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Fig. 4. Window parameters versus maximum sidelobe level for /;-sinh and
I,-cosh window families.

rameters («, y) and the maximum sidelobe level (in decibels) are
shown in Fig. 4.

IV. CONCLUSIONS

The desired design equations for digital spectrum analysis using
I,-cosh window and raised-cosine family have been derived along
the lines of Kaiser and Schafer [15]. Because of the variable pa-
rameter, these window functions are more flexible in digital spec-
trum analysis than the fixed windows, such as Hanning, Hamming,
etc. The I)-cosh window has the advantage of lower first sidelobe
level compared to the Iy-sinh window or prolate-spheroidal wave
functions.
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Alternate Bounds on the Resolvability Constraints of
Spatial Smoothing

M. J. D. RENDAS anD J. M. F. MOURA

Abstract—In this correspondence, bounds for the number of subar-
rays required by the spatial smoothing téchnique for direction finding
are discussed. It is proved that for a source matrix of rank r, ¢ direc-
tions can be resolved with M > g — r subarrays. It is also shown that
when the source matrix is similar to a block-diagonal matrix through
a permutation matrix, this bound can be further reduced to the largest
rank deficiency pr ted by the diagonal blocks: M > max (n; — r;),
where n; and r; are, respectively, the dimension and the rank of the ith
diagonal block. Another bound for M is derived, which relates to the

ber of 0 C ts in the eigenvectors of the source co-
variance matrix.

L 4

I. INTRODUCTION

For linear uniform arrays, the spatial smoothing technique [1],
[6] provides a solution to the problem of rank deficiency that affects
the narrow-band high-resolution direction finding algorithms when
the signal components of the observations are perfectly correlated.
This method is based on averaging the sample covariance matrix
over contiguous subarrays, resulting in a ‘‘smoothed”’ covariance
matrix

M
5=2 pt's(p+y ! (1)

where M is the number of subarrays, D is a diagonal matrix
D = diag {e/=™ - - - e/}, (2)

q is the number of impinging replicas, and § is the (¢ X ¢q) co-
variance matrix of the source vector

S = E[s(1)s*(D)]. (3)

We will denote the rank of S by r.

The goal of the spatial smoothing technique is to replace S, that
for perfectly correlated sources is a singular matrix, with S, which,
for conveniently large M, will have rank equal to the dimension of
S independently of its rank.
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_ The number of subarrays M necessary to generate a nonsingular
S determines the resolvability constraint of the array, i.e., the max-
imum number of sources that can be detccted using high-resolution
algorithms. This constraint is obtained combining the bound on M
together with the condition that cach individual subarray must have
a number of sensors greater than the number of sources. For an
array of size K, the length of cach subarray is given by K — M +
1. The two conditions

K-M+1>gq
MEMI“H\ (4)

imply
K 2 q + MII\IH‘ (5)

The constraint K = 2¢ presented in [6] corresponds to the case
when the ¢ impinging replicas are perfectly correlated, for which
M., = gq. In fact, the maximum number of sources that can be
detected depends on the rank of the source covariance matrix, as it
has already been shown in [5] and [4].

In this correspondence, we assess the general case and the spe-
cial case of block-diagonal covariance matrices, for which bounds
on the number of subarrays were presented in [S] and [4]. We also
improve the bounds in the case of block-diagonal matrices and pre-
sent a new bound in terms of the number of null components in the
eigenvectors of the source covariance matrix. Namely, we prove
that the following are sufficient conditions for the spatial smoothing
technique to yield a matrix with rank equal to the number of im-
pinging replicas, g:

i) in the general case, the minimum number of subarrays re-
quired is ¢ — r + 1 where r is the rank of the source covariance
matrix:

ii) when the source covariance matrix S is similar, through a
permutation matrix, to a block-diagonal matrix, the previous bound
can be reduced to M > max (n; — r; ), where n; is the dimension
of the ith diagonal block, r; is its rank, and the maximum is taken
over all diagonal blocks;

iii) when the null space of the source covariance matrix admits
a basis formed by vectors with at most w nonzero elements. the
minimum number of subarrays can be reduced from ¢ — r + 1 to
Ww.

