex Gauss probability

density functions),

p(y|H1) =
M∏

m=1

1

πQ(σ2
v)

Q
e
− ‖ym−Sht‖2

σ2
v (42)

p(y|H0) =
M∏

m=1

1

πQ(σ2
v)

Q
e
− ‖ym‖2

σ2
v , (43)

where we used the conditional independence assumption of the data snapshots.

Likelihood ratio test̀ CDCMF(x). Replacing (42) and (43) in (37), taking the logarithm of the resulting

expression, discarding the constant terms, and normalizing by the constant2σv‖Sht‖ yields the linear

statistic for the CDCMF detector

`CDCMF(y) = R

(
(Sht)

H
∑M

m=1 ym

σv‖Sht‖

)
. (44)

The test statistic (44) shows that the detector uses the knowledge of the target channel response—the

detector is achannelmatched filter, i.e., it is matched to the known signal componentSht at the output

of the channel.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

Probability of false alarmPFA,CDCMF.: In the null hypothesisH0, standard manipulations show that the

variable inside the parenthesis in (44) is a circular Gaussian complex variableCN (0, M). This leads to

`CDCMF(y) ∼ N (0, M/2). (45)

From (38) and (45), the probability of false alarmPFA,CDCMF for the CDCMF-detector is

PFA,CDCMF =

∫ ∞

η CDCMF

1√
2πM/2

e−
t2

2M/2 dt (46)

=

∫ ∞

η CDCMF√
M

1√
π

e−t2dt.

Using the error function in (40),PFA,CDCMF is compactly written as

PFA,CDCMF =
1

2

(
1− erf

(
ηCDCMF√

M

))
. (47)

ThresholdηCDCMF. From (47), the detection threshold is

ηCDCMF =
√

Merf−1(1− 2PFA,CDCMF), (48)

whereerf−1(·) is the inverse error function.

Probability of detectionPD,CDCMF. In the alternative hypothesisH1, standard manipulations show that

the quantity in parenthesis in the expression of the decision statistic (44) isCN (d1,M) where

d1 = M
‖Sht‖

σv

= M

√∑Q−1
q=0 |S(ωq)Ht(ωq)|2

σv

. (49)

The pdf of the test statistic underH1 is then

`CDCMF(y) ∼ N (d1,M/2) . (50)

The detection probabilityPD,CDCMF follows from (39), and, by making use of the error function (40), can

be expressed simply as

PD,CDCMF =
1

2

(
1− erf

(
ηCDCMF− d1√

M

))
(51)

=
1

2
− 1

2
erf

(
erf−1 (1− 2PFA, CDCMF)− d1√

M

)
.

C. Ideal time reversal: Channel matched filter (TRCMF)

Detection problem.Because the target channel responseht is assumed known we need to consider only

the dataXm(ωq) and x received under the time reversal step 2. These signals are modified from (13)

and (35) by assuming the noisev = 0 under the alternative hypothesis and by setting all energy

normalization factors to the deterministic known constant

km ≡ k =

√
QEs∑Q−1

q=0 ‖S(ωq)‖2 ‖Ht(ωq)‖2
. (52)
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The detection problem is equivalent to

H1 : x = kS∗h∗t ¯ ht+ w

H0 : x = w.
(53)

Note that, becauseht is assumed known, the transmitted signalkS∗h∗t can be generated by the transmitter

with no need for the probing step 1. The data pdfs underH1 andH0 follow from the assumptions onwm

p(x|H1) =
M∏

m=1

1

πQ(σ2
w)Q

e
− ‖xm−ky∗t¯ht‖2

σ2
w (54)

p(x|H0) =
M∏

m=1

1

πQ(σ2
w)Q

e
− ‖xm‖2

σ2
w . (55)

Likelihood ratio test̀ TRCMF(x). Replacing these expressions in the expression of the likelihood ratio (37),

taking the logarithm, discarding constant known terms, and normalizing the test statistic by the known

quantity2σw‖ky∗t ¯ ht‖, yields the linear test statistic

`TRCMF(x) = R

(
(y∗t ¯ ht)

H
∑M

m=1 xm

σw‖y∗t ¯ ht‖

)
. (56)

Probability of false alarmPPA,TRCMF. The test statistic given by (56) is linear and, given the assumptions

on the noisewm, it can be shown that the quantity insideR(·) in (56) is a complex random variable with

probability density functionCN (0,M). This implies, [20], that

`TRCMF(x) ∼ N (0,M/2). (57)

Just like for the CDCMD detector, we find thatPFA,TRCMF is

PFA,TRCMF =
1

2

(
1− erf

(
ηTRCMF√

M

))
, (58)

which is exactly like (47).

