
SPIRAL: Code Generation for DSP Transforms

MARKUS PÜSCHEL, MEMBER, IEEE, JOSÉ M. F. MOURA, FELLOW, IEEE,
JEREMY R. JOHNSON, MEMBER, IEEE, DAVID PADUA, FELLOW, IEEE,
MANUELA M. VELOSO, BRYAN W. SINGER, JIANXIN XIONG, FRANZ FRANCHETTI,
ACA GAČIĆ, STUDENT MEMBER, IEEE, YEVGEN VORONENKO, KANG CHEN,
ROBERT W. JOHNSON, AND NICHOLAS RIZZOLO

Invited Paper

Fast changing, increasingly complex, and diverse computing
platforms pose central problems in scientific computing: How to
achieve, with reasonable effort, portable optimal performance?
We present SPIRAL, which considers this problem for the perfor-
mance-critical domain of linear digital signal processing (DSP)
transforms. For a specified transform, SPIRAL automatically gen-
erates high-performance code that is tuned to the given platform.
SPIRAL formulates the tuning as an optimization problem and
exploits the domain-specific mathematical structure of transform
algorithms to implement a feedback-driven optimizer. Similar to a
human expert, for a specified transform, SPIRAL “intelligently”
generates and explores algorithmic and implementation choices to
find the best match to the computer’s microarchitecture. The “intel-
ligence” is provided by search and learning techniques that exploit
the structure of the algorithm and implementation space to guide

Manuscript received April 29, 2004; revised October 15, 2004. This work
was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Grant DABT63-98-1-0004 administered by the Army Di-
rectorate of Contracting and in part by the National Science Foundation
under Awards ACR-0234293, ITR/NGS-0325687, and SYS-310941.

M. Püschel, J. M. F. Moura, F. Franchetti, A. Gačić, and Y. Voronenko
are with the Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA 15213-3890 USA (e-mail: pueschel@
ece.cmu.edu; moura@ece.cmu.edu; franzf@ece.cmu.edu; agacic@ece.
cmu.edu; yvoronen@ece.cmu.edu).

J. R. Johnson is with the Department of Computer Science, Drexel Univer-
sity, Philadelphia, PA 19104-2875 USA (e-mail: jjohnson@cs.drexel.edu).

D. Padua is with the 3318 Digital Computer Laboratory, Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
61801 USA (e-mail: padua@uiuc.edu).

M. M. Veloso is with the School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213-3890 USA (e-mail: veloso@cs.cmu.edu).

B. W. Singer is at 716 Quiet Pond Ct., Odenton, MD 21113 USA (e-mail:
bsinger@cs.cmu.edu).

J. Xiong is with the 3315 Digital Computer Laboratory, Urbana, IL 61801
USA (e-mail: jxiong@cs.uiuc.edu).

K. Chen is with STMicroelectronics, Inc., Malvern, PA 19355 USA
(e-mail: chenka88@hotmail.com).

R. W. Johnson is at 3324 21st Ave. South, St. Cloud, MN 56301 USA.
N. Rizzolo is with the Siebel Center for Computer Science, Univer-

sity of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail:
rizzolo@cs.uiuc.edu)

Digital Object Identifier 10.1109/JPROC.2004.840306

the exploration and optimization. SPIRAL generates high-per-
formance code for a broad set of DSP transforms, including the
discrete Fourier transform, other trigonometric transforms, filter
transforms, and discrete wavelet transforms. Experimental results
show that the code generated by SPIRAL competes with, and
sometimes outperforms, the best available human tuned transform
library code.

Keywords—Adaptation, automatic performance tuning, code
optimization, discrete cosine transform (DCT), discrete Fourier
transform (DFT), fast Fourier transform (FFT), filter, genetic and
evolutionary algorithm, high-performance computing, learning,
library generation, linear signal transform, Markov decision
process, search, wavelet.

I. INTRODUCTION

At the heart of the computer revolution is Moore’s law,
which has accurately predicted, for more than three decades,
that the number of transistors per chip doubles roughly every
18 months. The consequences are dramatic. The current
generation of off-the-shelf single processor workstation
computers has a theoretical peak performance of more than
10 Gflops,1 rivaling the most advanced supercomputers from
only a decade ago. Unfortunately, at the same time, it is
increasingly harder to harness this peak performance, except
for the most simple computational tasks. To understand
this problem, one has to realize that modern computers
are not just faster counterparts of their ancestors but vastly
more complex and, thus, with different characteristics.
For example, about 15 years ago, the performance for
most numerical kernels was determined by the number
of operations they require; nowadays, in contrast, a cache
miss may be 10–100 times more expensive than a multi-
plication. More generally, the performance of numerical
code now depends crucially on the use of the platform’s

1Gigaflops (Gflops) = 10 floating-point operations per second.

0018-9219/05$20.00 © 2005 IEEE

232 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

memory hierarchy, register sets, available special instruc-
tion sets (in particular vector instructions), and other, often
undocumented, microarchitectural features. The problem
is aggravated by the fact that these features differ from
platform to platform, which makes optimal code platform
dependent. As a consequence, the performance gap between
a “reasonable” implementation and the best possible im-
plementation is increasing. For example, for the discrete
Fourier transform (DFT) on a Pentium 4, there is a gap in
runtime performance of one order of magnitude between
the code of Numerical Recipes or the GNU scientific library
and the Intel vendor library Intel Performance Primitives
(IPP) (see Section VII). The latter is most likely hand-
written and hand-tuned assembly code, an approach still
employed if highest performance is required—a reminder of
the days before the invention of the first compiler 50 years
ago. However, keeping handwritten code current requires
reimplementation and retuning whenever new platforms
are released—a major undertaking that is not economically
viable in the long run.

In concept, compilers are an ideal solution to performance
tuning, since the source code does not need to be rewritten.
However, high-performance library routines are carefully
hand-tuned, frequently directly in assembly, because today’s
compilers often generate inefficient code even for simple
problems. For example, the code generated by compilers for
dense matrix–matrix multiplication is several times slower
than the best handwritten code [1] despite the fact that the
memory access pattern of dense matrix–matrix multiplica-
tion is regular and can be accurately analyzed by a compiler.
There are two main reasons for this situation.

The first reason is the lack of reliable program optimiza-
tion techniques, a problem exacerbated by the increasing
complexity of machines. In fact, although compilers can
usually transform code segments in many different ways,
there is no methodology that guarantees successful opti-
mization. Empirical search [2], which measures or estimates
the execution time of several versions of a code segment
and selects the fastest, is a simple and general method that is
guaranteed to succeed. However, although empirical search
has proven extraordinarily successful for library generators,
compilers can make only limited use of it. The best known
example of the actual use of empirical search by commer-
cial compilers is the decision of how many times loops
should be unrolled. This is accomplished by first unrolling
the loop and then estimating the execution time in each
case. Although empirical search is adequate in this case,
compilers do not use empirical search to guide the overall
optimization process because the number of versions of a
program can become astronomically large, even when only
a few transformations are considered.

The second reason why compilers do not perform better is
that often important performance improvements can only be
attained by transformations that are beyond the capability of
today’s compilers or that rely on algorithm information that
is difficult to extract from a high-level language. Although
much can be accomplished with program transformation
techniques [3]–[8] and with algorithm recognition [9], [10],

starting the transformation process from a high-level lan-
guage version does not always lead to the desired results.
This limitation of compilers can be overcome by library
generators that make use of domain-specific, algorithmic
information. An important example of the use of empir-
ical search is ATLAS, a linear algebra library generator
[11], [12]. The idea behind ATLAS is to generate plat-
form-optimized Basic Linear Algebra Subroutines (BLAS)
by searching over different blocking strategies, operation
schedules, and degrees of unrolling. ATLAS relies on the
fact that LAPACK [13], a linear algebra library, is imple-
mented on top of the BLAS routines, which enables porting
by regenerating BLAS kernels. A model-based and, thus,
deterministic version of ATLAS is presented in [14]. The
specific problem of sparse matrix vector multiplications
is addressed in SPARSITY [12], [15], again by applying
empirical search to determine the best blocking strategy
for a given sparse matrix. References [16] and [17] provide
a program generator for parallel programs of tensor con-
tractions, which arise in electronic structure modeling. The
tensor contraction algorithm is described in a high-level
mathematical language, which is first optimized and then
compiled into code.

In the signal processing domain, FFTW [18]–[20] uses a
slightly different approach to automatically tune the imple-
mentation code for the DFT. For small DFT sizes, FFTW
uses a library of automatically generated source code. This
code is optimized to perform well with most current com-
pilers and platforms, but is not tuned to any particular plat-
form. For large DFT sizes, the library has a built-in degree
of freedom in choosing the recursive computation and uses
search to tune the code to the computing platform’s memory
hierarchy. A similar approach is taken in the UHFFT library
[21] and in [22]. The idea of platform adaptive loop body
interleaving is introduced in [23] as an extension to FFTW
and as an example of a general adaptation idea for divide-
and-conquer algorithms [24]. Another variant of computing
the DFT studies adaptation through runtime permutations
versus readdressing [25], [26]. Adaptive libraries for the re-
lated Walsh–Hadamard transform (WHT), based on similar
ideas, have been developed in [27]. Reference [28] proposes
an object-oriented library standard for parallel signal pro-
cessing to facilitate porting of both signal processing appli-
cations and their performance across parallel platforms.

SPIRAL. In this paper, we present SPIRAL,2 our research
on automatic code generation, code optimization, and plat-
form adaptation. We consider a restricted, but important,
domain of numerical problems: namely, digital signal pro-
cessing (DSP) algorithms, or more specifically, linear signal
transforms. SPIRAL addresses the general problem: How do
we enable machines to automatically produce high-quality
code for a given platform? In other words, how can the pro-
cesses that human experts use to produce highly optimized

2The acronym SPIRAL means Signal Processing Implementation Re-
search for Adaptable Libraries. As a tribute to Lou Auslander, the SPIRAL
team decided early on that SPIRAL should likewise stand for (in reverse)
Lou Auslander’s Remarkable Ideas for Processing Signals.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 233

code be automated and possibly improved through the use
of automated tools?

Our solution formulates the problem of automatically
generating optimal code as an optimization problem over the
space of alternative algorithms and implementations of the
same transform. To solve this optimization problem using
an automated system, we exploit the mathematical struc-
ture of the algorithm domain. Specifically, SPIRAL uses a
formal framework to efficiently generate many alternative
algorithms for a given transform and to translate them into
code. Then, SPIRAL uses search and learning techniques to
traverse the set of these alternative implementations for the
same given transform to find the one that is best tuned to
the desired platform while visiting only a small number of
alternatives.

We believe that SPIRAL is unique in a variety of respects.

1) SPIRAL is applicable to the entire domain of linear
DSP algorithms, and this domain encompasses a large
class of mathematically complex algorithms.

2) SPIRAL encapsulates the mathematical algorithmic
knowledge of this domain in a concise declarative
framework suitable for computer representation, ex-
ploration, and optimization—this algorithmic knowl-
edge is far less bound to become obsolete as time
goes on than coding knowledge such as compiler
optimizations.

3) SPIRAL can be expanded in several directions to in-
clude new transforms, new optimization techniques,
different target performance metrics, and a wide va-
riety of implementation platforms including embedded
processors and hardware generation.

4) We believe that SPIRAL is first in demonstrating the
power of machine learning techniques in automatic al-
gorithm selection and optimization.

5) Finally, SPIRAL shows that, even for mathematically
complex algorithms, machine generated code can be as
good as, or sometimes even better than, any available
expert handwritten code.

Organization of this paper. The paper begins, in
Section II, with an explanation of our approach to code gen-
eration and optimization and an overview of the high-level
architecture of SPIRAL. Section III explains the theoretical
core of SPIRAL that enables optimization in code design for
a large class of DSP transforms: a mathematical framework
to structure the algorithm domain and the signal processing
language (SPL) to make possible efficient algorithm rep-
resentation, generation, and manipulation. The mapping of
algorithms into efficient code is the subject of Section IV.
Section V describes the evaluation of the code generated by
SPIRAL—by adapting the performance metric, SPIRAL can
solve various code optimization problems. The search and
learning strategies that guide the automatic feedback-loop
optimization in SPIRAL are considered in Section VI. We
benchmark the quality of SPIRAL’s automatically generated
code in Section VII, showing a variety of experimental re-
sults. Section VIII discusses current limitations of SPIRAL

and ongoing and future work. Finally, we offer conclusions
in Section IX.

II. SPIRAL: OPTIMIZATION APPROACH TO TUNING

IMPLEMENTATIONS TO PLATFORMS

In this section, we provide a high-level overview of the
SPIRAL code generation and optimization system. First, we
explain the high-level approach taken by SPIRAL, which
restates the problem of finding fast code as an optimiza-
tion problem over the space of possible alternatives. Second,
we explain the architecture of SPIRAL, which implements
a flexible solver for this optimization problem and which
resembles the human approach for code creation and opti-
mization. Finally, we discuss how SPIRAL’s architecture is
general enough to solve a large number of different imple-
mentation/optimization problems for the DSP transform do-
main. More details are provided in later sections.

A. Optimization: Problem Statement

We restate the problem of automatically generating soft-
ware (SW) implementations for linear DSP transforms that
are tuned to a target hardware (HW) platform as the following
optimization problem. Let be a target platform, a DSP
transform parameterized at least by its size , a SW
implementation of , where is the set of SW implementa-
tions for the platform and transform , and
the cost of the implementation of the transform on the
platform .

The implementation of that is tuned to the platform
with respect to the performance cost is

(1)

For example, we can have the following: as target platform
a particular Intel Pentium 4 workstation; as transform the
DFT of size , which we will refer to as ,
or the discrete cosine transform (DCT) of type 2 and size 32

; as SW implementation a C-program for com-
puting ; and as cost measure the runtime of on . In
this case, the cost depends on the chosen compiler and flags;
thus, this information has to be included in . Note that with
the proliferation of special vendor instruction sets, such as
vector instructions that exceed the standard C programming
language, the set of all implementations becomes in general
platform dependent, i.e., with elements .

To carry out the optimization in (1) and to automatically
generate the tuned SW implementation poses several
challenges.

• Set of implementations . How to characterize and
generate the set of SW implementations of ?

• Minimization of . How to automatically minimize
the cost in (1)?

In principle, the set of implementations for should
be unconstrained, i.e., include all possible implementations.
Since this is unrealistic, we aim at a broad enough set of im-
plementations. We solve both challenges of characterizing

234 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 1. The architecture of SPIRAL.

and minimizing by recognizing and exploiting the specific
structure of the domain of linear DSP transforms. This struc-
ture enables us to represent algorithms for as formulas in
a concise mathematical language called “signal processing
language” (SPL), which utilizes only a few constructs. Fur-
ther, it is possible to generate these SPL formulas (or al-
gorithms) recursively using a small set of rules to obtain
a large formula space . These formulas, in turn, can be
translated into code. The SPIRAL system implements this
framework and we define as the set of implementations
that SPIRAL can generate. The degrees of freedom in trans-
lating from to reflect the implementation choices that
SPIRAL can consider for the given algorithms. Finally, the
recursive structure of and, thus, enables the use of var-
ious, transform independent, search and learning techniques
that successfully produce very good solutions for (1), while
generating only a small subset of .

SPIRAL’s architecture, shown in Fig. 1, is a consequence
of these observations and, for the class of DSP transforms
included in SPIRAL, can be viewed as a solver for the
optimization problem (1). To benchmark the performance of
the transform implementations generated by SPIRAL, we
compare them against the best available implementations
whenever possible. For example, for the DFT, we bench-
mark SPIRAL against the DFT codes provided by FFTW,
[18], [19], and against vendor libraries like Intel’s IPP and
Math Kernel Library (MKL); the latter are coded by human
experts. However, because of SPIRAL’s breadth, there are
no readily available high-quality implementations for many
of SPIRAL’s transforms. In these cases, we explore different
alternatives generated by SPIRAL itself.

In the following paragraphs, we briefly address the above
two challenges of generating the set of implementations
and of minimizing . The discussion proceeds with refer-
ence to Fig. 1, which shows the architecture of SPIRAL as a
block diagram.

B. Set of Implementations

To characterize the set of implementations , we first out-
line the two basic steps that SPIRAL takes to go from the
high-level specification of the transform to an actual im-
plementation of . The two steps correspond to the
“Algorithm Level” and the “Implementation Level” in Fig. 1.
The first derives an algorithm for the given transform ,
represented as a formula where is the formula or
algorithm space for . The second translates the formula
into a program in a high-level programming language
such as Fortran or C, which is then compiled by an existing
commercial compiler.

Algorithm level. In SPIRAL, an algorithm for a transform
is generated recursively using breakdown rules and ma-

nipulation rules. Breakdown rules are recursions for trans-
forms, i.e., they specify how to compute a transform from
other transforms of the same or a different type and of the
same or a smaller size. The “Formula Generation” block in
Fig. 1 uses a database of breakdown rules to recursively ex-
pand a transform , until no further expansion is possible to
obtain a completely expanded formula . This formula
specifies one algorithm for . The “Formula Optimization”
block then applies manipulation rules to translate the formula
into a different formula that may better exploit the computing
platform’s HW characteristics. These optimizations at the
mathematical level can be used to overcome inherent short-
comings of compiler optimizations, which are performed at
the code level where much of the structural information is
lost.

SPIRAL expresses rules and formulas in a special lan-
guage—the SPL, which is introduced and explained in detail
in Section III; here, we only provide a brief glimpse. SPL
uses a small set of constructs including symbols and matrix
operators. Symbols are, for example, certain patterned ma-
trices like the identity matrix of size . Operators are
matrix operations such as matrix multiplication or the tensor
product of matrices. For example, the following is a break-
down rule for the transform written in SPL:

(2)

where . This rule expands the of size
into transforms and of half the size ,

and additional operations (the part that is not boldfaced).
An example of a manipulation rule expressed in SPL is

We will see later that the left-hand side is a paral-
lelizable construct, while the right-hand side is a
vectorizable construct.