The analysis in [5] and [4] is based on properties of polynomials.
Here, we use the special structure of the invariant subspaces of
diagonal matrices to prove the bounds i)-iii).

II. GENERAL CASE

We establish in this section the bound for the general case i).
We need the concept of invariant subspace for a matrix [3].

Let A be the matrix that represents in a given basis the linear
transformation @

@:K' — K (6)

where the elements of the matrix A take values in the ground field
K (in our case, K = C, the field of complex numbers).

Definition 1: A subspace U € K“ is said to be an invariant sub-
space of A iff '

AU C U, (7)

ie..
AveU, veel. (8)
O

In the sequel, Sp{ -} stands for the linear span of the enclosed
vectors, while p(A ) stands for the rank of the matrix 4.

To motivate our proof, let us consider briefly the special case
when § has rank one: § = po*. Then, S admits the following fac-

torization:

vt

_ v*D*
S = [v|Dv| -+ |DY o] . . (9)
» + b+M 1

For S to have rank q, the left factor of § in (9) must contain exactly
q linearly independent vectors. Define the sets C, of the first n
columns of the left factor of S, forn = 1, + - - |, M. Assume that
for a given n < g, the vectors in C, were all contained in an in-
variant subspace of D of dimension n* < ¢, that we denote by
‘U. If this would be the case, all the subsequent remaining column
vectors in the left factor of S would all also belong to U, and the
rank of S would be at most n*.

The structure of the set of invariant subspaces of diagonal ma-
trices with distinct entries, like D, is described in Lemma 1 below.
As we shall see, this structure imposes n* = ¢. So, when p(S) =
1, as long as M = g, the first g columns of the left factor in (9)
are in fact linearly independent, and S has full rank g.

Lemma 1 [3, p. 51]: Let D be a diagonal matrix with distinct
nonzero diagonal entries: D;; # D, i # j. Any invariant subspace
of D is of the following form:

V=Sple, .6, (10)
where (6, -+ , 0,) is a partition of length 1 < n < g of the
integers {1, - - - , g} and ¢, is the g-dimensional vector with all
entries equal to zero, except the ith:

e20--01 0---0]. (11)
i—1
]

An immediate consequence of this lemma is the following: if
belongs to an n-dimensional invariant subspace of a (¢ X ¢) matrix
D in the conditions of the lemma, then at least ¢ — n of its elements
are zero.

Lemma 2: Let S be a Hermitian matrix with nonzero diagonal
entries of rank r, D a matrix in the conditions of Lemma 1,
{u; }i-, the eigenvectors of S corresponding to the positive eigen-
values A;. Then, the only invariant subspace of D that contains
{u;}i-\ is the whole space K9. O

What Lemma 2 is saying is that K¢ is the minimal D-invariant
subspace over Sp{u; };_,, i.e., there is no invariant subspace of D
of dimension smaller than g that contains all the eigenvectors of §
corresponding to nonzero eigenvalues.

Proof (by contradiction): If r = g, there is nothing to prove.
Assume r < q. Consider the spectral representation of the matrix

S[2]:

S = 2 Nuu® = UAU".

i=1

(12)

Assume there is an invariant subspace V of D of dimension n, r <
n < q, which contains all the columns of the matrix U, i.e., the

eigenvectors {u;};/_,. By Lemma 1, V = Sp{es,. - . e, } for
some partition o. Define the (¢ X n) matrix
E, & [e, " e,). (13)
If {u; }/_, € V then there is an (n X r) matrix T such that
U=E,T. (14)
Using (14) in (12),
S =E,TAT*E}, (15)
which implies
S$; =0, i¢{a, 0.} (16)
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contradicting the assumption that the diagonal elements of S are all
different from zero. O
We can now state result i) above.
Fact 1: Let S and D be matrices in the conditions of Lemma 2
above. For M > g — r, the matrix S defined in (1) has full rank

Proof: If r = g, S is itself full rank and the fact is trivially
verified. Assume r < ¢. As in Lemma 2, let {u;}/- be the eigen-
vectors of S that do not belong to its kernel. Define