ThresholdηTRCMF. The thresholdηTRCMF for the TRCMF detector follows by inverting (48)

ηTRCMF =
√

Merf−1(1− 2PFA,TRCMF). (59)

Probability of detectionPD,TRCMF. It is straightforward to show that, conditioned onH1, the pdf of`TRCMF(x)

is

`TRCMF(x) ∼ N (d2, M/2) (60)

where

d2 = Mk
‖y∗t ¯ ht‖

σw

= Mk

√∑Q−1
q=0 |S(ωq)|2|Ht(ωq)|4

σw

. (61)

The detection probability is obtained as for the CDCMD detector. We get

PD,TRCMF =
1

2

(
1− erf

(
η − d2√

M

))
(62)

=
1

2
− 1

2
erf

(
erf−1 (1− 2PFA, TRCMF)− d2√

M

)
.
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D. Realistic conventional detection: Energy detector

Detection problem.We now consider the conventional detection problem when we do not know the

target channel responseht. The set-up of the problem is like in (41) for ideal conventional detection,

except that nowht is unknown. The data pdfsp(y|H1) andp(y|H0) underH1 andH0 are given again as

in (42) and (43), respectively.

Likelihood ratio test̀ ED(y). Becauseht is unknown, we adopt as detector the generalized likelihood

ratio test (GLRT)
maxht p(y|H1)

p(y|H0)
. (63)

We could refer to this detector as the change detection generalized likelihood ratio detector (CD-GLRT).

However, as will be shown below, the detector has an energy detection like structure. Thus, we refer to

this detector as the energy detector (ED).

The maximum in the numerator of (63) is at the maximum likelihood estimate ofht underH1

ĥt = arg max
ht

p(y|H1).

This yields

ĥt = S−1 1

M

M∑
1

ym. (64)

Using (64) in (63), taking the logarithm, neglecting constants, yields

M∑
m=1

(
‖ym‖2 − ‖ym − Sĥt‖2

)
=

M∑
m=1

(
2R{(Sĥt)

Hym} − ‖Sĥt‖2
)

(65)

= 2R{(Sĥt)
H

M∑
m=1

ym} −M‖Sĥt‖2 (66)

= M‖Sĥt‖2 (67)

=
‖∑M

m=1 ym‖2

M
(68)

Normalizing (68) byσ2
v/2 results finally in

`ED(y) =
1

Mσ2
v/2

‖
M∑

m=1

ym‖2. (69)

Probability of false alarmPFA,ED(y). In the null hypothesisH0 and noise only case, the test statistic

for the energy detector is given by

`ED(y) =

Q−1∑
q=0

∣∣∣∑M
m=1 Vm(ωq)

∣∣∣
2

Mσ2
v/2

(70)
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where, like before,Vm(ωq) ∼ CN (0, σ2
v), q = 0, · · · , Q− 1,m = 1, · · ·M are circular complex Gaussian

random variables. Since the real and imaginary parts ofVm(ωq) are independent and each of them is

N (0, σ2
v/2), this implies that each term in the sum in (70),

∑M
m=1 Vm(ωq)√

Mσ2
v/2

∼ CN (0, 2).

Therefore
∣∣∣∑M

m=1 Vm(ωq)
∣∣∣
2

/ (Mσ2
v/2) is the sum of the squares of twoN (0, 1) random variables, and so

a centralχ-square distribution with2 degrees of freedom. This implies that`ED(y) has a centralχ-square

distribution with2Q degrees of freedom

`ED(y) ∼ χ2
2Q(0). (71)

From (71), we compute the probability of false alarmPFA,ED. Let ψν,µ(x) denote the cumulative distribution

function of a non-centralχ-square random variable withν degrees of freedom and non-centrality parameter

µ. ThenPFA,ED is

PFA,ED = 1− ψ2Q,0(ηED), (72)

whereηED is the threshold.

ThresholdηED. Inverting (72) gives the thresholdηED for the energy detector as

ηED = ψ−1
2Q,0 (1− PFA,ED) , (73)

whereψ−1
ν,µ(·) is the inverse function of the cumulative distributionψν,µ(·).