Implementation level. The output of the “Algorithm
Level” block is an SPL formula , which is fed into
the second level in Fig. 1, the “Implementation Level,” also
called the SPL Compiler.

The SPL Compiler is divided into two blocks: the Imple-
mentation and Code Optimization blocks. The Implementa-

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 235

tion block translates the SPL formula into C or Fortran code
using a particular set of implementation options, such as the
degree of unrolling. Next, the Code Optimization block per-
forms various standard and less standard optimizations at the
C (or Fortran) code level, e.g., common subexpression elim-
ination (CSE) and code reordering for locality. These opti-
mizations are necessary, as standard compilers are often not
efficient when used for automatically generated code, in par-
ticular, for large blocks of straightline code (i.e., code without
loops and control structures).

Both blocks, Algorithm Level and Implementation Level,
are used to generate the elements of the implementation
space . We now address the second challenge, the opti-
mization in (1).

C. Minimization of

Solving the minimization (1) requires SPIRAL to evaluate
the cost for a given implementation and to autonomously
explore the implementation space . Cost evaluation is ac-
complished by the third level in SPIRAL, the Evaluation
Level block in Fig. 1. The computed value is
then input to the Search/Learning block in the feedback loop
in Fig. 1, which performs the optimization.

Evaluation level. The Evaluation Level is decomposed
into two blocks: the Compilation and Performance Evalua-
tion. The Compilation block uses a standard compiler to pro-
duce an executable and the Performance Evaluation block
evaluates the performance of this executable, for example,
the actual runtime of the implementation on the given plat-
form . By keeping the evaluation separated from imple-
mentation and optimization, the cost measure can easily
be changed to make SPIRAL solve various implementation
optimization problems (see Section II-E).

Search/Learning. We now consider the need for intelli-
gent navigation in the implementation space to minimize
(or approximate the minimization of) . Clearly, at both the
Algorithm Level and the Implementation Level, there are
choices to be made. At each stage of the Formula Gener-
ation, there is freedom regarding which rule to apply. Dif-
ferent choices of rules lead to different formulas (or algo-
rithms) . Similarly, the translation of the formula
to an actual program implies additional choices, e.g.,
the degree of loop unrolling or code reordering. Since the
number of these choices is finite, the sets of alternatives
and are also finite. Hence, an exhaustive enumeration of
all implementations would lead to the optimal im-
plementation . However, this is not feasible, even for small
transform sizes, since the number of available algorithms and
implementations usually grows exponentially with the trans-
form size. For example, the current version of SPIRAL re-
ports that the size of the set of implementations for the

exceeds 1.47 10 . This motivates the feedback
loop in Fig. 1, which provides an efficient alternative to ex-
haustive search and an engine to determine an approximate
solution to the minimization problem in (1).

The three main blocks on the left in Fig. 1, and their
underlying framework, provide the machinery to enumerate,

for the same transform, different formulas and different
implementations. We solve the optimization problem in (1)
through an empirical exploration of the space of alternatives.
This is the task of the Search/Learning block, which, in a
feedback loop, drives the algorithm generation and con-
trols the choice of algorithmic and coding implementation
options. SPIRAL uses search methods such as dynamic
programming and evolutionary search (see Section VI-A).
An alternative approach, also available in SPIRAL, uses
techniques from artificial intelligence to learn which choice
of algorithm is best. The learning is accomplished by refor-
mulating the optimization problem (1) in terms of a Markov
decision process and reinforcement learning. Once learning
is completed, the degrees of freedom in the implementation
are fixed. The implementation is designed with no need for
additional search (see Section VI-B).

An important question arises: Why is there is a need to ex-
plore the formula space at all? Traditionally, the analysis
of algorithmic cost focuses on the number of arithmetic op-
erations of an algorithm. Algorithms with a similar number
of additions and multiplications are considered to have sim-
ilar cost. The rules in SPIRAL lead to “fast” algorithms, i.e.,
the formulas that SPIRAL explores are essentially
equal in terms of the operation count. By “essentially equal”
we mean that for a transform of size , which typically has
a complexity of , the costs of the formulas differ
only by operations and are often even equal. So the
formulas’ differences in performance are in general not a re-
sult of different arithmetic costs, but are due to differences
in locality, block sizes, and data access patterns. Since com-
puters have an hierarchical memory architecture, from reg-
isters—the fastest level—to different types of caches and
memory, different formulas will exhibit very different ac-
cess times. These differences cause significant disparities in
performance across the formulas in . The Search/Learning
block searches for or learns those formulas that best match
the target platforms memory architecture and other microar-
chitectural features.

D. General Comments

The following main points about SPIRAL’s architecture
are worth noting.

• SPIRAL is autonomous, optimizing at both the algo-
rithmic level and the implementation level. SPIRAL
incorporates domain specific expertise through both its
mathematical framework for describing and generating
algorithms and implementations and through its effec-
tive algorithm and implementation selection through
the Search/Learning block.

• The SPL language is a key element in SPIRAL: SPL
expresses recursions and formulas in a mathematical
form accessible to the transform expert, while retaining
all the structural information that is needed to generate
efficient code. Thus, SPL provides the link between the
“high” mathematical level of transform algorithms and
the “low” level of their code implementations.

236 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

• SPIRAL’s architecture is modular: it clearly separates
algorithmic and implementation issues. In particular,
the code optimization is decomposed as follows.

a) Deterministic optimizations are always per-
formed without the need for runtime informa-
tion. These optimization are further divided into
algorithm level optimizations (Formula Opti-
mization block) such as formula manipulations
for vector code, and into implementation level
optimizations (Code Optimization block) such
as CSE.

b) Nondeterministic optimizations arise from
choices whose effect cannot easily be statically
determined. The generation and selection of
these choices is driven by the Search/Learning
block. These optimizations are also divided
into algorithmic choices and implementation
choices.

Because of its modularity, SPIRAL can be extended
in different directions without the need for under-
standing all domains involved.

• SPIRAL abstracts into its high-level mathematical
framework many common optimizations that are usu-
ally performed at the low-level compilation step. For
example, as we will explain in Section IV-E, when
platform specific vector instructions are available, they
can be matched to certain patterns in the formulas
and, using mathematical manipulations, a formula’s
structure can be improved for mapping into vector
code. Rules that favor the occurrence of these patterns
in the produced formula are then naturally selected by
the search engine in SPIRAL to produce better tuned
code.

• SPIRAL makes use of runtime information in the
optimization process. In a sense, it could be said that
SPIRAL carries out profile-driven optimization al-
though compiler techniques reported in the literature
require profiling to be done only once [29], [30]. Com-
piler writers do not include profiling in a feedback loop
to avoid long compilation times, but for the developers
of library generators like SPIRAL, the cost of installa-
tion is less of a concern since installation must be done
only once for each class of machines.

• With slight modifications, SPIRAL can be used to au-
tomatically solve various implementation or algorithm
optimization problems for the domain of linear DSP
transforms; see Section II-E.

Next, we provide several examples to show the breadth of
SPIRAL.

E. Applications of SPIRAL

SPIRAL’s current main application is the generation of
very fast, platform-tuned implementations of linear DSP
transforms for desktop or workstation computers. However,
SPIRAL’s approach is quite versatile and the SPIRAL
system can be used for a much larger scope of signal pro-
cessing implementation problems and platforms.

1) It goes beyond trigonometric transforms such as the
DFT and the DCT, to other DSP transforms such as
the wavelet transform and DSP kernels like filters.

2) It goes beyond desktop computers and beyond C
and Fortran to implementations for multiprocessor
machines and to generating code using vendor spe-
cific instructions like SSE for the Pentium family, or
AltiVec for the Power PC.

3) It goes beyond runtime to other performance metrics
including accuracy and operation count.

We briefly expand here on two important examples to illus-
trate SPIRAL’s flexibility. More details are provided later in
Sections V and VII.

Special instructions and parallel platforms. Most
modern platforms feature special instructions, such as vector
instructions, which offer a large potential speedup. Com-
pilers are restricted to code level transformations and cannot
take full advantage of these instructions, except for simple
numerical algorithms. SPIRAL automatically generates
code that uses these special instructions. This is achieved
in three steps: 1) by identifying structures in SPL formulas
that can be naturally mapped into code using these spe-
cial instructions; 2) by identifying SPL manipulation rules
whose application produces these structures; these rules are
included into the Formula Optimization block in Fig. 1; and
(3) by extending the Implementation block in Fig. 1 to pro-
duce code that uses those special instructions. We provide
details for vector instructions in Section IV-E. We also have
results demonstrating that the same approach can be used to
generate code for SMP platforms (see Section IV-F).

Expanding SPIRAL: new transforms and rules.
SPIRAL is easily expanded with new transforms and/or new
rules by including them in the rule database of the Formula
Generation block. This is achieved without affecting the
remaining components of SPIRAL, provided that the new
rules can be expressed using the SPL constructs currently
available in SPIRAL. If this is not the case, SPL can be ex-
tended to include new constructs. Once this is accomplished,
the entire functionality of SPIRAL, including the code
generation, the Search/Learning block, and the automatic
tuning of implementations becomes immediately available
to the new transform or rule.

Other applications. There are various other implementa-
tion/algorithm optimization problems that can be addressed
by the SPIRAL system. Examples include the generation of
numerically accurate code, multiplierless implementations,
or algorithms with minimal operation counts. We will briefly
discuss these extensions in Section V.

In summary, the discussion in this overview outlined how
SPIRAL integrates algorithmic knowledge with code map-
ping and feedback optimization and pointed out the capa-
bilities of the resulting system. The SPIRAL system can be
adapted to new platforms, extended with new linear trans-
forms and their algorithms, and extended with new perfor-
mance measures. Extensions of the system, once completed,
apply to the entire collection of DSP transforms and kernels
as well as to the full set of problems included in its current

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 237

domain rather than just a single transform or a single problem
type.

Now we begin the detailed description of SPIRAL.

III. SPIRAL’S MATHEMATICAL FRAMEWORK AND

FORMULA GENERATION

This section details SPIRAL’s mathematical framework
to represent and generate fast algorithms for linear DSP
transforms. The framework is declarative in nature, i.e., the
knowledge about transforms and algorithms is represented
in the form of equations and rules. The framework enables:
1) the automatic generation of transform algorithms; 2) the
concise symbolic representation of transform algorithms
as formulas in the language SPL that we introduce; 3) the
structural optimization of algorithms in their formula repre-
sentation; and 4) the automated mapping into various code
types, which is the subject of Section IV.

We divide the framework into the following parts: trans-
forms, the language SPL, breakdown and manipulation
rules, and ruletrees and formulas. Finally, we explain how
the framework is implemented in the Formula Generation
and Formula Optimization blocks in Fig. 1.

A. Transforms

SPIRAL generates fast implementations for linear DSP
transforms. Although in the DSP literature transforms
are usually presented in the form of summations, we ex-
press them equivalently as a matrix–vector multiplication

. In this equation, and are, respectively, the
input and the output -dimensional vectors (or signals) that
collect the signal samples, and is the transform
matrix. Usually, the transform exists for every input size

. An example is the DFT, which is defined, for input size
, by the DFT matrix

(3)

In SPIRAL, a transform is a parameterized class of matrices.
It is represented symbolically by a mnemonic name such
as “DFT” and by a list of parameters, such as the size .
By specifying the parameter(s), we obtain an instance of a
transform, which we will also refer to as a transform. An
example is . Transforms are written using boldfaced
type. Transform matrices, as well as the input and output vec-
tors, can be real or complex valued.

At the time of this writing, SPIRAL contains 36 transforms
(some of which are variants of each other).

Trigonometric transforms. We provide some important
examples of DSP transforms for which SPIRAL can generate
tuned code. We first consider the class of trigonometric trans-
forms that, besides the DFT in (3), includes the following
transforms: all the 16 types of DCTs and discrete sine trans-
forms (DSTs), of which the most commonly used (e.g., in
the JPEG and MPEG multimedia standards) are the DCTs
of types 2, 3, and 4; the inverse modulated DCT (IMDCT),
which is used in MPEG audio compression standards and is
a rectangular transform; the real DFT (RDFT) that computes

the DFT on a real input data set; the WHT; and the discrete
Hartley transform (DHT). Some of these transforms are de-
fined as follows:

(4)

transpose (5)

(6)

(7)

(8)

(9)

(10)

Note that the WHT in (9) is defined recursively.
Besides these trigonometric transforms, SPIRAL includes

other transforms and DSP kernels. In fact, in SPIRAL,
any linear operation on finite discrete sequences, i.e.,
matrix–vector multiplication, qualifies as a transform. In
particular, this includes linear filters and filter banks.

Filters. We recall that a filter in DSP computes the con-
volution of two sequences: one is the signal being filtered,
the input signal; the other is the sequence that characterizes
the filter, its impulse response. As important examples, we
consider finite-impulse response (FIR) filters and the discrete
wavelet transforms (DWTs).

Although we can represent FIR filters and the DWT as
matrices, it is more convenient, and more common, to de-
fine them iteratively or recursively, as was the case with the
WHT above. We start with the basic building block, the FIR
filter transform. The filter’s output is the convolution of its
impulse response and an infinite support input signal. The
filter impulse response can be viewed as the column vector

of length or as the
-transform polynomial (e.g., [31])

The output of the FIR filter for output points is computed by
multiplying the relevant (i.e., contributing to these outputs)
finite subvector of length of by the FIR transform
matrix given by

. . .
. . .

(11)
In practice, signals are of finite duration . To account for

boundary effects and to enable filtering, i.e., multiplying with

238 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 2. Filter bank interpretation of the DWT.

(11), these signals are, thus, extended to the left (up) and to
the right (below) to have length . Linear extensions
can be also interpreted as matrix–vector multiplications with
an matrix , where and specify
the left and the right signal extension type, and and are
the number of left and right extension points. Examples of
extension types include periodic , whole-point and half-
point symmetric or antisymmetric (ws/hs/wa/ha), and zero-
padding . For example, in a extension, the signal
is extended by points to the left and by points to the right,
by assuming that the signal is periodically repeated beyond
its fundamental period, which is given by the actual available
data. After extending the signal, we can define the extended
FIR filter transform as the composition of both the FIR filter
transform (11) and the extension transform

(12)

where the parameters and are implicitly given by . For
example, the matrix for periodic signal extension, i.e.,

, is

where denotes the identity matrix.
DWT. Many applications, such as JPEG2000 [32], make

use of a two-channel DWT, which is usually defined as the
recursive bank of filters and downsamplers shown in Fig. 2.

The filters in the filter bank are linear, and hence is the
DWT. In matrix form, the DWT is given by

... (13)

where is the matrix that selects every th el-
ement from its input, starting with the first. The matrix form
(13) is obtained from Fig. 2 by observing that

. (Note that when

stacking filters as in (13), the defining polynomials may need
to be zero extended to equalize the sizes of the blocks.)

B. SPL

The significance in DSP of the transforms introduced in
Section III-A arises from the existence of fast algorithms
to compute them. The term “fast” refers to the number of
operations required to compute the transform: fast algo-
rithms for transforms of size typically reduce the number
of operations from (as required by direct evaluation)
to . Furthermore, these algorithms are highly
structured. To exploit the structure of the DSP transforms,
SPIRAL represents these algorithms in a specially designed
language—SPL—which is described in this section. For
example, an important element in SPL is the tensor or
Kronecker product, whose importance for describing and
manipulating DFT algorithms was already demonstrated in
[33], [34]. After introducing SPL, we develop the framework
to efficiently generate and manipulate algorithms for DSP
transforms in Sections III-C and D.

We start with a motivating example. Consider the DCT of
type 2 defined in (4) and given by the following 4 4 matrix,
which is then factored into a product of three sparse matrices.
We use the notation

(14)

The right-hand side of (14) decomposes the matrix
into a product of three sparse matrices. This factorization
reduces the cost for computing the transform (the ma-
trix–vector product) from 12 additions and 12 multiplica-
tions to eight additions and six multiplications. To avoid
a possible confusion, we emphasize again that this cost
does not refer to multiplying the three sparse matrices to-
gether, but to the computation of the matrix–vector product

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 239

Table 1
Definition of the Most Important SPL Constructs in BNF;
n; k Are Positive Integers, �; a Real Numbers

in three steps (corresponding to the three
sparse matrices), and it is in this sense that (14) is considered
as an algorithm for . Equation (14) shows further
that, besides their sparseness, the matrix factors are highly
structured. Identifying this structure and then making use of
it is a key concept in SPIRAL and provides the motivation
for SPL.

SPL is a language suitable to express products of struc-
tured sparse matrices using a small set of constructs and
symbols. However, as we will see, this set is sufficient to rep-
resent a large class of different transform algorithms. Table 1
provides a grammar for SPL in Backus–Naur form (BNF)
[35] as the disjoint union of different choices of rules (sep-
arated by a vertical line “ ”) to generate valid SPL expres-
sions. Symbols marked by are nonterminal, is the
initial nonterminal, and all the other symbols are terminals.
We call the elements of SPL formulas. The meaning of the
SPL constructs is explained next.