WEDS k=1, M. (17)
Then, from (1),
[ ’ M
= ZI AZ N (18)
i=1 k=1
We prove that p(§) = ¢ by showing that
Sp{u,-"}l_zlmr - K9 (19)
k=1.---'M
Let
Ut =Splu} L, (20)
Note that
SP{“'*},-:lA =u'+pUwW + --- + DM (21)
k=1.-M

Since the vectors {u; }/_, are linearly independent, U ' has dimen-
sion r. By Lemma 2, we know that U' cannot be an invariant sub-
space of D, i.e.,

pu' ¢ u'. (22)
So, there is at least a vector v, € U' such that
Dv, ¢ u'. (23)

Using v, define

U? = Sp{ul, -+ ,ul,Dv,} € U+ DU (24)

Again, unless r = g — 1, U? cannot be an invariant subspace of
D. So, we can find a vector v, € U whose image by D is not in
U?, and add the new direction Do, to U to yield a subspace U*
of dimension » + 2. This process can be repeated ¢ times until the
whole space K is reached, i.e.,

U’ = K9. (25)
But,
U = Sp{ui, -+, u, Dy, * -, Dv,_,}
cu' +pu' + --- + 0! (26)
which, together with (25), implies
a' +pu' + -+ + DUl = K9, (27)

Since dim {U'} = r + ¢t — 1, the whole space is generated for
r+t—1=gq,ie.,t =g —r+1,and the proof is completed.

III. SpeEciAL CASES

A particular case for which a tighter bound can be found is mo-
tivated by the situation in which the matrix S is block diagonal:

W,
W,

[[e]

(28)

([e=]

W,

where W, are (n; X n;) matrices of rank r;,

Sr=r

i=

]

ZI n=q (29)
i=

This corresponds, for example, to the existence of I physically dis-
tinct (uncorrelated) sources, each one propagating over n; paths to
the receiving structure. As in the previous case, ¢ denotes the total
number of replicas received. Generally, the components of the vec-
tor s(t) are not arranged by correlated groups. In this case, even
though the matrix S is not block diagonal, it is related by a simi-
larity transformation to a block-diagonal matrix §*

s* = psp~! (30)

where P is a permutation matrix.

Lemma 3: Let S be a (¢ X ¢) Hermitian matrix with nonzero
diagonal entries which is block-diagonalizable by a permutation
matrix [ (30) and (28)], and D a diagonal matrix with distinct non-
zero diagonal entries. The eigenvectors of S that do not belong to
its null subspace can be divided into / disjoint groups, of r; vectors
each, such that each group is contained in an invariant subspace
Y' of D of dimension n;

ua;,"',u‘,L,E‘yi,l‘=l,"',1. (31)
Furthermore, the subspaces Y’ satisfy
yny ={0},i+] (32)
and
K=y +Y+ - - +Y. (33)
Proof: Partition D as in (28) and apply Lemma 2 to each sub-
matrix in the block-diagonal matrix S*. 0O

For this particular case, the following holds.
Fact 2: Let S and D be matrices in the conditions of Lemma 3
above. For

M> max (n —r), (34)
=l
the averaged matrix given by (1) has full rank g. 0
Proof: Tt suffices to show that
V4DV + -+ DMV =Y, i=1,0 0 (35)

and then use (33). Applying Fact | to the restriction of D to each
Y, it is seen that (35) will be verified for M > n; — r;. Since this
must hold for all values of i, bound (34) is obtained. O
A different bound can be found that relates to the number of
nonzero elements in the eigenvectors of S that do not belong to its
null space.
Fact 3: Let S, D, and {u; };_ have the same meaning as in Fact

1. Let w; be the number of nonzero elements in ;. Then, for
M= max w, (36)
i=1.cr
S, given by (1), has full rank q. O

Proof: Let M* be in the conditions of Fact 1: M¥ > g — r.
Define

%' £ Sp{u, Duy, + -+, DM '} (37)
By Fact 1, we know that
k -
selut}, , =K (38)
k=1 M*

where uf‘ have been defined in (17). Also, in terms of the subspaces
ac’,

sp{uf},_, ..., =3+ -+ 3 (39)
k=1, M*

[l
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If u; has only w; nonzero elements. then u; belongs to an invariant
subspace of D of dimension w;, and consequently,

Sp{u. Du;, -~ . D™~ 'w] = Sp{u. Duy, - -+ D" u}.