Probability of detectionPD,ED. The test statistic under the alternative hypothesisH1 is

`ED(y) =

Q−1∑
q=0

∣∣∣∑M
m=1 Ym(ωq)

∣∣∣
2

Mσ2
v/2

(74)

whereYm(ωq) ∼ CN (S(ωq)Ht(ωq), σ
2
v), q = 0, · · · , Q− 1,m = 1, · · ·M . Each term

∣∣∣∑M
m=1 Ym(ωq)

∣∣∣
2

Mσ2
v/2

∼ χ2
2

(
2M |S(ωq)|2 |Ht(ωq)|2

σ2
v

)
, (75)

i.e., it is non-centralχ-square distributed with2 degrees of freedom. It follows that`ED(y) is noncentral

χ-square distributed with2Q degrees of freedom

`ED(y) ∼ χ2
2Q(µ) (76)

where the noncentral parameter is given by

µ = 2M

Q−1∑
q=0

|S(ωq)|2|Ht(ωq)|2/σ2
v . (77)
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Hence, the detection probabilityPD,ED for the energy detector takes the form

PD,ED = 1− ψ(2Q,µ) (ηED) = 1− ψ(2Q,µ)

(
ψ−1

(2Q,0) (1− PFA,ED)
)

, (78)

The probabilities of false alarmPFA,ED and detectionPD,ED, and the thresholdηED can be found by

standard approximations to theχ-square distribution as found for example in [23] or as tabulated in

standard scientific computation packages.

E. Realistic time reversal: Generalized likelihood ratio test (TR-GLRT)

Detection problem.The detection problem is now the following:

H1 : z =


 y∗t

xt


 +


 v∗

w




H0 : z =


 v∗

w


 ,

(79)

whereyt and xt are the means given in (33) and in (35). It is important to note that in the detection

formulation in (79) we have conjugated the data received in the probing stepyt. This is of course an

information preserving transformation so no loss or gain of information is achieved. However, it greatly

simplifies the target channel response estimate as we will see below. The detection problem in (79) is

difficult to study analytically. We consider the approximate problem where we neglect the information

provided by the energy normalization factorskm. In the study of this detector we will takekm to be

deterministic. This is actually a good approximation. In our simulations in section V, we will observe that

km has small variability. Also, we have performed a noise analysis elsewhere that shows that the second

order moment ofkm is small in either the high or low SNR regimes.

Let

Ω(q) =


 σ2

v kmH∗
t (ωq)σ

2
v

kmHt(ωq)σ
2
v k2

m|Ht(ωq)|2σ2
v + σ2

w


 (80)
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The pdfsp(z;ht|H1) andp(zm|H0) conditioned onkm under hypothesesH1 andH0 are given by

p(z;ht|H1) =
M∏

m=1

Q−1∏
q=0

1

π|Ω(q)| exp



−


 Y ∗

m(ωq)− S∗(ωq)H
∗
t (ωq)

Xm(ωq)− km|Ht(ωq)|2S∗(ωq)




H

Ω−1(q)


 Y ∗

m(ωq)− S∗(ωq)H
∗
t (ωq)

Xm(ωq)− km|Ht(ωq)|2S∗(ωq)






 (81)

=
M∏

m=1

Q−1∏
q=0

1

πσ2
wσ2

v

exp

{
− 1

σ2
wσ2

v

(|Ym(ωq)|2k2
m + |S(ωq)|2σ2

w)|Ht(ωq)|2 (82)

+
2

σ2
wσ2

v

R{[kmX∗
m(ωq)Y

∗
m(ωq)σ

2
v + σ2

wY ∗
m(ωq)S(ωq)]Ht(ωq)}

− 1

σ2
wσ2

v

(|Xm(ωq)|2σ2
v + |Ym(ωq)|2σ2

w

)}

p(z|H0) =
M∏

m=1

Q−1∏
q=0

1

πσ2
wσ2

v

exp

{
−|Xm(ωq)|2

σ2
w

}
exp

{
−|Ym(ωq)|2

σ2
v

}
. (83)

Likelihood ratio test̀ TR-GLRT(z). Like for the realistic conventional detection problem in subsection III-D

that lead to the energy detector, here we do not knowht. We adopt again the generalized likelihood ratio

test, see (63). Taking the logarithm of the ratio of the two pdfs (82) and (83) evaluated at the maximum

likelihood estimate ofht, the test statistic is

`TR-GLRT(z) = lnp(z|H1)− lnp(z|H0)