Generic matrices. SPL provides constructs to represent
generic matrices, generic permutation matrices, and generic
sparse matrices. Since most matrices occurring within trans-
form algorithms have additional structure, these constructs
are rarely used except diagonal matrices. These are written
as , where the argument list contains the
diagonal entries of the matrix. Scalars, such as the numbers

, can be real or complex and can be represented in a va-
riety of ways. Examples include rational, floating-point, spe-
cial constants, and intrinsic functions, such as 1, 3/2, 1.23,

- , , (2), and .
Symbols. Frequently occurring classes of matrices are

represented by parameterized symbols. Examples include
the identity matrix ; the matrix obtained from
the identity matrix by reversing the columns (or rows); the

zero matrix ; the twiddle matrix

the stride permutation matrix , which reads the input at
stride and stores it at stride 1, defined by its corresponding
permutation

the 2 2 rotation matrix (with angle)

and the butterfly matrix, which is equal to the 2 2 DFT
matrix, but not considered a transform (i.e., it is terminal)

Transforms. SPL expresses transforms as introduced
in Section III-A. Examples include , ,
and . In our framework, transforms are fun-
damentally different from the symbols introduced above
(as emphasized by boldfacing transforms), which will be
explained in Sections III-C and D. In particular, only those
formulas that do not contain transforms can be translated
into code. Both, the set of transforms and the set of symbols
available in SPL are user extensible.

Matrix constructs. SPL constructs can be used to form
structured matrices from a set of given SPL matrices. Exam-
ples include the product of matrices (sometimes written
as), the sum of matrices , and the direct sum

and the tensor or Kronecker product of two matrices
and , defined, respectively, by

and

where

Two extensions to the tensor product in SPIRAL are the row
and the column overlapped tensor product, defined by

. . .

. . . (15)

Above, overlaps the block matrices by columns,
while below, overlaps the block matrices by rows.

240 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Table 2
Some Rules for Trigonometric Transforms

Note that the left operand in and has to be the iden-
tity matrix. SPIRAL also uses a similarly defined row and
column overlapped direct sum and , respectively.

Conversion to real data format . Complex transforms
are usually implemented using real arithmetic. Various data
formats are possible when converting complex into real arith-
metic, the most popular being probably the interleaved com-
plex format, in which a complex vector is represented by al-
ternating real and imaginary parts of the entries. To express
this conversion in the mathematical framework of SPIRAL,
we first observe that the complex multiplication

is equivalent to the real multiplication

Thus, the complex matrix–vector multiplication
corresponds to , where arises from by
replacing every entry by the corresponding 2 2 ma-
trix above, and is in interleaved complex format. Thus, to
translate complex formulas into real formulas in the inter-
leaved format, SPL introduces the new operator

, where is any SPL formula. Other formats can be han-
dled similarly.

Examples. We now illustrate SPL using several simple
examples. The full relevance of SPL will become clear in
Section IV.

DCT, type 2, size 4. We return to the factoriza-
tion in (14). In SPL, it takes the concise form

(16)

The stride permutation is the left matrix in the sparse
factorization of (14) while the direct sum of the two DCTs
in (16) is the middle matrix in (14). The last factor in (14) is
split into the last two factors in (16).

Downsampling. The downsampling-by-two operator used,
e.g., in the DWT transform (13) is given by

Transform definitions. Using SPL, we can define some of
the previously introduced transforms more concisely. Exam-
ples include the WHT in (9) and the filter transform in (11),
which become

fold (17)

(18)

Multidimensional transforms. If is a transform, then
its -dimensional counterpart for an

input array, arranged lexicographically into a vector,
is the -fold tensor product

(19)

For example, is the
two-dimensional DFT on an input array arranged
into a vector in row-major order.

C. Rules

We have indicated before that the language SPL was intro-
duced to represent transform algorithms. In this section we
present the framework to capture and generate these algo-
rithms using rules. As we mentioned in Section II, SPIRAL
has two types of rules, breakdown rules and manipulation
rules, which have different purposes. Breakdown rules are
used by the Formula Generation block (see Fig. 1) to gen-
erate algorithms, represented as SPL formulas. Manipulation
rules are used by the Formula Optimization block to optimize
algorithms. We discuss both types in detail below.

Breakdown rules. A breakdown rule is a decomposition
of a transform into a product of structured sparse matrices
that may contain other, usually smaller, transforms. We
showed earlier an example for the in (16). For-
mally, a breakdown rule is an equation of matrices, in which
the left-hand side is a transform and the right-hand side is
an SPL formula. We use “ ” instead of “ ” to emphasize
that it is a rule. A small subset of the rules for trigonometric
transforms, available in SPIRAL’s rule database, are listed
here.

Breakdown rules: trigonometric transforms. The rules are
shown in Table 2. Rule (20) is the Cooley–Tukey FFT rule.
Rule (21) is the prime-factor FFT from Good-Thomas; ,

are permutations (see [34], [36] for details). Rule (22) is
Rader’s FFT algorithm (see [36]) and is used for prime sizes;

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 241

Table 3
Some Rules for Filters and the DWT

is a permutation and is the direct sum of a 2 2 matrix
and a diagonal. Rule (23) was recently derived [37]. Note that
transposition of this rule yields a rule for . Finally,
(26) is an iterative rule for the WHT.

Next, we consider rules for the filter and the DWTs.
Breakdown rules: filter transform and DWT. Filter banks

can be represented by matrices of filters, [38]. For example,
for two FIR filters given by and , one stage of a
corresponding filter bank is given by the transform

(27)

This will be used in the breakdown rules for filter trans-
forms and for the DWT shown in Table 3. Rule (28) is
the overlap-save convolution rule [31]. Rule (29) arises
from the convolution theorem of the DFT [31]. Elements
of the diagonal matrix are the DFT coefficients of where

. Rule (30) represents Mallat’s
algorithm for computation of the DWT (e.g., [39]) and could
also be used to define the DWT. Rule (31) is similar to (30)
but the downsampling operator is fused into the filter matrix
to save half of the number of operations. Rule (32) is the
polyphase decomposition for the DWT [39] and requires

. There are many other breakdown rules
for the DWT included in SPIRAL, most notably the lifting
rule that decomposes polyphase filter banks into lifting steps
[40].

Terminal breakdown rules. Finally, we also use rules to
terminate base cases, which usually means transforms of
size 2. The right-hand side of a terminal rule does not con-
tain any transform. Examples include for the trigonometric
transforms

(33)

and for the DWT

The above breakdown rules, with the exception of (23),
are well known in the literature; but they are usually ex-
pressed using elaborate expressions involving summations
and with complicated index manipulations. In contrast, equa-
tions (20) to (32) are not only compact but also clearly exhibit

the structure of the rules. Although these rules are very dif-
ferent from each other, they only include the few constructs
in SPL, which makes it possible to translate the algorithms
generated from these rules into code (see Section IV). As a
final note, we mention that SPIRAL’s database includes over
100 breakdown rules.

Manipulation rules. A manipulation rule is a matrix
equation in which both sides are SPL formulas, neither
of which contains any transforms. These rules are used to
manipulate the structure of an SPL formula that has been
fully expanded using breakdown rules. Examples involving
the tensor product include

(34)

(35)

where is the notation for matrix conjugation
defined in this case by the middle term of (35). Rule (34) is re-
ferred to as the multiplicative property of the tensor product.
These are some of the manipulation rules available for the
tensor product, see [41].

Manipulation rules for the stride permutation [33] include
the following:

(36)

(37)

(38)

(39)

We introduced in Section III-B the operator that we
used to translate complex formulas into real formulas in the
complex interleaved format. Manipulation rules for this con-
struct include

for real

A different data format for complex transforms leads to a
different operator and to different manipulation rules.

SPIRAL uses currently about 20 manipulation rules; this
number will increase as SPIRAL evolves.

242 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

D. Ruletrees and Formulas

Ruletrees. Recursively applying rules to a given transform
to obtain a fully expanded formula leads conceptually to a
tree, which in SPIRAL we call a ruletree. Each node of the
tree contains the transform and the rule applied at this node.
As a simple example, consider the , expanded first
as in (16) and then completely expanded using the base case
rules (33). The corresponding tree (with the rules omitted) is
given by

(40)

We always assume that a ruletree is fully expanded. A rule-
tree clearly shows which rules are used to expand the trans-
form and, thus, uniquely defines an algorithm to compute
the transform. We will show in Section III-B that, by la-
beling specific components of the trees with tags, the ruletree
also fixes degrees of freedom for the resulting implemen-
tation. Ruletrees are convenient representations of the SPL
formulas they represent: they keep the relevant information
for creating the formula, they are storage efficient, and they
can be manipulated easily, e.g., by changing the expansion
of a subtree. All these issues, particularly the last one, are
very important for our search methods (see Section VI-A),
since they require the efficient generation of many ruletrees
for the same transform. We also use the ruletree representa-
tion for defining “features” of a formula to enable learning
methods, see Section VI-B. However, when translatinginto
code, it is necessary to convert the ruletree into an explicit
SPL formula.

Formulas. Expanding a ruletree by recursively applying
the specified rules top-down, yields a completely expanded
(SPL) formula, or simply a formula. Both the ruletree and the
formula specify the same fast algorithm for the transform, but
in a different form. The information about the intermediate
expansions of the transform is lost in the formula, but the for-
mula captures the structure and the dataflow of the computa-
tion, and hence can be mapped into code. As an example, the
completely expanded formula corresponding to (14), (16),
and (40) is given by

(41)

The formula in (16) cannot be translated into code in
SPIRAL because it is not fully expanded: its right-hand side
contains the transforms and , which are
nonterminals. In contrast, (41) is a fully expanded formula
since it expresses exclusively in terms of terminal
SPL constructs. A fully expanded formula can be translated
into code.

The above rule framework defines a formal language
that is a subset of SPL. The nonterminal symbols are the
transforms, the rules are the breakdown rules available
in SPIRAL, and the generated language consists of those
formulas that are fast algorithms for the transforms.

Alternatively, we can regard this framework as a term
rewriting system [42]. The terms are the formulas, the vari-
ables are the transform sizes (or, more general, the transform
parameters), the constants are other SPL constructs, and the
rules are the breakdown rules. The transform algorithms are
those formulas in normal form. If we consider only rules
that decompose a transform into smaller transforms such
as (20) or that terminate transforms such as (33), then it is
easy to prove that formula generation terminates for a given
transform. However, the existence of translation rules such
as (24) may introduce infinite loops. In practice, we make
sure that we only include translation rules that translate
transforms of higher complexity into transforms of lower
complexity to ensure termination. Obviously, the rewriting
system is not confluent—and it is not meant to be—since
the purpose is to combine the various rules to generate many
different algorithms for each transform.

Formula space . In general, there are few rules (say less
than ten) per transform, but the choices during the recursive
expansion lead to a large number of different formulas. These
choices arise from the choice of rule in each step, but also,
in some cases, from different instantiations of one rule (e.g.,
rule (20) has a degree of freedom in factoring the transform
size). When a formula is recursively generated, these choices
lead to a combinatorial explosion and, in most cases, to an
exponentially growing number of formulas for a given trans-
form. The different formulas for one transform all have sim-
ilar arithmetic cost (number of additions and multiplications)
equal or close to the best known (due to the choice of “good”
or “fast” rules), but differ in dataflow, which in turn leads to
a usually large spread in runtime. Finding the best formula is
the challenge.

The set of alternative formulas that can be generated by
recursive application of applicable rules constitute the set of
formulas . Even though this set is very large, its recur-
sive structure allows search methods such as dynamic pro-
gramming and evolutionary search—see Section VI-A—to
operate quite efficiently.

E. Formula Generation

The framework presented in the previous section provides
a clear road map on how to implement the Formula Gener-
ation block in SPIRAL (see Fig. 1). The block needs three
databases to generate the formula space: one defines the
transforms and the other two define the breakdown and ma-
nipulation rules, respectively. Information about transforms
includes their definition (for verification of formulas and
code), type and scope of parameters (at least the size), and
how to formally transpose them. Information provided for
rules includes their applicability (i.e., for which transform
and parameters), children, and the actual rule. Ruletrees and
formulas are both implemented as recursive data types. A
more detailed description can be found in [43], [44].

We used the GAP 3 [45] computer algebra system to im-
plement the high-level components of SPIRAL including the
Formula Generation, the Formula Optimization, the Search,
and the user interface. GAP was chosen for the following
reasons:

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 243

Table 4
Examples of Templates for SPL Constructs: Symbols

1) GAP provides data types and functions for symbolic
computation, including exact arithmetic for rational
numbers, square roots of rational numbers, roots of
unity, and cosine and sines of angles , where is
a rational number. These are sufficient to represent
most transforms and rules, and exact arithmetic can
be used to formally verify rules and formulas (see
Section V-B).

2) GAP can be easily extended.
3) GAP is easy to interface with other programs and the

GAP kernel can be modified when necessary, since the
full source code is available.

IV. FROM SPL FORMULAS TO CODE

In this section, we discuss the second level in SPIRAL,
the Implementation Level (see Fig. 1), which comprises the
two blocks Implementation and Code Optimization. We also
refer to this level as the SPL Compiler, since its purpose is
to translate SPL formulas into code. By generating code for
a formula , we mean generating code for the matrix vector
multiplication , where and are input and output
vectors of suitable size.

Up to this point, the motivation to consider the formula
representation of transforms has been purely mathematical:
SPL is a natural representation of algorithms from the algo-
rithms expert’s point of view, and SPL enables the gener-
ation of many alternative formulas for the same transform.
However, as we will see in this section, SPL’s ruletrees and
formulas also retain the necessary information to translate
formulas into efficient code, including vector and parallel
code. Furthermore, SPL facilitates the manipulation of al-
gorithms using rules (see Section III-C). This manipulation
enables SPIRAL to optimize the dataflow patterns of algo-
rithms at the high, mathematical level. Current compilers
strive to accomplish such optimizations on the code level but,
in the domain of transforms, very often fail or optimize only
to a rather limited degree. In Section VII, we will show ex-
periments that demonstrate this problem.

In the following, we first slightly extend the language SPL
as introduced in Section III-B through the notion of tags
that fix implementation choices when SPL is translated into

code. Then, we introduce a major concept in SPL—the tem-
plate mechanism, which defines the code generation. Finally,
we explain standard (scalar) code generation and, with less
detail, vector code generation and the first experiences in
SPIRAL with parallel code generation.

A. SPL and Templates

As introduced in Section III-B, Table 1, SPL describes
transform algorithms as formulas in a concise mathematical
notation.

Implementation choices: tags. Besides formula con-
structs, SPL supports tags in ruletrees and the corresponding
formulas. The purpose of these tags is to control imple-
mentation choices, i.e., to instruct the compiler to choose a
specific code generation option, thus fixing the degrees of
freedom in the compiler. In the current version of SPIRAL,
the most important implementation choice considered is the
degree of unrolling, which can be controlled either globally
or locally. The global unrolling strategy is determined by
an integer threshold that specifies the smallest size of (the
matrix corresponding to) a subformula to be translated into
loop code. This threshold may be overridden by local tags
in the formula that allow a finer control. Experiments have
shown that a global setting is sufficient in most cases [44].
Tags will most likely become even more relevant in future
versions of SPIRAL when more implementation strategies
with indeterminate outcome are included.

Templates. The translation of SPL formulas to code is de-
fined through templates. A template consists of a parameter-
ized formula construct , a set of conditions on the formula
parameters, and a C-like code fragment. Table 4 shows tem-
plates for several SPL symbols: the stride permutation ,
the matrix, the butterfly matrix , and a generic diag-
onal matrix . Table 5 shows templates for several matrix
constructs.

Templates serve four main purposes in SPIRAL: 1) they
specify how to translate formulas into code; 2) they are a
tool for experimenting with different ways of mapping a for-
mula into code; 3) they enable the extension of SPL with ad-
ditional constructs that may be needed to express new DSP
algorithms or transforms not yet included in SPIRAL; and

244 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Table 5
Examples of Templates for SPL Constructs: Matrix Constructs

4) they facilitate extending the SPL compiler to generate spe-
cial code types such as code with vector instructions (see
Section IV-E).

Each template is written as a separate function imple-
menting a parameterized SPL construct with its own scope
for variables. However, when incorporated into the gen-
erated code, the variables local to different templates are
given unique names to disambiguate them and to incorporate
them into one common name space. The template code is
specialized by substituting all of the template parameters
(e.g., and in) by their respective values.

Although the template specialization step is similar to the
partial evaluation described in [46], it does not require com-
plicated binding-time analysis, because the only control flow
statements in the code generated from formulas are loops
with known bounds. This is because currently, SPIRAL does
not generate code for parameterized transforms, but only for
instantiations. Transform size and other parameters are al-
ready fixed in the formula generation process. This makes
the specialization of the initial code generated from the for-
mula straightforward.

B. Standard Code Generation

The SPL compiler translates a given SPL program de-
scribing a formula into C (or Fortran) code. This translation
is carried out in several stages shown in Fig. 3.

Intermediate Code Generation. The first stage of the
compiler traverses the SPL expression tree top-down, recur-
sively matches subtrees with templates, and generates C-like
intermediate code from the corresponding template by spe-
cializing the template parameters with the values obtained
from the formula.

Next, based on the local unrolling tags and the global un-
rolling threshold, the compiler identifies loops that should
be unrolled and marks them accordingly in the intermediate
representation.

Constructs like “diag” or other generic matrices allow lists
of constant scalar values as arguments. Constants are saved
in constant tables, , to enable looping. These tables

Fig. 3. SPL compiler.

are used in the subsequent compiler stages. If the loop is un-
rolled, the table references are expanded back into constants;
if the loop is not unrolled, the table is part of the generated
code.