(40)

So, forany M = max w;,

i=l-
3" = Sp{u, Du;. - - - =1,---r (41)
and we get

Sp{u (42)
which concludes the proof. 0
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Asymptotic Second-Order Properties of Sample
Partial Correlations

PETRE STOICA

Abstract—The asymptotic behavior of the sample partial correla-
tions (PARCOR’s) is studied in the case of a general stationary pro-
cess. An explicit formula for PARCOR’s second-order moments is pro-
vided. The analysis presented in this correspondence extends to more
general processes the results on the statistics of sample partial corre-
lations of autoregressive (AR) and mixed autoregressive moving-aver-
age (ARMA) processes reported in [1], [2], {10}, and [11]. This exten-
sion should be useful as the processes encountered in applications are
not exactly AR or ARMA.

[. INTRODUCTION

Partial correlations (also known as refiection coefficients) are of
considerable interest in a number of signal processing applications.
Their estimation from the data may be done by a variety of meth-
ods. The difference between the various estimators currently in use
is, however, negligible for large data samples (see [1]). In other
words, all of the commonly used estimators of partial correlations
(abbreviated ‘*‘PARCOR’s’" in the following) have the same
asymptotic properties. In this correspondence, we assume that the
Yule-Walker method is used to estimate the PARCOR sequence.
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The interest in the statistical properties of sample PARCOR es-
timates has various roots. For example, one may be interested in
the performance of some technique which uses sample PARCOR s,
such as spectral estimation and linear prediction. In other cases,
such as fault detection, speech recognition, or AR order estima-
tion, the statistical properties of the sample PARCOR's are used
to devise the technique itself.

Early studies of the sample fluctuations of PARCOR estimators
appeared in [3]-[5]. More recent studies can be found in [1], [2],
[10]-[12].

In this correspondence, we establish the large sample properties
of PARCOR’s, under more general conditions than those assumed
in earlier works. For regular processes, the PARCOR coeflicients
are uniquely determined from the serial covariances. The distri-
bution of the latter, and the so-called Bartlett formula for the co-
variance matrix of that distribution in particular, are well known
[6]-[12]. A similar formula for sample PARCOR’s, which in view
of the relationship between PARCOR and serial covariances should
hold under similar conditions to the Bartlett formula, does not seem
to be available in the literature. Our aim here is to provide such a
formula for sample PARCOR’s of a general stationary process. This
is done in Section II. In Section III we present a compact version
of our formula, which holds for linear processes. Note that we de-
rive our formula by first linearizing the dependence PARCOR-se-
rial covariances and then using the Bartlett formula. This procedure
has the virtue of clearly showing that the Bartlett formula for serial
covariances and our formula for PARCOR’s hold under analogous
conditions. Also, the linearized dependence PARCOR-serial cov-
ariances obtained as a byproduct may be interesting in its own right.
An alternative way to derive our results would be to use the anal-
ysis technique of [14].

[I. THE GENERAL RESULT

Lety(r),t=1,2, - -, denote a zero-mean stationary process.
The (serial) covariance of y(r) at lag k is denoted by

o L Ey()y(r + k) k=041, 2, -+ (2.1)
and the kth PARCOR coefficient by
o 2 uR k=1,2, (2.2)
where
T
w=1[0---0 1]
Po P T Pk—1
R, =
P
P -1 T Po
T
re = [n 4 I

Let us introduce the following assumptions, for later use.

Al: The covariance matrices R, k = 1,2, - -+, are positive
definite.

A2: The process y(t) is Gaussian and its covariance sequence
{ o} is absolutely summable.

Assumption Al guarantees that the PARCOR sequence is
uniquely derived from { p; }, see (2.2). Assumption A2 essentially
contains the conditions under which the Bartlett formula is known
to hold (see below). In particular, A2 is satisfied if y(¢) is a linear
(Gaussian) process, i.e., if there exists a stable linear filter H(q ")
= I .« hig " such that

y(1) = H(g™")e(1) (2.3)

where g™' denotes the backward shift operator and e (1) is a zero-
mean (Gaussian) white noise. We will denote the variance of e(r)
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