=
M∑

m=1

Q−1∑
q=0

{ |Xm(ωq)|2
σ2

w

+
|Ym(ωq)|2

σ2
v

− 1

σ2
vσ

2
w

(|Ym(ωq)|2 k2
m + |S(ωq)|2 σ2

w

) ∣∣∣Ĥt(ωq)
∣∣∣
2

+
2

σ2
vσ

2
w

R
{[

kmX∗
m(ωq)Y

∗
m(ωq)σ

2
v + σ2

wY ∗
m(ωq)S(ωq)

]
Ĥt(ωq)

}

− 1

σ2
vσ

2
w

(|Xm(ωq)|2σ2
v + |Ym(ωq)|2σ2

w

)}

=
1

σ2
vσ

2
w

M∑
m=1

Q−1∑
q=0

[(|Ym(ωq)|2 k2
mσ2

v + |S(ωq)|2 σ2
w

) ∣∣∣Ĥt(ωq)
∣∣∣
2

−2R
{[

kmX∗
m(ωq)Y

∗
m(ωq)σ

2
v + σ2

wY ∗
m(ωq)S(ωq)

]
Ĥt(ωq)

}]
(84)

whereĤt(ωq) is the maximum likelihood estimate ofHt(ωq) to be determined below. This is not a linear

test statistic, which is to be expected given that the channel is no longer known.

Maximum likelihood (ML) estimatêht underH1. We derive the maximum likelihood estimate ofht

underH1. Like before, we neglect the dependency of the energy normalization factorskm on the target

channel response and so it is only an approximation to the true ML estimate. Taking the partial derivative
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of −lnp(z;ht|H1) with respect toH∗
t (ωq), and ignoring the constant terms, yields, after noticing that

∂|Ht(ωq)|2
∂H∗

t (ωq)
= Ht(ωq), [24],

∂ [−lnp(z;ht|H1)]

∂H∗
t (ωq)

=
1

σ2
vσ

2
w

M∑
m=1

[(|Ym(ωq)|2 k2
mσ2

v + |S(ωq)|2 σ2
w

)
Ht(ωq) (85)

− (
kmXm(ωq)Ym(ωq)σ

2
v + Ym(ωq)S

∗(ωq)σ
2
w

)]
= 0 (86)

After dividing the numerator and the denominator byσ2
vσ

2
w, we obtain

Ĥt(ωq) =

∑M
m=1

[
Ym(ωq)S∗(ωq)

σ2
v

+ kmYm(ωq)Xm(ωq)

σ2
w

]

∑M
m=1

[
|S(ωq)|2

σ2
v

+ |Ym(ωq)|2k2
m

σ2
w

] . (87)

Equation (87) completes the structure of the TR-GLRT test statistic. It is a surprisingly intuitively pleasing

expression for the estimate of the target channel response. The fractions in the denominator are approximate

channel input signal to noise ratios for the probing and time reversal steps, respectively, while the fractions

in the numerator are approximately these signal to noise ratios normalized by the target channel response.

If the noisesv andw are small, the numerator is then approximately the denominator timesHt(ωq), so

that the right hand side, and so the ML channel estimate, is close to the true value of the target channel

response. A final note regarding the ML estimate (87) is that this intuitive expression results because

we formulated the time reversal detection problem using the time reversed signal received in the probing

step 1.

In section V, we study the probabilities of false alarmPFA,TR-GLRT and detectionPD,TR-GLRT, and the

thresholdηTR-GLRT by Monte Carlo simulation since it cannot be determined analytically.

IV. T IME REVERSAL DETECTION GAIN

We now quantify the performance gain provided by time reversal detection over conventional detection,

i.e., what is the gain in performance achieved by the TRCMF over the CDCMF for the known target

channel. We notice that, for both detectors, the threshold under a fixed false alarm probability is exactly

the same, see (48) and (59). This observation allows us to compare the two detectors by computing the

ratio of d2
2 andd2

1 defined in (61) and (49), respectively [21], [22]. In other words, the SNR gain (SNRG)

provided by time reversal is

SNRG =
d2

2

d2
1

=

∑Q−1
q=0 |S(ωq)|2

∑Q−1
q=0 |S(ωq)|2|Ht(ωq)|4(∑Q−1

q=0 |S(ωq)|2|Ht(ωq)|2
)2 , (88)

where the signal energy isEs = 1
Q

∑Q−1
q=0 |S(ωq)|2 and we assumed thatσ2

v = σ2
w. We have the following

Result.
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Result 1: The SNR gainSNRG of the time reversal matched filter over the conventional matched filter

is

SNRG ≥ 1. (89)

Equality holds when{∀q : |Ht(ωq)| = a ∈ R+}, wherea is a nonnegative constant.