Loop unrolling. Loops marked for unrolling are fully un-
rolled; currently, the SPL compiler does not support partial
unrolling. A reasonably large degree of unrolling is usually
very beneficial, as it creates many opportunities for optimiza-
tions. As a simple example, consider the rotation matrix

Since there is no special template for a rotation, the com-
piler generates a regular matrix multiplication block with two
nested loops, and a separate data table to contain the
elements of the matrix. This code and the resulting unrolled
code is shown below.

loop code:

for (i0 = 0; i0 < 2; i0 + +) f

y[i0] = 0;

for (i1 = 0; i1 < 2; i1 + +) f

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 245

f0 = mat0[i0�2 + i1]�x[i1];

y[i0] = y[i0] + f0;

g

g

unrolled code:

y[0] = 0;

f0 = 0:923 879 532 511 286 7
�

x[0];

y[0] = y[0] + f0;

f0 = 0:382 683 432 365 089 8�x[1];

y[0] = y[0] + f0;

y[1] = 0;

f0 = (�0:382 683 432 365 089 8)�x[0];

y[1] = y + f0;

f0 = 0:923 879 532 511 286 7
�

x[1];

y[1] = y[1] + f0;

As this example shows, full unrolling enables constant
table references to be inlined and additional optimizations
to be performed. In this case all additions of zero can be
eliminated.

Precomputation of intrinsics. Besides constants, the
code may call predefined transcendental functions such
as to represent scalars. These functions are called
intrinsic, because the compiler has special support for han-
dling them.

When the compiler encounters an intrinsic function, the
function call is not inserted in the target code. Instead, all
possible arguments to the function are computed by the com-
piler. This is possible, since all loop bounds are known at
compile time. The compiler will then replace the original ex-
pressions by references to tables of constants whose values
are either computed at compile time or initialized at runtime,
depending on the compiler configuration. In the case they are
initialized at runtime, the compiler produces an initialization
function.

Optimization. The optimization stage performs dead code
and common subexpression elimination (CSE), strength re-
duction, copy propagation, and conversion to scalars of tem-
porary vector references with constant indexes. This stage
will be discussed in detail in Section IV-C.

Target code generation. In the last stage, the compiler
produces the target code. The target code is customizable
with the following options.

Standard code generation backends generate standard C
and Fortran code including the required function declaration,
constant tables, and the initialization function for precom-
puting intrinsics. We focus our discussion on C code gen-
eration. The fused multiply–add (FMA) backend performs
an instruction selection to produce C code that utilizes FMA
instructions available on some platforms. The multiplierless
backend decomposes constant multiplications into additions,
subtractions, and shifts.

Graphical backends produce transform dataflow graphs.
These graphs are useful to visualize, analyze, and compare
different code options.

Statistical backends output statistics of the generated code,
rather than the code itself. Examples include the arithmetic
cost, the FMA arithmetic cost, the size of the intermediate
storage required, or the estimated accuracy. These statistics
can be used as alternatives to runtime for the optimization
criteria used by SPIRAL (see Section V-C). The arithmetic
cost backend, for instance, enables SPIRAL to search for for-
mulas that implement the transform with the minimal number
of arithmetic operations.

C. Code Optimization

In this section, we provide further detail on the optimiza-
tion stage of the SPL compiler, the fourth block in Fig. 3.
The reason why the SPL compiler performs these optimiza-
tions rather than leaving them to the C/Fortran compiler is
that practically all of the commonly used compilers do not
optimize machine generated code well, in particular, large
segments of straightline code (see [11], [20], [47], [48]). The
performed optimizations include array scalarization, alge-
braic simplification, constant and copy propagation, CSE,
and dead code elimination. The first four optimizations will
be investigated in more detail below. Dead code elimination
will not be discussed, as there are no unusual details of our
implementation that impact performance. Finally, we briefly
discuss FMA code generation.

Static single assignment (SSA). All of the optimizations
considered are scalar optimizations that operate on code con-
verted to SSA form, in which each scalar variable is assigned
only once to simplify the required analysis.

Array scalarization. C compilers are very conservative
when dealing with array references. As can be seen from
the compilation example in the previous section, the loop
unrolling stage can produce many array references with
constant indexes. During array scalarization, all such occur-
rences are replaced by scalar temporary variables.

Algebraic simplification. This part of the optimizer per-
forms constant folding and canonicalization, which support
the efforts of other optimization passes.

Constants are canonicalized by converting them to be non-
negative and by using unary negation where necessary. Ex-
pressions are canonicalized similarly by pulling unary nega-
tion as far out as possible. For example, is translated
to , and . Unary operators will
usually combine with additive operators in the surrounding
context and disappear through simplification.

These transformations, in conjunction with copy propa-
gation, help create opportunities, previously unavailable, for
CSE to further simplify the code.

Copy propagation. Copy propagation replaces occur-
rences of the variable on the left-hand side of a given
“simple” assignment statement with the right-hand side of
that assignment statement, if the right-hand side is either
a constant, a scalar, or a unary negation of a scalar or a
constant.

Recall that unary negation expressions are often created
during algebraic simplification due to canonicalization. Copy
propagation will move them so that they can combine with

246 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 4. DFT performance before and after SPL compiler optimizations on a SPARC and MIPS
architecture. SPARC: UltraSparc III, 750 MHz, Forte Developer 7 compiler, flags -fast -xO5;
MIPS:MIPS R12000, 300 MHz, MIPSpro 7.3.1.1 compiler, flag -O3. (a) SPARC. (b) MIPS.

additive operators in the new context during further algebraic
simplification.

CSE. CSE tries to discover multiple occurrences of the
same expression; it makes sure that these are computed only
once. Our implementation treats subscripted array references
as expressions and, therefore, as eligible for elimination.

Optimization strategy. The different optimizations de-
scribed above have mutually beneficial relationships. For in-
stance, algebraic simplification can bolster copy propagation,
and copy propagation can then create new opportunities for
algebraic simplification. Alternating between these two opti-
mization passes, the code will eventually reach a fixed point,
where it is changed no further.

Our implementation strategy is to loop over these different
optimization passes in the manner prescribed, and to termi-
nate once an entire iteration fails to change the code.

Impact of the optimizations. Merely scalarizing arrays
provides a sizable performance benefit as seen in Fig. 4.
These graphs depict the execution time (lower is better) of
the programs generated for 45 SPIRAL generated formulas
for a on two different platforms. The line marked
with stars and labeled “SPARC” in Fig. 4(a) [respectively,
“MIPS” in Fig. 4(b)] shows the execution times achieved by
the native SPARC (MIPS) compiler alone. The line marked
with triangles and labeled “Scalarized” shows that every for-
mula is improved by scalarizing the C code before sending it
to the native compiler on both platforms. Note that we per-
formed our MIPS experiments on an R12000 with the MIP-
Spro compiler. See [47] for a case where the same experi-
ments were performed with the same compiler on an R10000,
but with different results. In that case, the MIPSpro compiler
already achieved good performance without scalarizing or
optimizing the code first. The line marked with bullets and
labeled “Optimized” in both graphs of Fig. 4 represents the
performance of the DFT codes after the entire optimization
following the strategy described above. We observe that the

additional optimizations beyond array scalarization signifi-
cantly improve the code on SPARC, but not on MIPS.

FMA code generation. Some architectures, including
Itanium 1/2 and Motorola G4/G5, offer FMA instructions,
which perform an instruction of the form

as fast as a single addition or multiplication. Most standard
compilers cannot generate the optimal FMA code, as it
may require changing the algorithm and/or the order of
computation.

To generate explicit FMA code, we use an algorithm that
traverses the dataflow graph propagating multiplications and
fusing them with additions where possible [49]. The algo-
rithm has the property that the number of multiplications left
“unfused” is at most the number of outputs of the transform.
We implemented the algorithm by extending the iburg in-
struction selection framework for expression trees [50]. Un-
like standard compilers, this algorithm can produce code that
matches the best published FMA arithmetic cost for many
transforms, including the DFT [51], [52].

Our FMA generation algorithm can also be performed
more concisely at the formula level (similar to the vector code
generation discussed below) rather than at the code level.
This method is currently being integrated into SPIRAL.

D. Compilation Example

To demonstrate the most important stages of the compiler,
we discuss the compilation of the SPL formula in (41). The
size of the formula is four, which is smaller than the default
global unrolling threshold 16. Thus, the generated code will
be completely unrolled. In the unrolled code, all references to
precomputed coefficient tables and transcendental functions
will be inlined during the unrolling stage, and the intrinsic
precomputation stage will be omitted.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 247

Table 6
Code Generation for Formula (41). Left: Initial Code Generation.
Right: After Unrolling and Inlining Constants

We look at the output of all the stages of the compiler for
this expression.

Intermediate code generation from SPL templates. The
initial stage of the compiler converts the SPL expression tree
for (41) into the looped intermediate code (Table 6, left). The
generated code is annotated with formula fragments to show
the origin of the code.

Loop unrolling. All of the loops generated in the previous
stage are unrolled because of the small transform dimension

, where 16 is the default setting as mentioned.
After full unrolling, the tables are no longer needed,
and the compiler directly substitutes the computed values
(Table 6, right).

Scalar optimization and target code generation. Loop
unrolling usually creates many opportunities for scalar op-
timizations, and also creates unnecessary temporary arrays
(t0, t1, t2, t3, t4 in Table 6, right). Array scalarization con-
verts redundant temporary arrays into scalars, and then the
code is converted into SSA form (i.e., each scalar variable is
assigned only once). As was mentioned earlier, this simpli-
fies the analysis required for further optimization.

After the code optimization, the compiler outputs the
target code including the transform function declaration
and an initialization function. Since our unrolled code does
not use any tables, the initialization function is empty. The
resulting code is shown in Table 7, left. Further optional
FMA optimization saves two instructions (Table 7, right).

Fig. 5 shows the two dataflow graphs, produced by the
graphical backend, for the codes in Table 7. Each internal
node in the graph represents either an addition (light gray
circle), a multiplication by a constant (dark gray circle), or
an FMA instruction (dark gray rectangle). For the latter, the
input being multiplied is marked with a bold edge.

E. Vector Code Generation

Most modern processors feature short vector single-in-
struction, multiple-data (SIMD) extensions. This means the
architecture provides data types and instructions to perform
floating-point operations on short vectors at the same speed
as a single, scalar operation. The short vector extensions
have different names for different processors, have different
vector lengths , and operate in single or double precision.
An overview is provided in Table 8.

Short vector instructions have the potential to speed up
a program considerably, provided the program’s dataflow
exhibits the fine-grain parallelism necessary for their appli-
cation. Since vector instructions are beyond the standard
C/Fortran programming model, it is natural to leave the
vectorization to a vectorizing compiler. Unfortunately, to
date, compiler vectorization is very limited; it fails, in par-
ticular, for the complicated access patterns usually found in
transform formulas. In Section VII, for example, we will
show that compiler vectorization, when used in tandem
with SPIRAL, can, for the DFT, achieve moderate speedups

248 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Table 7
Final Generated C Code and FMA Code for (41)

Fig. 5. Standard and FMA dataflow graphs generated by SPIRAL for (41). Multiplications
are shaded dark gray, FMAs are shown as dark gray rectangles.

(about 50%), whereas the best possible code is at least a
factor of two faster.

As a consequence, when striving for highest performance,
the common current practice is to hand-code vector instruc-
tions. This can be done at the C level through the use of “in-
trinsics” provided by the respective architecture vendors, but
poses major challenges to software developers.

1) Each vector extension provides different functionality
and the intrinsics interface is not standardized, nei-
ther across platforms, nor across compilers, making the
written code nonportable.

2) The performance of vector instructions is very sensi-
tive to the data access; a straightforward use often de-
teriorates performance instead of improving it.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 249

Table 8
Short Vector SIMD Extensions

3) In a library of many transforms, each transform needs
to be hand-coded individually.

In the following, we give an overview of how we overcome
these problems by extending SPIRAL to automatically
generate optimized vector code. We note that by extending
SPIRAL to handle vectorization, the third difficulty is im-
mediately taken care of. For a more detailed description, we
refer to [53]–[55] and to [56] in this special issue.

Our approach to vector code generation for SPL formulas
consists of two high-level steps.

• We identify which basic SPL formulas or structures
within formulas can be mapped naturally into vector
code; then we derive a set of manipulation rules that
transform a given SPL formula into another formula
that can be better vectorized. These manipulations are
incorporated into the Formula Optimization block in
Fig. 1 and can overcome compiler limitations, since
they operate at the “high” mathematical level. The
manipulation rules are parameterized by the vector
length

• We define a short vector API on top of all current vector
extensions, which is sufficient to vectorize a large class
of SPL formulas. The API is implemented as a set of
C macros. The SPL compiler is then extended to map
vectorizable formulas into vector code using this API.

Formula manipulation. We start by identifying formulas
that can be naturally mapped into vector code. The list is by
no means exhaustive, but, as it turns out, is sufficient for a
large class of formulas. We assume that the formula is real
valued, i.e., if the original formula is complex, we first con-
vert it into a real formula using the conversion operator
and the manipulation rules introduced in Section III-C. Fur-
ther, we denote the vector length with ; on current plat-
forms, only , 4 are available (see Table 8). We refer to
a vector instruction for vectors of lengths also as a -way
vector instruction.

The most basic construct that can be mapped exclusively
into vector code is the tensor product

(42)

where is an arbitrary formula. The corresponding code is
obtained by replacing each scalar operation in the code for

by the corresponding -way vector instruction. This
is best understood by visualizing the structure of ; the
example for is provided in Table 9.

Further, the following structured matrix

(43)

can be mapped into 4 vector multiplications and 2 vector
additions. The sparse structure of in (43) is equivalent to
the structure of (42); only the actual values of the entries
differ. The matrix appears often in DSP transforms, for
example, in the DFT when converting the complex twiddle
factors into a real matrix using the operator.

Finally, we need vectorizable permutations. Clearly, per-
mutations of the form match (42) and are, thus, nat-
urally mappable into vector code. Another important class
consists of permutations that can be vectorized using a small
number of in-register data reorganization instructions. The
permutations

(44)

are of that type and play an important role in the vector-
ization of DFT algorithms based on the Cooley–Tukey rule
(20). The actual implementations of these instructions differ
across short vector architectures; however, they share the
characteristics that they are done fully in-register, using only
a few vector reorder instructions.

Further, if is a vectorizable permutation of the form
(42) or (44), then the same holds for . Finally, for

, we also consider permutations of half-vectors, namely
of the form . These permutations reorganize com-
plex numbers into the interleaved complex format and are,
thus, important for complex transforms. For example, Intel’s
SSE vector extension provides memory access instructions
for these permutations.

Building on the constructs introduced above, we can com-
pletely vectorize any expression of the form

(45)

where , are vectorizable permutations, and ,
are direct sums of matrices of the form (43). The class of
formulas in (45) is general enough to cover the DFT for-
mulas based on the Cooley–Tukey breakdown rule (20), the
WHT formulas based on (26), and the higher dimensional
transforms (19).

250 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Table 9
Vectorization of y = (F
 I)x for a Four-Way Vector Extension Using the Portable SIMD API

We briefly illustrate the vectorization manipulations with
the Cooley–Tukey rule (20). To manipulate a given formula
into the form (45), we use manipulation rules including
(35)–(39). Using these manipulations, we can vectorize
every Cooley–Tukey rule based formula, provided that for

in (20), , , which implies . In this case
the manipulated formula takes the following form:

DFT DFT

DFT

(46)

where is a direct sum of matrices shown in (43).
The operator is as defined in Section III-B. Note that (46)
matches (45) and is, hence, completely vectorizable, inde-
pendently of the further expansion of the smaller occurring
DFTs. This is crucial for obtaining a searchable space of for-
mulas that exhibit different dataflows.

Code mapping. After a formula is vectorized by the
means of formula manipulation, the parts of the formula
matching the pattern in (45) are mapped into vector code.
The remaining part of the formula is mapped into scalar code
using the standard SPL compiler. For a formula matching
(45), first, vector code is generated for by generating
scalar code for and replacing the scalar operations by
the corresponding -way vector operations (e.g.,
is replaced by , and by replacing array
accesses by explicit vector load and store instructions. Next,
the permutations and are implemented by replacing
the vector loads and stores by combined load/store-and-per-
mute macros provided by our short vector API. In the final
step, the arithmetic operations required by and are
inserted between the code for , and the vector memory
access and permutations introduced in the previous step.

As a small example, we show a vector store fused with
, provided by our API, and implemented in SSE using the

Intel C++ compiler intrinsics. It is one of the cases in (44)
for .

;
;
;

;

In this example, , , , are vectors of length 4 and
the permutation is performed with the first two instructions.
Assuming the vectors are indexed with 0,1,2,3, it is

and .

F. Code Generation for Parallel Platforms

In many situations, parallel processing may be needed due
to real-time constraints or when a large amount of data needs
to be processed. Despite tremendous advances, parallelizing
compilers, similar to vectorizing compilers, cannot compete
with the best possible hand-optimized code, even for rela-
tively simple programs [57], [58]. In this section we show a
first step toward generating parallel code using SPIRAL. The
high-level approach is similar to vector code generation (see
Section IV-E): 1) identify constructs that can be mapped into
parallel code; 2) manipulate a given formula into these par-
allelizable constructs; and 3) map the manipulated formula
into efficient code.

SPIRAL’s constructs, in particular the tensor product and
direct sum, have natural interpretations for parallel compu-
tation [33], and many of the traditional optimizations used
to achieve better granularity, locality, and load balance can
be achieved through formula manipulation. Using formula
manipulation, SPIRAL can explore alternative formulas that
may exhibit explicitly parallelizable subcomponents. Parallel
implementations are obtained using parallel directives/func-
tions in the templates for these constructs. A search can be
used to find the best combination of parallel and sequential
code and, thus, to minimize parallel overhead and to achieve
good processor utilization.

Relatively simple extensions to the code generator can
be utilized to produce parallel code for both symmetric
multiprocessors (SMPs), where multiple processors share
a common memory with uniform access time, and dis-
tributed-memory parallel computers, where remote memory
is accessed over an interconnect with nonuniform memory
access. For distributed-memory computers, code can be
produced by using a shared-memory programming model
where remote memory is accessed implicitly, or by using
a distributed-memory programming model, where explicit
message passing is required. In either approach, alternative
formulas for the same transform may access memory in
different patterns leading to more or less remote memory
accesses.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 251

Table 10
Pseudocode for an SMP Implementation of the WHT of Size n = 2 and
Distributed-Memory Pseudocode for the Stride Permutation

We realized these ideas in preliminary experiments with
the WHT on both shared-memory multiprocessors [59] and
distributed-memory computers [60]. The parallel code was
generated using OpenMP [61] for shared-memory paral-
lelism and MPI [62] for distributed-memory parallelism. We
performed additional experiments using a special-purpose
distributed-memory parallel computer designed for the com-
putation of the DFT and WHT [63]. In this case, a search
over a family of related formulas was used to minimize the
number of remote memory accesses.

Rule (26) decomposes the WHT into a sequence of fac-
tors of the form containing
independent computations of at stride , which
can be computed in parallel. A barrier synchronization must
be inserted between the factors. The strided access patterns
may prevent prefetching associated with cache lines and
may introduce false sharing where different processors
share a common cache line even though they do not access
common data elements [59]. Thus, rule (26) only serves as
a starting point to optimize the WHT structure for parallel
target platforms.

Formula manipulation. Using the manipulation rules
from Section IV-E, (26) can be modified to obtain the
different structure

(47)

where is a sequence of permutations. One possibility is
to choose . There are also other choices, since the
sequence of permutations is not unique. When and
the permutations are computed at runtime, the algorithm of

[26] is obtained. This variant can lead to better performance
on SMPs due to reduced cache misses and bus traffic. In a
distributed memory environment, different sequences of per-
mutations lead to different locality and the SPIRAL search
engine can be used to determine the sequence with the min-
imal number of remote memory accesses.

Further manipulation can be used to combine adjacent per-
mutations to obtain

(48)

where (where we assume). This
has the benefit of reducing the amount of message passing
in a distributed-memory environment. Further factorization
of the permutations can be used to obtain formulas that
group the data into larger blocks, which can both reduce com-
munication cost and improve cache utilization.

Code generation. Parallel code for SMPs can be gener-
ated for SPL programs through the use of parallel directives
in the templates for parallel constructs such as the tensor
product. It is straightforward to insert parallel loops when-
ever occurs in a formula; however, in order to ob-
tain good parallel efficiency, we should only introduce paral-
lelism when it improves performance; further, it is important
to avoid creating and deleting threads multiple times. It is
best to create a parallel region and introduce explicit sched-
uling and synchronization as needed for the different con-
structs. Table 10 (left) shows the parallel code for an SMP
implementation of the iterative rule of the WHT in equation
(26); the notation indicates a subvector of of size

252 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

equal to . While the code
was created by using formula manipulation and the tech-
niques of Section IV-A, the code involves features not cur-
rently supported by SPIRAL, such as variable loop bounds
and in-place computation. We made experiments with this
and other parallel code with a special package for computing
the WHT [27], [59], [60].

Code generation for distributed memory machines is more
involved. Data must be distributed amongst the processors,
locality maximized, and communication minimized. If a
distributed shared-memory programming model is used, ex-
plicit communication is not required; however, data access
patterns must be organized to minimize remote memory
access. Since SPIRAL can make modifications at the for-
mula level, alternative data access patterns can be explored
and optimized automatically. In a distributed memory pro-
gramming model, explicit send/receive operations must be
inserted, taking into account the data distribution. For the
WHT, where the data size is a power of two, data can be
distributed using the high-order bits of the data address as a
processor identifier and the low-order bits as an offset into
the processor’s local memory. In this case, communication
arises from permutations in the formula, and these permu-
tations can be automatically converted to message-passing
code (see Table 10, right, for an example). Additional details
are available in [60].

V. EVALUATION

After formula generation and code generation, the third
conceptual key block in SPIRAL is the Evaluation Level
block, which is responsible for measuring the performance
of the generated code and for feeding the result into the
Search/Learning block.

The Evaluation Level block fulfills three main functions:
1) compilation of the source code into machine code; 2) op-
tional verification of the generated code; and 3) measurement
of the performance of the generated code. The performance
metric can be the runtime of the compiled code, or it can be
some other statistics about the code such as the number of
arithmetic operations, the instruction count, the number of
cache misses, or the number of FMA instructions. Other per-
formance measures such as numerical accuracy or code size
can also be used. The performance evaluation block makes it
easy to switch between performance measures or to add new
ones.

A. Compilation

To obtain a performance measure, such as the runtime,
the code generated by SPIRAL is compiled, linked with the
performance measuring driver, and executed. At installation
time, SPIRAL detects the machine configuration and the
available compilers, defaulting to vendor-supplied compilers
if available.

Interfacing external programs, like C compilers, portable
across platforms and operating systems, and integrating
different performance measures is a nontrivial problem. In
SPIRAL we have implemented a library we call “sysconf”

to provide a portable and flexible solution. For example, the
sysconf library stores the information about compilers avail-
able on the machine in a set of configuration profiles. Each
profile includes the path to the compiler and to the linker,
the target language (C or Fortran) and object file extensions,
the compiler invocation syntax, the compiler and linker
flags, the required libraries, and the test driver execution
syntax. Profiles can be nested in order to create groups; for
example, if the “c.gcc” profile includes all the information
necessary to use gcc, “c.gcc.opt1” and “c.gcc.opt2” may be
created to differentiate between option sets with different
optimization levels. Configuration profiles are very useful
for benchmarking different compilers and for evaluating the
effects of different compiler options. Further, profiles can
be configured for cross compilation and remote execution
on a different platform. For example, this capability is used
to produce the IPAQ results shown in Section VII. Also,
additional C-to-C optimization passes are easily incorpo-
rated into a profile to accommodate various research tools.
Finally, profiles allow the execution of other programs to
compute various performance measures, e.g., obtained by
statically analyzing the C or compiled code.

B. Verification

SPIRAL provides several modes of (optional) verification
for its automatically generated code: 1) rule verification; 2)
formula verification; 3) code verification; and 4) recursive
code verification. We briefly discuss these modes.

Rule verification. SPIRAL requires all transforms to have
a definition, which is a function that constructs the transform
matrix given its parameters. Since rules decompose trans-
forms into other transforms, each rule can be verified for
fixed parameter choices. Namely, the rule is applied to the
transform once, and the resulting formula, in the formula
generator, is converted into a matrix and compared to the
original transform. This type of verification is usually exact,
since most transforms and their formulas have exact repre-
sentations due to the symbolic computation environment pro-
vided by GAP (see Section III-E).

Formula verification. A fully expanded formula is veri-
fied similarly to a rule by converting it into the represented
matrix and comparing it to the original transform. Again, this
verification is usually exact.

Both, rule verification and formula verification are per-
formed exclusively at the formula level, i.e., no code is gen-
erated. Their purpose is to verify transform algorithms and to
debug the formula generator. Code verification is discussed
next.

Code verification. For the verification of the generated
code, SPIRAL provides a variety of tests.

The most important test applies the generated code to an
input vector and compares the output vector to the cor-
rect result obtained by computing the transform by defini-
tion (the code for computing a transform by definition is also
generated by SPIRAL). The norm of the error (dif-
ferent norms are available) is returned, and has to be below a
threshold. Two modes are available. The first mode performs
this comparison on the entire set of (standard) base vectors.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 253

The correct outputs need not be computed in this case, since
they are the columns of the transform matrix. For a transform
of size , the algorithms are typically ; thus, this
verification is . The second mode performs this
comparison either on one or on several random vectors .
Here the cost is for computing the correct outputs by
definition.

As a variant of the above tests, two generated programs
can be compared against each other on the standard basis or
on a set of random vectors.

The verification on the basis described above can be
extended further to obtain an actual proof of correctness.
Namely, the code generated by SPIRAL contains only
additions and multiplications by constants as arithmetic
operations. Thus, the entire program has to encode a linear
function provided all the arrays are accessed within their
allowed index range (which can be tested). If two linear
functions coincide on a basis, they must coincide for each
input vector, which proves correctness (up to a numerical
error margin).

Other verification methods we have experimented with in-
clude tests for transform specific properties, such as the con-
volution property of the DFT [64], [65].

In practice, because of the speed, we use the verification
on one random vector, which usually proves to be sufficient.
By including this verification in a loop that generates random
transforms, random formulas, and random implementation
options, bugs in SPIRAL can be found efficiently. To facil-
itate debugging, once a bug in the generated code is found,
another routine recursively finds the smallest subformula that
produces erroneous code.

C. Performance/Cost Measures

By default, SPIRAL uses the runtime of the generated
code as a performance measure, but other measures can be
chosen. This property makes SPIRAL a versatile tool that
can be quickly adapted or extended to solve different code
optimization problems in the transform domain. Examples
of considered performance measures, besides runtime, in-
clude accuracy, operation count, and instruction count. We
also started preliminary work on performance models that
can be applied at the algorithmic level without compiling and
executing the generated code.

Runtime. There are various ways of measuring the run-
time; obtaining accurate and reproducible results is a non-
trivial problem. A portable way of measuring runtime uses
the C clock() and computes the runtime as an average over a
large number of iterations. This implies that, for small trans-
form sizes, the runtimes do not reflect any compulsory cache
misses arising from loading the input into cache. Where pos-
sible, SPIRAL uses the processor’s built-in cycle counters,
which are of higher resolution and, thus, allow for much
faster measurement as only a few iterations need to be timed.
Depending on the precision needed (for instance, timing in
the search requires less precision than timing the final re-
sult), SPIRAL may need to run such measurements multiple
times and take the minimum. Taking the minimum over mul-
tiple measurements and keeping the number of repetitions

per measurement low, reduces the influence of other running
processes, unknown cache states, and other nondeterministic
effects.

Operations count. For theoretical investigations (and
some applications as well) it is desirable to know the formula
requiring the fewest number of operations. Most formulas
that SPIRAL generates, have, by construction, minimal
known (or close to minimal) operation count, however, there
are a few exceptions.

The first example is the class of Winograd algorithms [66]
for small convolutions and small DFT sizes, which exhibit a
large spread in operation counts. We have used SPIRAL to
search this space for close to optimal solutions [67].

The second example arises when generating formulas
using FMA instructions (Section IV-B), since known FMA
algorithms for transforms are usually hand-derived and are
only available for a few transforms, e.g., [51], [52], [68].
Using SPIRAL we obtain FMA code automatically; in
doing this, we found most of the published algorithms auto-
matically and generated many new ones for the transforms
contained in SPIRAL [49].

Accuracy. For many applications, and in particular for
those using fixed point code, numerical accuracy may be of
greater importance than fast runtime. SPIRAL can be easily
extended to search for accurate code, simply by adding a new
cost function for accuracy.

Let be a formula for the exact transform . When
implemented in -bit fixed point arithmetic, this formula rep-
resents an approximation of the matrix , i.e., .
Thus, as a measure of accuracy of the formula , we use

(49)

where is a matrix norm. There are several norms pos-
sible; good choices are the matrix norms that are sub-
ordinate to the vector norms (see [69] for more details
on norms). For fast evaluation, we choose the matrix norm

. Given , input depen-
dent error bounds can be derived by assuming an input and
setting (the exact result) and (the ap-
proximate result) to get

Cost functions for multiplierless implementations.
On platforms where multiplications are significantly more
expensive than additions (e.g., ASICs, but possibly also
fixed point only processors), multiplierless implementa-
tions of small transform kernels become viable candidates.
“Multiplierless” means multiplications by constants are first
represented in a fixed point format and then replaced by
additions and shifts. For example, a constant multiplication

is replaced by . Since DSP
transforms are linear, i.e, consist exclusively of additions
and multiplications by constants, this procedure produces
a program consisting of additions and shifts only. The
problem of finding the least addition implementation for
one given constant is NP-hard [70]. We have reimplemented
and extended the best known method [71] and included it as

254 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

a backend into SPIRAL to generate multiplierless code for
a given formula and for user-specified constant precisions.
Clearly, if these precisions are reduced, also the arithmetic
cost (measured in additions) of the resulting implementation
can be reduced. This leads to the following optimization
problem: for a given transform , find the formula with
the least number of additions that still satisfies a given ac-
curacy threshold with respect to a given accuracy measure

, i.e., .

We solve this problem automatically by using SPIRAL
with the following high-level steps (see [72], [73] for more
details).

• Generate a numerically accurate formula for as
described in Section V-C.

• Find the best assignment of bit-widths to the occurring
constants in such that the threshold holds. We have
solved this problem using a greedy or an evolutionary
search. The code was assumed to be completely un-
rolled so that the bit-widths could be chosen indepen-
dently for each constant.

In this optimization problem, we have considered several
target accuracy measures including numerical error
measures such as (49), and also application driven measures.
An example of the latter is the optimization of the IMDCT
and the DCT of type 2 in an MP3 audio decoder [74]. Here,
we chose the compliance test defined by the MP3 standard as
the accuracy threshold. The evaluation was done by inserting
the generated code into an actual MP3 implementation.

Performance modeling. SPIRAL generally uses empir-
ical runtimes and searches to find efficient implementations.
It is beneficial, both in terms of understanding and in re-
ducing search times, to utilize performance models and
analytically solve the optimization problems for which
SPIRAL finds approximate solutions. Unfortunately, de-
termining models that accurately predict performance is
very difficult because modern processors have many inter-
dependent features that affect performance. Nonetheless, it
is possible to obtain analytical results for restricted classes
of formulas using simplified performance models, see [63],
[75]–[77] for results applicable to the WHT and the DFT.
While these results do not accurately predict performance,
they give insight into the search space and provide heuristics
that may reduce the search time. Moreover, they can be used
to explore performance on processors that are currently not
available.

To illustrate the results obtained and their limitations, con-
sider the factorization of the WHT in equation (26). The for-
mula can be implemented with a triply nested loop, where the
outer loop iterates over the product and the inner two loops
implement the tensor product. The recursive expansions of

are computed in a similar fashion. Even though
the current version of the SPIRAL system cannot produce
code with recursive calls, it is still possible to implement this
formula with a recursive function (see [27]), where the re-
cursive expansions of are computed with recur-
sive calls to the function, and, in the base case, are computed

with straight-line code generated by SPIRAL. In this imple-
mentation, different instantiations of the rule, corresponding
to different decompositions , will lead
to different degrees of recursion and iteration, which implies
that the code may have different numbers of machine instruc-
tions even though all algorithms have the exact same arith-
metic cost. Let be one such WHT formula and let
the number of times the recursive WHT procedure is called,

the number of times a base case of size 2 (here it is as-
sumed that) is executed, and , , and
the number of times the outer, middle, and inner loops are ex-
ecuted throughout all recursive calls. Then the total number
of instructions required to execute is equal to

(50)

where is the number of instructions for the code in the
compiled WHT procedure executed outside the loops,
is the number of instructions in the compiled straight-line
code implementations of the base case of size , and ,

is the number of instructions executed in the outer-
most, middle, and innermost loops in the compiled WHT pro-
cedure. These constants can be determined by examining the
generated assembly code. Suppose is the de-
composition of corresponding to the factorization in (26);
then the functions , , satisfy recurrence re-
lations of the form ,
where depends on the function and is equal to , 0,
1, , , respectively. While it is not possible
to obtain a closed-form solution to all of the recurrences, it
is possible to determine the formula with minimal instruc-
tion count, compute the expected value and variance for the
number of instructions, and calculate the limiting distribu-
tion [78], [79].

The problem with these results is that the instruction
count does not accurately predict performance on modern
heavily pipelined superscalar processors with deep memory
hierarchies, and that it is not clear how to extend the results
to more general classes of formulas. While additional results
have been obtained for cache misses, a general analytic
solution has only been obtained for direct-mapped caches.
Additional challenges must be overcome to obtain more
general analytic results and to incorporate these insights into
the SPIRAL system.

VI. FEEDBACK OPTIMIZATION: SEARCH AND LEARNING

One of the key features of the SPIRAL architecture (see
Fig. 1) is the automated feedback loop, which enables
SPIRAL to autonomously explore algorithm and implemen-
tation alternatives. Intuitively, this feedback loop provides
SPIRAL with the “intelligence” that produces very fast code.
Since the algorithm and implementation space is too large
for an exhaustive enumeration and testing, this feedback
loop needs to be controlled by empirical strategies that can
find close to optimal solutions while visiting only a fraction

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 255

of the possible alternatives. These strategies have to take
advantage of the particular structure of the algorithms.

We consider two fundamentally different strategies, as in-
dicated already by the name of the Search/Learning block in
Fig. 1.

• Search methods control the enumeration of algorithms
and implementations at code generation time and guide
this process toward finding a fast solution. Search is the
method implemented in the current SPIRAL system.

• Learning methods operate differently. Before the ac-
tual code generation (offline), a set of random formulas
including their runtimes are generated. This set consti-
tutes the data from which the Learning block learns,
i.e., extracts the knowledge of how a fast formula and
implementation are constructed. At code generation
time, this knowledge is used to generate the desired
solution deterministically. We have implemented a
prototype of this approach for a specific class of trans-
forms including the DFT.

In the following, we explain the Search/Learning in greater
detail.

A. Search

The goal of the Search block in SPIRAL (see Fig. 1) is to
control the generation of the formulas and the selection of
implementation options, which, in the current version, is the
degree of unrolling. The search: 1) has to be able to modify
previously generated formulas and 2) should be transform
independent in the sense that adding a new transform and/or
new rules requires no modification of the search. To achieve
both goals, the search interfaces with the ruletree representa-
tion of formulas and not with the formula representation (see
Section III).