Proof: The result follows by direct application of Schwartz inequality. We can factor the denominator

in (89) as 


Q−1∑
q=0

|S(ωq)|︸ ︷︷ ︸
|fq |

|S(ωq)| |Ht(ωq)|2︸ ︷︷ ︸
|gq |




2

≤
Q−1∑
q=0

|S(ωq)|2︸ ︷︷ ︸
|fq |2

Q−1∑
q=0

|S(ωq)|2 |Ht(ωq)|4︸ ︷︷ ︸
|gq |2

, (90)

with equality when

|S(ωq)| |Ht(ωq)|2 = a2|S(ωq)|. (91)

There are a number of interesting observations we can make regarding Result 1.

1) Time reversal gain.Equation (89) shows that the TRCMF has a net performance gain over the

CDCMF. How large this gain is depends on the target channel responseht. For instance, for a flat

channel, e.g., single point scatterer and no multipath, where|Ht(ωq)| = a, a ≥ 0 is a constant,

SNRG = 1. When the target response has large variations across a frequency range as induced by a

rich scattering environment, the gain can be very significant. This observation will be experimentally

verified in Section V where we measure the target channel response for real electromagnetic channels

and compute SNRG.

2) Time reversal: joint optimization at the receiver and the transmitter.Both detectors, the time reversal

TRCMF and the conventional CDCMF are perfectly matched to the (noiseless) signal at theoutput

of the channel, i.e., they are channel matched. They are optimal for their corresponding detection

problems. The performance gain of the time reversal matched filter detector over the conventional

matched filter detector is the result of the implicit optimization achieved by time reversal at both the

transmitter and the receiver. However, besides optimizing the SNR at the receiver, the TRCMF de-

tector also optimizesautomaticallythe signal at thetransmitter.

3) Time reversal: Waveform reshaping.The time reversal detection gain can be explained by theauto-

matic reshaping of the signal achieved by the transmitter, which adjusts better the transmitted signal

to the target channel frequency response. The target channel frequency response is induced by the

scattering environment since the backscatter from the target is not simply the direct path from the

target to the receiver but it is also the secondary scattering from the scatterers to the target and then

from the target to the receiver. A richer scattering environment induces a richer target response.
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4) Time reversal and target channeltype. There are potentially large gains to be achieved by time

reversal. To see this, we rework the expression of the gain. We discuss the simpler case where the

transmitted signal is a (time domain) sinc pulse, soS(ωq) ≡ 1,∀q. Then the gain (89) can be rewritten

as

SNRG =
Q

∑Q−1
q=0 |Ht(ωq)|4(∑Q−1

q=0 |Ht(ωq)|2
)2

=

1
Q

∑Q−1
q=0 |Ht(ωq)|4(

1
Q

∑Q−1
q=0 |Ht(ωq)|2

)2 . (92)

We define thetarget channel type4 as the empirical distribution of the (magnitude) of the target

channel response. If we consider the empirical distribution, i.e., the normalized histogram, of the

values of the target channel response|Ht(ωq)|, Equation (92) is interpreted as the ratio of the fourth

order absolute momentµ4 over the square of the second order absolute momentµ2
2 of the empirical

distribution or target channel type

γ =
µ4

µ2
2

. (93)

The ratioγ is not the kurtosisκ, which is the ratio of the fourth ordercenteredmoment over the square

of the variance. We will computeγ for real channels in Section V. Here, we get an intuitive feeling

for SNRG by looking at the value of the kurtosisκ for a few distributions for which it is readily

available. For a normal random variableκ = 3 = 4.7 dB. Of interest will be leptokurtic5 distributions.

For example, the Laplace (or double-sided exponential) standard distribution hasκ = 6 = 7.78 dB,

while the student ort-distribution with 5 degrees of freedom hasκ = 9 = 9.54 dB.