The current SPIRAL system features five search methods.

• Exhaustive search enumerates all formulas in the for-
mula space and picks the best. Due to the large
formula space , this is only feasible for very small
transform sizes.

• Random search enumerates a fixed number of random
formulas and picks the best. Since fast formulas are
usually rare, this method is not very successful.

• Dynamic programming lends itself as a search method
due to the recursive structure of the problem. For most
problems, it is our method of choice.

• Evolutionary search uses an evolutionary algorithm to
find the best implementation. This method is particu-
larly useful in cases where dynamic programming fails.

• Hill climbing is a compromise between random search
and evolutionary search and has proven to be inferior to
the latter. See [44] for an explanation of this technique
in the context of SPIRAL.

We explain dynamic programming and the evolutionary
search in greater detail.

Dynamic programming (DP). The idea of DP is to recur-
sively construct solutions of large problems from previously

constructed solutions of smaller problems. DP requires a re-
cursive problem structure and, hence, is perfectly suited for
the domain of transform algorithms.

We have implemented the DP search in a straightforward
way as follows. Given a transform , we expand one step
using all applicable rules and rule instantiations (for param-
eterized rules). The result is a set of
ruletrees of depth 1 (as (40)) or 0 (if the rule is a terminal
rule). For each of these ruletrees the set of children

(the are again transforms) is extracted,
and for each of these children , DP is called recursively to
return a ruletree , which is fully expanded. Inserting the
ruletrees into (that means replacing by
in), for , yields a fully expanded ruletree

for . Finally the best (minimal cost) ruletree among
the is returned as the result for .

To see how DP reduces the search space, consider a DFT
of size 2 and only the Cooley–Tukey rule (20). Using
recurrences, one can show that the number of formulas is

(the number of binary trees by using Stirling’s
formula, [80, pp. 388–389], whereas DP visits only .

The inherent assumption of DP is that the best code for a
transform is independent of the context in which it is called.
This assumption holds for the arithmetic cost (which implies
that DP produces the optimal solution), but not for the run-
time of transform algorithms. For example, the left smaller
transform (child) in the DFT rule (20) is applied at a stride,
which may cause cache thrashing and may impact the choice
of the optimal formula. However, in practice, DP has proven
to generate good code in reasonably short time [44] and,
thus, is the default search method in the current version of
SPIRAL.

Finally, we note that the vector extension of SPIRAL
requires a special version of DP, which is motivated by
the manipulated formula (46). As explained before, (46)]
is already vectorizable. In particular, the occurring DFTs
can be expanded arbitrarily, since their context is ,
which ensures they are vectorizable [matching (42)]. To
account for the conceptual difference between the first and
the remaining expansions, we need a variant of DP, which
we introduced in [54]

Evolutionary search. It is valuable to have another search
method available to evaluate DP and overcome its possible
shortcomings, particularly in view of the growing number of
applications of SPIRAL (e.g., Sections III and V-C). Evo-
lutionary search operates in a mode that is entirely different
from the DP mode; it attempts to mimic the mechanics of
evolution, which operates (and optimizes in a sense) through
cross breeding, mutation, and selection [81].

For a given transform, the evolutionary search generates
an initial population of a fixed size of randomly se-
lected ruletrees. Then, the population is increased using cross
breeding and mutation. Cross breeding is implemented by
swapping subtrees with the same root (transform) of two se-
lected ruletrees in [see Fig. 6(a)]. Three different types of
mutations are used: 1) regrow expands a selected node using
a different subruletree; 2) copy copies a selected subrule-
tree to a different node representing the same transform; and

256 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 6. Ruletree manipulation for the evolutionary search.
(a) Cross breeding. (b)–(d) Three types of mutations:
regrow, copy, and swap.

3) swap exchanges two subruletrees belonging to the same
transform. See Fig. 6(b)–6(c) for an illustration. The trees
that undergo cross breeding and mutation are randomly se-
lected, and the number of those trees is a parameter. Finally,
the increased population is shrunk to a size smaller than by
removing the slowest trees. Then the population is increased
to the original size by adding random trees to yield the
population . This process is repeated for a given number
of iterations or until the best member of the population does
not improve the minimization any further. For a more de-
tailed discussion and evaluation of the evolutionary search,
we refer to [44], [82].

The problem with evolutionary search (in general) is that
it may converge to solutions that are only locally optimal.

B. Learning

Search becomes more difficult as the number of possible
ruletrees increases. However, it is easy to collect a set of run-
times for random implementations of a given transform. This
data could be used to learn how to construct a fast ruletree for
that transform. Further, we have found that this knowledge
can be applied to generate fast implementations of different
sizes of a given transform, even when the knowledge was
gathered from only a single transform size.

Our approach consists of two stages.

• Modeling Performance of Individual Nodes. The first
step begins by collecting timing information for each
individual node in a set of random ruletrees. From this
data, we then learn how to construct a model that ac-
curately predicts the runtimes for nodes in ruletrees.
This effort requires a well-chosen set of features that
describe a node and its context within the larger rule-
tree.

• Generating Fast Implementations. The second step
uses the model developed in the first step to then
generate ruletrees that have fast running times.

Our discussion will focus on the WHT and the DFT. For
the WHT we consider only ruletrees based on rule (26) with
the restriction (two children); for the DFT we con-
sider only ruletrees based on the Cooley–Tukey rule (20).
Both rules have similar structure, in particular, for a DFT or a
WHT of size , and , the left child in both cases
appears in a tensor product of the form , which means

is computed times at stride . In the following, we call
the stride of the ruletree node . As a transform is ex-

panded recursively, the strides accumulate, e.g., for ,
, two applications of the rule lead to a left child

with stride . The focus in this section are large trans-
form sizes. Thus, to further restrict the algorithm space, we
used SPIRAL to pregenerate straightline code implementa-
tions of WHTs and DFTs of sizes 2 2 . These are used
as leaves in the ruletrees. This means that if the ruletree is
generated, in each step either a rule is applied or, if the node
is small enough, a leaf can be chosen to terminate.

Modeling Performance. It is possible to carefully time
each individual node of a ruletree as it runs. The runtime for
an internal node is calculated by subtracting off the runtimes
of the subtrees under the node from the total runtime for the
tree rooted at the given internal node. To allow our methods
to learn across different transform sizes, we divide the actual
runtimes by the size of the overall transform and learn on
these values.

In order to model the runtimes for different nodes, we must
define a set of features that describe nodes in ruletrees. To
allow the modeling to generalize to previously unseen rule-
trees, the features should not completely describe the ruletree
in which the node is located. However, a single simple fea-
ture such as the node’s size may not provide enough context
to allow for an accurate model to be learned. Intuitively, our
features are chosen to provide our method with the domain
knowledge about the transform algorithms.

Clearly, the size of the transform at the given node is an im-
portant feature as the size indicates the amount of data that
the node must process. The node’s position in the ruletree is
also an important factor in determining the node’s runtime.
This position often determines the stride at which the node
accesses its input and output as well as the state of the cache
when the node’s computation begins. However, it is not as
easy to capture a node’s position in a ruletree as it is to cap-
ture its size.

A node’s stride can be computed easily and provides infor-
mation about the node’s position in a ruletree and also about
how the transform at this node accesses its input and output.

To provide more context, the size and stride of the parent
of the given node can also be used as features. These fea-
tures provide some information about how much data will be
shared with siblings and how that data is laid out in memory.
Further, for internal nodes the sizes and strides of the node’s
children and grandchildren may also be used. These features
describe how the given node is initially split. If a node does
not have a given parent, child, or grandchild, then the corre-
sponding features are set to 1.

Knowing which leaf in the ruletree was computed prior
to a given node may provide information about what data is
in memory and its organization. Let the common parent be
the first common node in the parent chains of both a given
node and the last leaf computed prior to this node. The size
and stride of this common parent actually provides the best
information about memory prior to the given node beginning
execution. The common parent’s size indicates how much

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 257

Table 11
Error Rates for Predicting Runtimes for WHT Leaves

Table 12
Error Rates for Predicting Runtimes for Entire WHT Ruletrees

data has been recently accessed by the previous leaf and at
what stride the data has been accessed.

Thus, we use the following features:

• size and stride of the given node;
• size and stride of the given node’s parent;
• size and stride of each of the given node’s children and

grandchildren;
• size and stride of the given node’s common parent.

For the WHT, all of the work is performed in the leaves
with no work being done in the internal nodes, so the fea-
tures for the children and grandchildren were excluded for
the WHT since the leaves were the only interesting nodes to
consider. However, internal nodes in an DFT ruletree do per-
form work; thus, the full set of features was used for the DFT.

Given these features for ruletree nodes, we can now use
standard machine learning techniques to learn to predict run-
times for nodes. Our algorithm for a given transform is as
follows:

1) Run a subset of ruletrees for the given transform, col-
lecting runtimes for every node in the ruletree.

2) Divide each of these runtimes by the size of the overall
transform.

3) Describe each of the nodes with the features outlined
earlier.

4) Train a function approximation algorithm to predict for
nodes the ratio of their runtime to the overall transform
size.

We have used the regression tree learner RT4.0 [83] for
a function approximation algorithm in the results presented
here. Regression trees are similar to decision trees except
that they can predict real valued outputs instead of just cat-
egories. However, any good function approximation method
could have been used.

We trained two regression trees on data collected from run-
ning a random set of size 2 WHT implementations, one
from data for a Pentium III and one from data for a Sun
UltraSparc IIi (later often referred to simply as Pentium and
Sun). We also trained another regression tree on data col-
lected from running a random set of size 2 DFT implemen-

tations on Pentium. Specifically, we chose a random 10% of
the nodes of all possible binary ruletrees with no leaves of
size 2 to train our regression trees (we had previously found
that the subset of binary ruletrees with no leaves of size 2
usually contains the fastest implementations).

To test the performance of our regression trees, we eval-
uated their predictions for ruletrees of sizes 2 to 2 . Un-
fortunately, we could not evaluate them against all possible
ruletrees since collecting that many runtimes would take pro-
hibitively long. Instead we timed subsets of ruletrees that
previous experience has shown to contain the fastest rule-
trees. Specifically, for the WHT, for sizes 2 and smaller we
used binary ruletrees with no leaves of size 2 and for larger
sizes we used binary rightmost ruletrees (trees where every
left child is a leaf) with no leaves of size 2 . For the DFT,
we were not certain that rightmost ruletrees were best; so we
only evaluate up to size 2 over all binary ruletrees with no
leaves of size 2 .

For each ruletree in our test set, we used the regression
trees to predict the runtimes for each of the nodes in the rule-
tree, summing the results to produce a total predicted run-
time for the ruletree. We evaluate the performance of our
WHT regression trees both at predicting runtimes for indi-
vidual nodes and for predicting runtimes for entire ruletrees.
We report average percentage error over all nodes/ruletrees
in our given test set, calculated as

TestSet
TestSet

where and are the actual and predicted runtimes for
node/ruletree .

Table 11 presents the error rates for predicting runtimes for
individual WHT leaves. In all cases, the error rate is never
greater than 20%. This is good considering that the regres-
sion trees were trained only on data collected from running
size 2 WHT transforms.

Table 12 presents the error rates for predicting runtimes for
entire WHT ruletrees. Not surprisingly, the results here are
not as good as for individual leaves, but still good considering

258 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 7. Actual runtime versus predicted runtime for all binary rightmost WHT ruletrees with
no leaves of size 2 on Pentium and Sun. The displayed line y = x in both plots represents
perfect prediction. (a) Pentium III. (b) Sun UltraSparc IIi.

Table 13
Error Rates for Predicting Runtimes for
Entire DFT Ruletrees on Pentium

that different ruletrees can have runtimes that vary by a factor
of 2–10.

Fortunately, the runtime predictor only needs to be able to
order the runtimes of ruletrees correctly to aid in optimiza-
tion. The exact runtime of a ruletree is not necessary; just
a correct ordering of ruletrees is necessary to generate fast
ruletrees. To evaluate this, we plotted the actual runtimes of
ruletrees against their predicted runtimes. Fig. 7 shows plots
for size 2 WHT transforms (the plots for the other sizes
look similar). Each dot in the scatter plots corresponds to one
ruletree. The dot is placed vertically according to its actual
runtime and horizontally according to the predicted runtime
from the regression tree. The line is also plotted for
reference. The plots show that as the actual runtimes decrease
for ruletrees, so do their predicted runtimes. Further, the rule-
trees that are predicted to be the fastest can be seen to also be
the ruletrees with the fastest actual runtimes. Thus, the run-
time predictors perform well at ordering ruletrees according
to their actual runtimes.

Table 13 shows the error rates for predicting runtimes for
entire DFT ruletrees running on Pentium. Except for size 2 ,
the error rates here are quite excellent, especially considering
that the learned regression tree was only trained on data of
size 2 . The scatter plots for DFTs look very similar to those
for the WHT already displayed. They clearly show that the
learned regression tree is ordering formulas correctly and that
particularly the ruletrees with the fastest predicted runtimes
actually have the fastest runtimes.

Generating Fast Implementations. While the previous
work presents a way to accurately predict runtimes for WHT
and DFT ruletrees, it still does not solve the problem of con-
structing fast ruletrees. At larger sizes, there are many pos-

Table 14
Algorithm for Computing Values of States

sible ruletrees and it can be difficult to even enumerate all
the ruletrees, let alone obtain a prediction for each one. We
now describe a method for generating ruletrees that have fast
runtimes.

Generation of ruletrees begins with a given transform and
size for which a fast implementation is desired. We then need
to choose a factorization of this transform, producing chil-
dren for the root node. Recursively, we again choose children
for each of the root node’s children, and so on until we de-
cide to leave a particular node as a leaf.

Our approach is to define a set of states encountered during
the construction of fast ruletrees. We define a value function
over these states and show how that value function can be
quickly computed. We then show how to construct fast rule-
trees given the computed value function.

In the previous modeling work, we designed a set of fea-
tures that allowed for accurate prediction of runtimes of rule-
tree nodes. Thus, these features seemed ideal for describing
our state space. During the construction of ruletrees, we de-
scribe nodes by their features and consider this to be the
node’s state. So it is possible for two nodes in different rule-
trees to be considered the same state and for two nodes of the
same transform and size to be considered different states.

We now define the optimal value function over this state
space. For a given state, we consider all possible subtrees that

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 259

Table 15
Algorithm for Generating Fast Ruletrees

could be grown under that node along with the possibility of
leaving the node as a leaf. We then define the value of this
state to be the minimum sum of the predicted runtimes for
each of the nodes in a subtree, taken over all possible sub-
trees. These predicted runtimes are determined by the regres-
sion trees trained in the previous section. Mathematically

state

PredictedPerformance node

Note that the state of a node indicates its children and grand-
children for the DFT while we excluded these features for
the WHT. So for the DFT the minimum is really only taken
over valid subtrees given the state.

We can rewrite this value function recursively. For a given
state, we consider all possible one-level splittings of the cur-
rent node along with the possibility of leaving the node as a
leaf. The value of this state is then the minimum of the pre-
dicted performance of the current node plus the sum of the
values of any immediate children of the node for the best
splitting. That is

For the DFT, the state already describes the immediate chil-
dren. However, the full state description of the children is not
known, since it includes the grandchildren, i.e., the great-
grandchildren of the original node. Thus, for the DFT, the
minimum is actually taken over possible great-grandchildren
of the given node.

This recursive formulation of the value function suggests
using dynamic programming to efficiently compute the value
function. Table 14 displays the dynamic programming algo-
rithm for computing values of states. Again the algorithm
needs to be slightly modified for the DFT where the state de-
scription includes its children. The outer “for” loop is actu-
ally computed over the possible great-grandchildren instead
of just the children. It should also be noted that this dynamic
programming is different from that presented earlier in the
section on search (Section VI-A) in that this algorithm is

considering states described by many features besides just
a node’s transform and size and that values are obtained
from the learned regression trees. Due to the memoization
of values of states, this algorithm is significantly subexhaus-
tive since during an exhaustive search the same state would
appear in many different ruletrees.

Now with a computed value function on all states, it is
possible to generate fast ruletrees. Table 15 presents our algo-
rithm for generating fast ruletrees, restricting to binary rule-
trees for simplicity of presentation. For each possible set of
children for a given node, the algorithm looks up their values.
These values are added to the predicted performance of the
current node and compared against the value function of the
current state. If equal, we then generate the subtrees under the
children recursively. Again for the DFT, the algorithm needs
to be modified to loop over the possible great-grandchildren
instead of the children.

Since our regression tree models are not perfect, we may
wish to generate more than just the single ruletree with the
fastest predicted runtime. If a small set of ruletrees were
generated, we could then time all the generated ruletrees
and choose the one with the fastest runtime. We have im-
plemented an extended version of the FastTrees algorithm
that allows for a tolerance and generates all ruletrees that are
within that tolerance of the predicted optimal runtime.

Tables 16 and 17 show the results of generating fast WHT
ruletrees for Pentium and for Sun respectively. To evaluate
our methods, we again exhaust over subspaces of ruletrees
known to contain fast implementations since it is impossible
to obtain runtimes for all possible ruletrees in a reasonable
amount of time. In both tables, the first column indicates the
transform size. The second column shows how many rule-
trees need to be generated before the fastest ruletree is gen-
erated. The third column indicates how much slower the first
ruletree generated is compared to the fastest ruletree. Let
be the set of the first 100 ruletrees generated by our methods
and let be the set of the best 100 ruletrees found by ex-
haustive search. The fourth column displays the number of
items in the intersection of and . Finally, the last column
shows the rank of the first element in not contained in .