V. PERFORMANCESTUDY: EXPERIMENTAL RESULTS

This section studies with a mix of real electromagnetic (EM) data and simulated noise the performance

gain provided by time reversal detection over conventional detection. We recall from section III that

the conventional detection channel matched filter (CDCMF) and the energy detector (ED) address the

conventional detection problem (41) where no time reversal occurs, while the time reversal channel

matched filter (TRCMF) and the time reversal generalized ratio test (TR-GLRT) consider the time reversal

detection problem (79) where the time reversed backscattered signals are retransmitted. Also, the CDCMF

and the TRCMF, which are channel matched, assume full knowledge of the target channel responseHt(ωq),

while the ED and the TR-GLRT have no knowledge of the channel and are the generalized likelihood ratio

4As noted in section I, the expressiontype is used as an information theoretic concept to refer to the empirical distribution, see [1], of

the channel frequency response.
5Leptokurtic distributions have a positive kurtosis excess, i.e., a kurtosis larger than 3, the kurtosis of the normal distribution.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 21

tests for the corresponding problems. Accordingly, we pursue the following performance comparisons:

(1) Time reversal gain over conventional detection—target channel response known:we compare the

TRCMF with the CDCMF; (2)Time reversal gain over conventional detection—target channel response

unknown:we compare the TR-GLRT with the ED; and (3)Performance loss due to lack of knowledge of

the target channel response:we compare the TRCMF with the TR-GLRT and the CDCMF with the ED.

The test statistics for the four detectors were derived in section III. In that section, we also studied

analytically the performance of the three detectors, the CDCMF, ED, and TRCMF, deriving analytical

expressions for the probabilities of false alarmPFA and detectionPD, as well as the thresholdsη, in

terms of either the error function or the cumulative distribution function ofχ-square variables. For the

TR-GLRT, we cannot derive these analytical expressions. We study its performance experimentally.

We start by describing the two experimental setups used to collect the electromagnetic data: Channel I

is propagation in free space in a cluttered environment; and channel II is propagation in a duct. We detail

each of these.

Channel I: Free space propagation in cluttered environment.The experimental setup is shown in Fig. 1.

The time domain waveform is produced by stepped frequency synthesis. The transmitted signal has2 GHz

bandwidth with center frequency at5 GHz, which corresponds to a wavelengthλc = 6 cm. This signal

is generated with an Agilent 89610A vector network analyzer, block VNA in Fig. 1. We capture both,

the in-phase (I channel) and quadrature (Q channel) streams of the impulse response. The transmitter

and receiver antennas are two horn antennas, indicated by the letters A and B in the figure, both with

operational bandwidths from4 to 6 GHz. These two antennas are mounted in a slider that moves in rails

as shown in the figure, with their positions computer controlled; Fig. 1 shows in dark and light grey

two different possible positions for the antennas A and B. The baseline separating these antennas can

be up to 2 m (roughly 33λc) as shown in the figure. The total2 GHz bandwidth is divided evenly into

Q − 1 = 200 bins. The radiated signal is scattered by 20 scatterers, shown as circles in Fig. 1. The

scatterers are a mixture of copper pipes and solid dielectric pipes with1.3 cm diameter and3.2 cm outer

diameter, respectively. The scatterers are placed in front of an absorbing wall which is 2.6 m (roughly

43 λc) away from the antennas. A target, represented as a triangle, is immersed in the cloud of scatterers.

The target is simply an additional copper pipe of the same1.3 cm diameter. The impulse responsehc(t)

of the scattering environment of Channel I is the left plot in Fig. 3. The observation time window length

is 100 nano-seconds.

Channel II: duct.The experimental setup is shown in Fig. 2. Again, the stepped frequency synthesis

is performed to produce the time domain signal. The signal is transmitted through a3 m metal pipe with

metal caps. The diameter of the duct is30.5 cm. It operates like a resonant cavity, with a rich scattering



IEEE TRANSACTIONS ON SIGNAL PROCESSING 22

Fig. 1. Channel I: Free space. Transmit antenna A and receive antenna B are horn antennas. Operating frequency range is4 − 6 GHz.

Scatterers are a mixture of 20 copper and solid dielectric pipes, represented as circles. The target is a copper pipe, represented as a triangle.

Fig. 2. Channel II: Duct. Operating frequency range is2−3 GHz.3 m metal pipe duct with diameter of0.3 m with metal caps. Transmitting

and receiving antennas are monopole probes.
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Fig. 3. Left–Impulse responsehc(t) of Channel I: free space propagation scattering environment. Right–Impulse responsehc(t) of Channel II:

duct. Both time domain impulse responses are obtained by the inverse FFT of the frequency measurements, i.e., stepped frequency synthesis.

Channel I is measured between4−6 GHz with center frequency of5 GHz; Channel II is measured between2−3 GHz with center frequency

of 2.5 GHz.
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Fig. 4. Channel I: Left–|Ht(ωq)| and phase ofHt(ωq). Right–type or empirical distribution of target channel responseHt(ωq).
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Fig. 5. Channel II: Left–|Ht(ωq)| and phase ofHt(ωq). Right–type or empirical distribution of target channel responseHt(ωq).

environment. The transmitting and receiving antennas are monopole probes. The transmitted signal has

1 GHz bandwidth with center frequency at2.5 GHz, which corresponds to a wavelengthλc = 12 cm.

This signal is generated with the same block VNA as with the channel I. We capture both, the in-phase

(I channel) and quadrature (Q channel) streams of the impulse response. The total1 GHz bandwidth

is divided evenly intoQ − 1 = 200 bins. The impulse responsehc(t) is the right plot in Fig. 3. The

observation time window length is200 nano-seconds.

We first study thetype of each of these two channels and compute the corresponding SNRG given

by (88). The plots on the left of Fig. 4 show the magnitude and phase of the target channel responseHt(ωq)

for channel I, while the plot on the right shows itstypeor empirical distribution. The plots in Fig. 5 show

the corresponding results for the channel II. Note the longer, heavier tail of the type of channel II.

Although the number of frequency bins is for both channelsQ = 201, we compute the SNRG (88), or

the ratioγ in (93), with only the 40 equally spaced bins that are used below in studying the performance

of the four detectors. We obtain SNRGI = 2.36 dB and SNRGII = 9.05 dB, respectively. These gains
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show that the richer the scattering environment is the larger the gains to be expected.

We now study experimentally the error performance of the four detectors. We follow the set-up explained

in Section II where we first learn the clutter frequency responseHc(ωq) when no target is present and

then use background subtraction to suppress the clutter. This leads to the conventional detection problem

defined by (41) and to the time reversal detection problem defined by (79) in Section III. To study

performance, we plot the probability of detectionPD as a function of the signal to noise ratio (SNR) for

a fixed probability of false alarmPFA. To obtainnoisybackscatterer at different SNR, we add numerically

generated zero mean white Gaussian noise to the real data EM backscatter. The SNR is defined by

SNR =
E{‖Sht‖2}
E{‖w‖2} =

∑Q−1
q=0 |S(ωq)Ht(ωq)|2

Qσ2
w

. (94)

This noise is background noise. Through the experiments, we setS(ωq) = 1, q = 0, · · · , Q − 1, and

σ2
v = σ2

w = 1. The total signal energy1
Q
‖Sht‖2 is scaled to meet different SNR levels.

We determine the thresholdη, thePFA, and thePD by Monte Carlo for the TR-GLRT when we fix the

PFA = 10−2. We generated8000 independent trials and computed the test statistic given by (84), using

the ML-estimate for the target channel response in (87). The resulting8000 test statistics are sorted in

ascending order. The threshold is then selected to result in aPFA = 10−2. Once the threshold is chosen,

to compute thePD, we generate8000 new independent data snapshots containing both target and noise.

We then compute the test statistic and compare it with the corresponding threshold. The percentage of

the number of times that the test statistic exceeds the threshold when the target is present is counted as

the detection probabilityPD.

For the other three detectors, CDCMF, TRCMF, and ED the thresholds and thePD at fixed PFA can

be determined analytically with the expressions provided in section III. To confirm the validity of the

experiments, we used the same procedure and the same8000 independent trials to compute the thresholds

η and the probabilitiesPD andPFA for each of these detectors. We repeated the study for a different value

of the false alarm probability, namely,PFA = 10−3, with 40, 000 Monte Carlo independent runs.