In all cases, the fastest ruletree for a given WHT transform
size was generated in the first 50 formulas produced. This is
excellent considering the huge space of possible ruletrees and
the fact that this process only used runtime information

260 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Table 16
Evaluation of Generation Method Using a WHT Runtime Predictor for a Pentium

Table 17
Evaluation of Generation Method Using a WHT Runtime Predictor for a Sun

Table 18
Evaluation of Generation Method Using
DFT Runtime Predictors for Pentium

gained by timing ruletrees of size 2 . Except for a few cases
on the Sun, the very first ruletree generated by our method
had a runtime within 6% of the fastest runtime. Further, in
all but one case, at least 40 of the 100 fastest ruletrees known
to us were generated as one of the first 100 ruletrees. On
occasion, the fourth fastest ruletree was not generated in the
first 100 ruletrees.

Table 18 shows the results for generating fast DFT rule-
trees on Pentium. The results are excellent with the fastest
ruletree being generating usually within the first 20 and often
as the very first ruletree. Further, the first ruletree to be gen-
erated had a runtime always within 15% of the runtime of the
fastest formula.

In this section, we have described a method that automat-
ically generates fast WHT and DFT ruletrees. To do this, we
also presented a method that accurately predicts runtimes for
ruletrees. More details and results can be found in [84]–[86].

VII. EXPERIMENTAL RESULTS

In this section we present a selected set of experiments
and performance benchmarks with SPIRAL’s generated
code. We remind the reader that in the SPIRAL lingo the
expression “completely expanded formula,” or simply “for-
mula,” means a transform algorithm.

We start with an overview of the presented experiments.

• Performance spread. We show the performance spread,
with respect to runtime and other measures, within the
formula space for a given transform.

• Benchmarking: DFT. We benchmark the runtime of
SPIRAL generated DFT code (including fixed-point
code) against the best available libraries.

• Benchmarking: other transforms. We benchmark
SPIRAL generated code for other transforms: the DCT
and the WHT.

• Runtime studies of FIR filters and the DWT. We com-
pare different algorithmic choices for filters and the
DWT.

• Platform tuning. We demonstrate the importance of
platform tuning, i.e., the dependency of the best algo-
rithm and code on the platform and the data type.

• Compiler flags. We show the impact of choosing com-
piler flags.

• Parallel platforms. We present prototypical results with
adapting the WHT to an SMP platform.

• Multiplierless code. We show runtime experiments
with generated multiplierless fixed-point DFT code.

• Runtime of code generation. We discuss the time it
takes SPIRAL to generate code.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 261

Table 19
Platforms Used for Experiments. “HT” Means Hyper Threading; L1 Cache Refers to the Data Cache.
The Compilers Are: ICC (Intel C++ Compiler); GCC (GNU C Compiler);
CC_R (IBM XL C Compiler, SMP Mode)

The platforms we used for our experiments are shown in
Table 19. For each platform, we provide the following: a
descriptive mnemonic name, the most important microar-
chitectural information, and the compiler and compiler flags
used. We used DP (dynamic programming) for all searches.
For vector code we used the vector version of DP (see
Section VI-A).

Performance spread. The first experiment investigates
the spread in runtime as well as the spread with respect to
other performance measures of different formulas generated
by SPIRAL for the same transform on p4-3.0-lin.

In the first example, we consider a small transform, namely
a , for which SPIRAL reports 1 639 236 012 dif-
ferent formulas. We select a random subset of 10 000 for-
mulas and generate scalar code. By “random formula” we
mean that a rule is chosen randomly at each step in the for-
mula generation (note that this method is fast but selects
ruletrees nonuniformly). Fig. 8(a) shows a histogram of the
obtained runtimes, and Fig. 8(b) shows a histogram of the
number of assembly instructions in the compiled C code. The
spread of runtimes is approximately a factor of two, and the
spread of the number of instructions is about 1.5, whereas
the spread in arithmetic cost is less than 10% as shown in
Fig. 8(c). The large spread in runtime and assembly instruc-
tion counts is surprising given that each implementation is
high-quality code that underwent SPL and C compiler opti-
mizations. Also, for transforms of this size and on this plat-
form no cache problems arise. Conversion into FMA code
(explained in Section IV-C) reduces the operations count [see
Fig. 8(d)], but increases the spread to about 25%. This means
that different formulas are differently well suited for FMA
architectures. In Fig. 8(e) we plot runtime versus arithmetic
cost. Surprisingly, the formulas with lowest arithmetic cost
yield both slowest and fastest runtimes, which implies that
arithmetic cost is not a predictor of runtime in this case. Fi-
nally, Fig. 8(f) shows the accuracy spread when the constants
are cut to 8 bits; it is about a factor of ten with most formulas
clustered within a factor of two.

In the second example, we show a runtime histogram for
20 000 random SPIRAL generated formulas for a large trans-

form, namely, , using only the Cooley–Tukey rule
(20) on p4-3.0-win. The formulas are implemented in scalar
code [see Fig. 9(a)] and in vector code [see Fig. 9(b)]. The
spread of runtimes in both cases is about a factor of five,
with most formulas within a factor of three. The best 30%
formulas are scarce. The plots show that, even after the ex-
tensive code optimizations performed by SPIRAL, the run-
time performance of the implementation is still critically de-
pendent on the chosen formula. Further, histogram Fig. 9(b)
looks very much like a translation to the left (shorter run-
time) of the histogram Fig. 9(a). This demonstrates that the
vectorization approach in SPIRAL is quite general: although
different formulas are differently well suited to vectorization,
the performance of all tested 20 000 formulas, including the
slowest, is improved by SPIRAL’s vectorization.

Conclusion: performance spread. Although different for-
mulas for one transform have a similar operation count [see
Fig. 8(c)], their scalar or vector code implementations in
SPIRAL have a significant spread in runtime (Figs. 8(a) and
9). This makes a strong case for the need of tuning imple-
mentations to platforms, including proper algorithm selec-
tion, as discussed in Section II. The same conclusion applies
to other performance costs as illustrated by the significant
spread in Fig. 8(d) for the FMA optimized arithmetic cost
and in Fig. 8(f) for the accuracy performance cost.

Benchmarking: DFT. We first consider benchmarks of
the code generated by SPIRAL for the DFT on p4-3.0-win
against the best available DFT libraries including MKL 6.1
and IPP 4.0 (both Intel’s vendor libraries), and FFTW 3.0.1.
For most other transforms in SPIRAL, there are no such
readily available high-quality implementations.

Fig. 10 shows the results for the – . The
performance is given in pseudomegaflops computed as

/(10 runtime), which is somewhat larger than
real megaflops, but preserves the runtime relations. This is
important for comparison, since different implementations
may have slightly different arithmetic cost. (Note that for
all other transforms we use real megaflops.) The peak per-
formance of p4-3.0-win is, for scalar code, 3 Gflops (single
and double precision), and for vector code 12 Gflops (single

262 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 8. Histograms of various data for 10 000 random fast formulas for aDCT-2 . (a) Runtime.
(b) Number of assembly instructions in the compiled C code. (c) Arithmetic cost.
(d) FMA optimized arithmetic cost. (e) Runtime versus arithmetic cost.
(f) Accuracy when cut down to 8-bit fixed point; Platform: p4-3.0-lin.

precision) and 6 Gflops (double precision). The DFT is
computed out of place with the exception of the IPP code
and the Numerical Recipes code [87], which are computed
inplace. In these figures, higher numbers correspond to
better performance. Solid lines correspond to SPIRAL gen-
erated code, dotted lines to the Intel libraries, and dashed
lines to FFTW and other libraries. We focus the discussion
on Fig. 10(a), starting from the bottom up. The lowest line is
the GNU library, which is a reimplementation of FFTPACK,
a library that was frequently used a decade ago. The library

is a reasonable C implementation but without any adaptation
mechanism or use of vector instructions. The next two lines
are FFTW 3.0.1 and SPIRAL generated scalar C code,
which are about equal in performance. Considerably higher
performance is achievable only by using vector instructions.
The next line shows the speedup obtained through compiler
vectorization, as enabled by a flag, used in tandem with
SPIRAL. This is a fair evaluation of compiler vectorization
as the Search block will find those formulas the compiler
can handle best. The speedup is about 50%, obtained with

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 263

Fig. 9. Histogram of 20 000 random SPIRAL generated scalar
and SSE vector implementations for a DFT of size 2 .
Platform: p4-3.0-win. (a) Scalar code (double precision).
(b) SSE vector code (single precision).

no additional effort. We note that FFTW cannot be compiler
vectorized due to its complex infrastructure. This 50%
speedup is, however, only a fraction of the speedup achieved
by the best possible vector code, which is about a factor of
two faster, or a factor of three over the best scalar code. This
performance is achieved by MKL, IPP, FFTW, and SPIRAL
(the top four lines). We speculate on the reason for their
relative performance.

• For small sizes, within L1 cache, SPIRAL code is best
by a margin, most likely due to the combination of al-
gorithm search, code level optimizations, and the sim-
plest code structure.

• Outside L1 but inside L2 cache, the Intel libraries are
fastest, most likely since the code is inplace and pos-
sibly due to optimizations that require microarchitec-
tural information not freely available.

• For larger sizes, FFTW seems to hold up the best, due
to a number of optimization specifically introduced for
large sizes in FFTW 3.0 [18].

Similar observations can be made for double precision code;
see Fig. 10(b).

Regarding cache effects, we mention that for single
precision, approximately 32 B per complex vector entry
are needed (input vector, output vector, constants and spill
space) while for double precision 64 B are needed. Taking
into account the Pentium 4’s 8 KB of L1 data cache, this
implies that FFTs of size 256 (single precision) and 128
(double precision) can be computed completely within
L1 data cache. Similarly, the 512 KB L2 cache translates
into sizes of 2 (for single precision) and 2 (for double
precision), respectively.

Finally, we also consider implementations of the DFT on
ipaq-0.4-lin, which provides only fixed point arithmetic. We
compare the performance of SPIRAL’s generated code with
the IPP vendor library code for this platform. For most sizes,
IPP fares considerably worse, see Fig. 11, which shows the
(pseudo) Mflops achieved across a range of DFT sizes: 2 to
2 .

Conclusion: DFT benchmarking. For the DFT, SPIRAL
scalar code is as competitive as the best code available. On
p4-3.0-win, SPIRAL automatically generated vector code is
faster by a factor of two to three compared to the scalar
code, on par with IPP and MKL, Intel’s hand-tuned vendor
libraries. On ipaq-0.4-lin, SPIRAL generated code can be as
much as four times faster than the IPP code.

Benchmarking: other transforms. We compare IPP to
SPIRAL on p4-3.0-win for the DCT, type 2, in Fig. 12(a).
Both for single and double precisions, the SPIRAL code is
about a factor of two faster than the vendor library code,
achieving up to 1500 Mflops (scalar code).

Fig. 12(b) and (c) study the performance of the corre-
sponding 2D-DCT, which has the tensor product structure
(19) that enables SPIRAL vectorization. Again we com-
pare generated scalar code, compiler vectorized code, and
SPIRAL vectorized code. Compiler vectorization fails
for single precision, i.e., SSE [Fig. 12(b)], but yields
a speedup for double precision, i.e., SSE2 [Fig. 12(c)].
SPIRAL generated vector code is clearly best in both
cases and across all considered sizes. For SSE, up to
4500 Mflops and up to a factor of three speedup over
scalar code are achieved.

We consider now the WHT, whose formulas have the
simplest structure among all trigonometric transforms.
Fig. 13(a) considers single precision and Fig. 13(b) double
precision implementations, respectively. These figures show
that, again, vectorization by SPIRAL produces efficient
code, up to a factor of 2.5 and 1.5 faster than scalar code
for single and double precision, respectively. Interestingly,
vectorization of the SPIRAL code by the compiler is in this
case also successful, with gains that are comparable to the
gains achieved by SPIRAL vectorization.

Runtime studies of FIR filters and the DWT. Fig. 14(a)
compares different SPIRAL generated scalar implementa-
tions of an FIR filter with 16 taps and input sizes varying
in the range 2 –2 on xeon-1.7-lin. The plot shows run-
times normalized by the runtime of a base method. The
base method is a straightforward implementation of the
filter transform using overlap-add with block size 1; its
performance is given by the top horizontal line at 1 and not

264 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 10. FFT performance comparison (in pseudo Mflops) of the best available libraries.
Platform: p4-3.0-win. (a) Single precision. (b) Double precision.

shown. In this figure, lower is better (meaning faster than the
base method). The dashed line (squares) shows the relative
runtime if only the overlap-add rule with arbitrary block
sizes is enabled—a gain of about 85% over the base method.
Further gains of 10%–20% are achieved if in addition the
overlap-save rule and the blocking rule are enabled (triangles
and bullets, respectively).

We consider now Fig. 14(b), which compares the effect of
different rules on the DWT runtime performance. We choose
the variant known as Daubechies 9–7 wavelet, enforce three
different rules for the top-level expansion, with Mallat’s rule
being the baseline (horizontal line at 1), and compare the
generated codes in each case. The polyphase rule (squares) is
consistently inferior, whereas the lifting steps rule (triangles)

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 265

Fig. 11. Performance of SPIRAL generated fixed-point DFT
code for sizes 2 –2 , on IPAQ versus Intel IPP 3.0.
Platform: ipaq-0.4-lin.

improves over Mallat’s rule for input sizes between 2 and
2 . Beyond this size, Mallat’s rule is clearly best as top-level
rule. See [88] for a comprehensive evaluation of SPIRAL
generated filter and DWT code.

Platform tuning. We now investigate the impact of per-
formance tuning (see the table and the plot in Fig. 15). The
table shows the (upper part of the) best ruletrees found for
a DFT of size 2 using only the Cooley–Tukey rule (20),
for p4-2.53-win (single and double precision), p3-1.0-win
(single precision), and xp-1.73-win (single precision). Each
node in the trees is labeled with the exponent of the DFT size
at this node; for example, the root node in all trees is labeled
by 10, the exponent of the size of the transform 2 . Most
of the 12 ruletrees in this table are different from each other,
meaning that SPIRAL finds different trees when searching
for the best tuned formula for a given machine. Particularly
worth noting is the difference between the balanced ruletrees
found by SPIRAL for p3-1.0-win and xp-1.73-win, and the
unbalanced ruletrees found for p4-2.53-win.

The plot on the right of Fig. 15 further explores the effect
of tuning the implementation of : how does an im-
plementation tuned to a given platform perform
on another target platform In particular, is still
tuned to the target platform The answer is no as we ex-
plain next.

For DFT sizes 2 2 we use SPIRAL to generate
the best code for five different combinations of platforms
and data types: p4-2.53-win SSE, p4-2.53-win SSE2,
xp-1.73-win SSE, p3-1.0-win SSE, and p4-2.53-win float.
Then, we generate SSE code for each of the obtained for-
mulas and run it on p4-2.53-win. The slowdown factor
compared to the code tuned to p4-2.53-win SSE is shown in
the plot in Fig. 15 (i.e., higher is worse in this plot).

First, we observe that, as expected, the best code is the
one tuned for p4-2.53-win SSE (bottom line equal to one).
Beyond that, we focus on two special cases.

• Same platform, different data type. The best algorithm
generated for p4-2.53-win SSE2, when implemented in

SSE, performs up to 320% slower than the tuned im-
plementation for p4-2.53-win SSE. The reason for this
large gap is the different vector length of SSE2 and SSE
(2 versus 4), which requires very different algorithm
structures.

• Same data type, different platform. Code generated
for p3-1.0-win SSE and run on the binary compatible
p4-2.53-win SSE performs up to 50% slower than the
SSE code tuned for p4-2.53-win. This is a very good
example of the loss in performance when porting code
to newer generation platforms. SPIRAL regenerates
the code and overcomes this problem.

Compiler flags. In all prior experiments, we have always
used a predefined and fixed combination of C compiler
flags to compile the SPIRAL generated code (see Table 19).
Assessing the effects on performance of compiler options
is difficult, because: 1) there are many different options
(the extreme case is gcc 3.3 with a total of more than 500
different documented flags, more than 60 of which are
related to optimization); 2) different options can interact
and/or conflict with each other in nontrivial ways; 3) the best
options usually depend on the program being compiled. In
SPIRAL, we have not yet addressed this problem; in fact, for
gcc, SPIRAL uses the same optimization options as FFTW
by default.

In the absence of clear guidelines, choosing the right set
of compiler flags from the large set of possibilities poses an-
other optimization problem that can be solved by a heuristic
search. Analysis of Compiler Options via Evolutionary Al-
gorithm (ACOVEA) [89] is an open-source project that uses
an evolutionary algorithm to find the best compiler options
for a given C program.

We apply ACOVEA to SPIRAL generated code for the
DCT, type 2, of sizes 2 2 on p4-3.0-lin. First, we
generate the best (scalar) implementations using the de-
fault configuration (denoted by “gcc -O3” in the plot; the
complete set of flags is in Table 19). Second, we retime the
obtained implementations with a lower level of optimization
(denoted by “gcc -O1,” in reality “-O1 -fomit-frame-pointer
-malign-double -march pentium4”), and also with the
Intel Compiler 8.0 (denoted by “icc /O3,” the options were
“/O3 /tpp7”). Finally, we run the ACOVEA evolutionary
search for gcc compiler flags for each implementation. The
results are shown in Fig. 16(a), which displays the speedup
compared to “gcc -O1” (higher is better) for each of the 6
DCT codes. All sets of flags found by ACOVEA include at
least “-O1 -march pentium4.” This justifies our choice of
“gcc -O1” as the baseline. Note that “gcc -O3” is always
slower than “gcc -O1,” which means that some of the more
advanced optimizations can make the code slower. In sum-
mary, ACOVEA gives an additional speedup ranging from
8% to 15% for the relevant larger DCT sizes in this
experiment.