Figures 6 and 7 show, forPFA = 10−2 and PFA = 10−3, the analytical and experimental results for

channel I, with target channel response in Fig. 4, for the four detectors: conventional detector channel

matched filter (CDCMF), time reversal channel matched filter (TRCMF), energy detector (ED), and time

reversal GLRT (TR-GLRT). The analytical results correspond to the plots labeled with the prefix “Ana.”

In Figures 8 and 9, we show the corresponding experimental results for channel B, i.e., the duct channel,

whose type is shown in Fig. 5.

We make a few comments. First, we note that there is a very good agreement between the experimental

results and the theoretical performance predictions in section III for the CDCMF, TRCMF, and ED
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Fig. 6. Detection probability vs. SNR for CDCMF, TRCMF, ED, and TR-GLRT for channel I (Fig. 4). False alarm ratePFA = 10−2. The

total number of data snapshots is2: for CDCMF and ED,MY = 2; for TRCMF, MX = 2; and for TR-GLRT,MX = 1 andMY = 1.

detectors; this gives good indication that the number of independent snapshots used to determine the

thresholds and the error probabilities is statistically significant.

A second comment is with respect to the detection gain SNRG provided by time reversal over con-

ventional detection. From the plots, we see that SNRG for channel I is about2.4 dB and about9 dB for

channel II, in agreement with the theoretical predictions computed from the channel type plots in Figs. 4

and 5, respectively.

When the target channel response is not known, and we use the generalized likelihood ratio tests, the

time reversal gain is about2 dB for channel I and2.8 dB for channel II. Also, the performance loss

when the target channel response is not known with respect to when it is known can be significant. For

instance there is about a8 dB loss at the target detection probability ofPD = 0.5 shown in Fig. 6. This

loss can be mitigated if more snapshots are available. Further, note that even for the same total number

of snapshots, the performance gain provided by time reversal over conventional detection can increase

significantly if, as noted in the Remark in section II-B, the number of snapshotsMX of the time reversed

signal is increased, while the number of snapshots of the direct signalMY is decreased. Thus we keep

MX + MY = 2M . In the limit, we can setMX = 2M − 1 andMY = 1.

VI. SUMMARY

The paper studies the question of how much detection gain does time reversal provide over conven-

tional detection. For each of these two approaches to the target in clutter binary hypothesis testing, we

consider two scenarios:ideal detection where we assume known the target channel frequency response

Ht(ωq) and realistic whereHt(ωq) is assumed unknown. We derive the corresponding test statistics in

section III: the conventional detection channel matched filter (CDCMF), the time reversal channel matched
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Fig. 7. Probability vs. SNR for CDCMF, TRCMF, ED, and TR-GLRT for channel I (Fig. 4). False alarm ratePFA = 10−3. The total

number of data snapshots is2: for CDCMF and ED,MY = 2; for TRCMF, MX = 2; and for TR-GLRT,MX = 1 andMY = 1.
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Fig. 8. Detection probability vs. SNR for CDCMF, TRCMF, ED, and TR-GLRT for channel II (Fig. 2). False alarm ratePFA = 10−2.

The total number of data snapshots is2: for CDCMF and ED,MY = 2; for TRCMF, MX = 2; and for TR-GLRT,MX = 1 andMY = 1.
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Fig. 9. Detection probability vs. SNR for CDCMF, TRCMF, ED, and TR-GLRT for channel II (Fig. 2). False alarm ratePFA = 10−3.

The total number of data snapshots is2: for CDCMF and ED,MY = 2; for TRCMF, MX = 2; and for TR-GLRT,MX = 1 andMY = 1.
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filter (TRCMF), the energy detector (ED), which is the generalized likelihood ratio test for the realistic

conventional detection problem, and the time reversal generalized likelihood ratio test (TRGLRT) for

the realistic time reversal detection problem. For the first three detectors, CDCMF, TRCMF, and ED we

derive analytical expressions for the threshold and for the error probabilities. Finally, we test all four

detectors with real electromagnetic data collected in the laboratory for two channels—free space cluttered

environment channel and a duct channel.

The analysis and experiments show that time reversal can provide significant detection gains and that

these gains are directly related to how rich the target channel response is: channels where the clutter

induces a richer target channel frequency response will lead to larger gains for time reversal detection over

conventional detection. Time reversal provides a simple methodology to adapt the transmitted waveform

to the channel. It is this automatic adaptation that explains the detection gains.

A more comprehensive experimental study comparing time reversal detection with matched filter de-

tection is carried out in [25].
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