The plot in Fig. 16(b) was also produced with the help of
ACOVEA. Instead of performing an evolutionary search, we
create an initial random population of 2000 compiler flag
combinations, each of them again including at least “-O1
-march pentium4,” and produce a runtime histogram for

266 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 12. (a) Comparing the performance (in Mflops) of SPIRAL generated code and IPP for a
DCT-2 of size 2 , 2 � k � 6 for single and double precision. (b) and (c) 2D-DCT float and double
precision: scalar SPIRAL code, scalar SPIRAL code compiler vectorized, and SPIRAL vector code.
Platform: p4-3.0-win.

Fig. 13. WHT performance (in Mflops) of SPIRAL generated scalar code, compiler vectorized
code, and vector code for: (a) single and (b) double precision. Platform: p4-3.0-win.

the implementation generated in the previous ex-
periment. The spread in runtimes of more than a factor of

three demonstrates the big impact of the choice of compiler
flags. The best compiler options in this histogram produce

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 267

Fig. 14. (a) Runtime comparison of generated filter code (16 taps) found with increasing sets of
rules enabled, normalized by the straightforward implementation. (b) Runtime comparison of
the best found DWT implementation for three different choices of the uppermost rule,
normalized by Mallat’s rule. Platform: xeon-1.7-lin.

Fig. 15. Left: The best found DFT formulas for n = 2 , represented as breakdown trees; right:
crosstiming of best DFT ruletree, sizes 2 ; . . . ; 2 , generated for various platforms, implemented
and measured on Pentium 4 using SSE. Platforms: p4-2.53-win, p3-1.0-win, xp-1.73-win.

Fig. 16. Analysis of the impact of the choice of compiler flags using ACOVEA. (a) Improvement
from compiler options search for DCT-2 of sizes 2 ; . . . ; 2 . (b) Histogram of 2000 random
compiler flags combinations for the best found implementation forDCT-2 .

a runtime (in seconds) of about 1.8 10 , whereas the best
flags found by ACOVEA in the previous experiment produce
1.67 10 .

Parallel platforms. Section IV-F showed how SPIRAL
could be used to generate parallel code and showed a
family of shared-memory and distributed-memory parallel

268 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 17. Speedup for parallel code generated for
WHT , 1 � k � 24 for up to ten threads.
Platform: ibms80-0.45-aix with 12 processors.

algorithms for the WHT. Fig. 17 considers the WHT sizes
2 2 and shows the speedup obtained with the gen-
erated routines. Speedup is computed for each number of
threads as the ratio of the best sequential algorithm/imple-
mentation found compared to the best parallel algorithm/im-
plementation found. We used dynamic programming in
each case to automatically optimize granularity, load bal-
ance, cache utilization, and the selection of appropriately
optimized sequential code. The platform is a 12 processor
shared-memory multiprocessor platform ibms80-0.45-aix
[90].

Fig. 17 shows that, for up to ten threads, nearly linear
speedup is obtained for large transform size and paralleliza-
tion is found to be beneficial for transforms as small as 2 .
The performance reported here is better than that reported
in [59], due to searching through additional schedules and
using loop interleaving [23] to reduce cache misses and false
sharing. A straightforward parallelization method leads to
far inferior performance. For example, for ten threads, only
a factor of about three is achieved this way; a parallelizing
compiler fares even worse than that. These results are not
shown; please refer to [59] for more details. In summary,
even for as simple a transform as the WHT, search through
a relevant algorithm space is crucial to obtain the optimal
performance.

Multiplierless code. SPIRAL can generate multiplierless
code (see Section V). This is important for platforms that
feature a fixed point processor such as the IPAQ and show-
cases a unique advantage of SPIRAL, as we are not aware of
other multiplierless high-performance libraries. In a multi-
plierless implementation, a lower accuracy approximation of
the constants leads to fewer additions and, thus, potentially
faster runtime. This effect is shown in Fig. 18 for DFTs of
various sizes, , implemented in each case using
either multiplications or additions and shifts with the con-
stants approximated to 14 or 8 bits, respectively. Note that
the code has to be unrolled to allow for this technique. The
figure shows an improvement of up to 10% and 20%, respec-
tively, for the 14-bit and 8-bit constant multiplierless code.

Fig. 18. Runtime performance (lower is better) of various DFTs
of sizes between 3 and 64. For each size, the rightmost, middle,
and leftmost bar shows (fixed point) code using multiplications
and 14-bit and 8-bit multiplierless code, respectively. Platform:
ipaq-0.4-lin.

Runtime of code generation. SPIRAL requires only
compile-time adaptation; thus, at runtime, no time is spent
in further optimizing the code. Depending on the opti-
mization strategy, the problem size, and the timer used,
the optimization may take from the order of seconds to the
order of hours. For instance, the generation of a scalar DFT
library for two-powers up to 2 is done in 20–30 min on
a Pentium 4, while the corresponding vector code gener-
ation takes on the order of hours. Problem sizes around
64 are optimized within a few minutes. Note that SPIRAL
generates code entirely from scratch, i.e., no code or code
fragments for any transform are already pregenerated or
handcoded in SPIRAL. In this respect, SPIRAL is similar
to ATLAS with roughly similar code generation times.
Compared to FFTW, SPIRAL needs longer to produce
optimized code. However, in FFTW, real code generation
(i.e., from scratch) is done only for small transform sizes
and for unrolled code. These codelets (in FFTW lingo) are
pregenerated and distributed with the package. Further, the
codelet generation is deterministic, i.e., produces the same
result independently of the machine. The optimization for
larger FFT sizes in FFTW is done at runtime by determining,
through dynamic programming, the best recursion strategy
among those supported by FFTW. The available recursions
are built into the rather complex infrastructure of FFTW.
For example, for a one-dimensional DFT of composite size
and in SPIRAL lingo, these recursion strategies are all the
right-most ruletrees based on the Cooley–Tukey breakdown
rule (20), where the left leaf is a codelet. Restricting the
DFT computation to this restricted class of algorithms is a
decision based on the experience of the FFTW developers.
In SPIRAL, the candidate algorithms are deliberately as
little constrained as possible, leaving the selection entirely
to the system.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 269

Conclusions. We draw the following main conclusions
from our experiments.

• For any given transform, even for a small size, there
is a large number of alternative formulas with a large
spread in code quality, even after applying various code
optimizations (Figs. 8 and 9).

• The difference in runtime between a “reasonable” im-
plementation and the best possible can be an order of
magnitude (e.g., a factor of ten in Fig. 10(a) between
the GNU library and the IPP/FFTW/ SPIRAL code).

• Compiler vectorization is limited to code of very
simple structure (e.g., Fig. 13), but fails to produce
competitive code for more complex dataflows, e.g.,
Figs. 10 and 12(b) and (c). SPIRAL overcomes this
problem through manipulations at the mathematical
formula level; all other vector libraries involve hand
coding.

• The performance of SPIRAL generated code is compa-
rable with the performance of the best available library
code.

VIII. LIMITATIONS OF SPIRAL; ONGOING AND

FUTURE WORK

SPIRAL is an ongoing project and continues to increase
in scope with respect to the transforms included, the types
of code generated, and the optimization strategies included.
We give a brief overview of the limitations of the current
SPIRAL system and the ongoing and planned future work
to resolve them.

• As we explained before, SPIRAL is currently restricted
to discrete linear signal transforms. As a longer term
effort we just started to research the applicability of
SPIRAL-like approaches to other classes of mathe-
matical algorithms from signal processing, communi-
cation, and cryptography. Clearly, the current system
makes heavy use of the particular structure of trans-
form algorithms in all of its components. However,
most mathematical algorithms do possess structure,
which, at least in principle, could be exploited to
develop a SPIRAL-like code generator following the
approach in Section II-A. Questions that need to be
answered for a given algorithm domain then include
the following.
– How to develop a declarative structural representa-

tion of the relevant algorithms?
– How to generate alternative algorithms and how to

translate these algorithms into code?
– How to formalize algorithm level optimizations as

rewriting rules?
– How to search the algorithm space with reasonable

effort?
• Currently, SPIRAL can only generate code for one spe-

cific instance of a transform, e.g., for a transform of
fixed size. This is desirable in applications where only
a few sizes are needed which can be generated and bun-
dled into a lightweight library. For applications with
frequently changing input size, a package is preferable,

which implements a transform for all, or a large number
of sizes. To achieve this, recursive code needs to be
generated that represents the breakdown rules, which
is ongoing research. Once this is achieved, our goal is
to generate entire packages, similar to FFTW for the
DFT, on demand from scratch.

• The current vectorization framework can handle a large
class of transforms, but only those whose algorithms
are built from tensor products to a large extent. In this
case, as we have shown, a small set of manipulation
rules is sufficient to produce good code. We are cur-
rently working on extending the class of vectorizable
transforms, e.g., to include large DCTs and wavelets.
To achieve this, we will identify the necessary formula
manipulation rules and include them into SPIRAL.
With a large manipulation rule database ensuring
convergence and uniqueness of the result (confluence)
also becomes a problem. To ensure these properties,
we will need a more rigorous approach based on the
theory of rewriting systems [42].

• Similarly, and with an analogous strategy, we are in the
process of extending SPIRAL’s code generation capa-
bilities for parallel platforms. These extensions are cur-
rently still in the prototype stage.

• Besides vector code, current platforms provide other
potentially performance enhancing features, such as
hyperthreading (Pentium 4) or prefetch instructions.
Hyperthreading can be exploited by generating code
with explicit threads, which was the previous goal; we
aim to explicitly generate prefetch instructions through
a combination of formula manipulation and loop anal-
ysis on the code level [91].

• For some applications it is desirable to compute a
transform inplace, i.e., with the input and output vector
residing in the same memory location. SPIRAL cur-
rently only generates out-of-place code. We aim to
generate inplace code directly after a formula level
only analysis.

• SPIRAL can generate fixed point code, but the deci-
sion for the chosen range and precision, i.e., the fixed-
point format, has to be provided by the user. Clearly,
the necessary range depends on the range of the input
values. We are currently developing a backend [92]
that chooses the optimal fixed point format once the
input range is specified. The format can be chosen glob-
ally, or locally for each temporary variable to enhance
precision.

• To date, the learning in SPIRAL is restricted to the
selection of WHT ruletrees and DFT ruletrees based
on the Cooley–Tukey rule. An important direction in
our research is to extend the learning framework to
learn and control a broader scope of transforms and
to encompass more degrees of freedoms in the code
generation.

• For many transforms, in particular the DFT, there are
many different variants that differ only by the chosen
scaling or assumptions on input properties such as sym-
metries. Most packages provide only a small number of

270 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

these variants due to the considerable hand-coding ef-
fort. In SPIRAL many of these variants can be handled
by just including the specification and one or several
rules. We are in the process of extending SPIRAL in
this direction.

• We are just in the process of finishing an improved
redesign of the SPIRAL system with considerably in-
creased modularity to enable all the above extensions
with reasonable effort. The possibility of extending
SPIRAL, e.g., by inserting a backend code optimiza-
tion module, or by connecting it to an architecture
simulator, has led to its occasional use in class projects
in algorithm, compiler, and architecture courses. The
vertical integration of all stages of software devel-
opment in SPIRAL allows the students to study the
complex interaction of algorithms mathematics, com-
piler technology, and microarchitecture at hand of an
important class of applications.

• Finally, as a longer term research effort and leaving
the scope of this paper and this special issue, we have
started to develop a SPIRAL-like generator for hard-
ware designs of transforms for FPGAs or ASIC’s.

IX. CONCLUSION

We presented SPIRAL, a code generation system for DSP
transforms. Like a human expert in both DSP mathematics
and code tuning, SPIRAL autonomously explores algorithm
and implementation choices, optimizes at the algorithmic
and at the code level, and exploits platform-specific features
to create the best implementation for a given computer.
Further, SPIRAL can be extended and adapted to generate
code for new transforms, to exploit platform-specific spe-
cial instructions, and to optimize for various performance
metrics. We have shown that SPIRAL generated code can
compete with, and sometimes even outperform the best
available handwritten code. SPIRAL’s approach provides
performance portability across platforms and facilitates
porting the entire transform domain across time.

The main ideas behind SPIRAL are to formulate the
problem of code generation and tuning of transforms as an
optimization problem over a relevant set of implementations.
The implementation set is structured using a domain-specific
language that allows the computer representation, gener-
ation, and optimization of algorithms and corresponding
code. The platform-specific optimization is solved through
an empirical feedback-driven exploration of the algorithm
and implementation space. The exploration is guided by
search and learning methods that exploit the structure of the
domain.

While the current version of SPIRAL is restricted to
transforms, we believe that its framework is more generally
applicable and may provide ideas how to create the next
generation of more “intelligent” software tools that push the
limits of automation far beyond of what is currently possible
and that may, at some point in the future, free humans from
programming numerical kernels altogether.

ACKNOWLEDGMENT

The authors would like to thank L. Auslander for their
early discussions on the automatic implementation of the
DFT and other transforms. The authors would also like to
thank A. Tsao for teaming them up. Further, the authors ac-
knowledge the many interactions with A. Tsao, D. Healy,
D. Cochran, and more recently with F. Darema, during the
development of SPIRAL.

REFERENCES

[1] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D.
Padua, K. Pingali, P. Stodghill, and P. Wu, “A comparison of empir-
ical and model-driven optimization,” in Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), 2003,
pp. 63–76.

[2] T. Kisuki, P. Knijnenburg, and M. O’Boyle, “Combined selection
of tile sizes and unroll factors using iterative compilation,” in Proc.
Parallel Architectures and Compilation Techniques (PACT), 2000,
pp. 237–246.

[3] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, “Automatic program
transformations for virtual memory computers,” in Proc. Nat. Com-
puter Conf., 1979, pp. 969–974.

[4] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe,
“Dependence graphs and compiler optimizations,” in Proc. 8th ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages,
1981, pp. 207–218.

[5] F. Allen and J. Cocke, “A catalogue of optimizing transforma-
tions,” in Design and Optimization of Compilers, R. Rustin,
Ed. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 1–30.

[6] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,”
in Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI), 1991, pp. 30–44.

[7] I. Kodukula, N. Ahmed, and K. Pingali, “Data-centric multi-level
blocking,” in Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI), 1997, pp. 346–357.

[8] K. Kennedy and R. Allen, Optimizing Compilers for Modern Ar-
chitectures: A Dependence-Based Approach. San Francisco, CA:
Morgan Kaufmann, 2001.

[9] R. Metzger and Z. Wen, Automatic Algorithm Recognition and
Replacement: A New Approach to Program Optimization. Cam-
bridge, MA: MIT Press, 2000.

[10] D. Barthou, P. Feautrier, and X. Redon, “On the equivalence of
two systems of affine recurrence equations,” in Lecture Notes
in Computer Science, Euro-Par 2002. Heidelberg, Germany:
Springer-Verlag, 2002, vol. 2400, pp. 309–313.

[11] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimization of software and the ATLAS project,” Parallel Comput.,
vol. 27, no. 1–2, pp. 3–35, 2001.

[12] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R.
Vuduc, C. Whaley, and K. Yelick, “Self-adapting linear algebra
algorithms and software,” Proc. IEEE, vol. 93, no. 2, pp. 293–312,
Feb. 2005.

[13] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 1999.

[14] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P.
Stodghill, “A comparison of empirical and model-driven optimiza-
tion,” Proc. IEEE, vol. 93, no. 2, pp. 358–386, Feb. 2005.

[15] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization frame-
work for sparse matrix kernels,” Int. J. High Perform. Comput. Appl.,
vol. 18, no. 1, pp. 135–158, 2004.

[16] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Chop-
pella, D. Cociorva, X. Gao, R. J. Harrison, S. Hirata, S. Krishan-
moorthy, S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J.
Ramanujam, P. Sadayappan, and A. Sibiryakov, “Synthesis of high-
performance parallel programs for a class of ab initio quantum chem-
istry models,” Proc. IEEE, vol. 93, no. 2, pp. 276–292, Feb. 2005.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 271

[17] G. Baumgartner, D. Bernholdt, D. Cociovora, R. Harrison, M.
Nooijen, J. Ramanujan, and P. Sadayappan, “A performance
optimization framework for compilation of tensor contraction ex-
pressions into parallel programs,” in Proc. Int. Workshop High-Level
Parallel Programming Models and Supportive Environments [Held
in Conjunction With IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS)], 2002, pp. 106–114.

[18] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proc. IEEE, vol. 93, no. 2, pp. 216–231, Feb. 2005.

[19] , “FFTW: An adaptive software architecture for the FFT,” in
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP), vol. 3, 1998, pp. 1381–1384. [Online]. Available:
http://www.fftw.org.

[20] M. Frigo, “A fast Fourier transform compiler,” in Proc. ACM SIG-
PLAN Conf. Programming Language Design and Implementation
(PLDI), 1999, pp. 169–180.

[21] D. Mirković and S. L. Johnsson, “Automatic performance tuning in
the UHFFT library,” in Lecture Notes in Computer Science, Com-
putational Science—ICCS 2001. Heidelberg, Germany: Springer-
Verlag, 2001, vol. 2073, pp. 71–80.

[22] S. Egner, “Zur Algorithmischen Zerlegungstheorie Linearer Trans-
formationen Mit Symmetrie (On the algorithmic decomposition
theory of linear transforms with symmetry),” Ph.D. dissertation,
Institut für Informatik, Univ. Karlsruhe, Karlsruhe, Germany, 1997.

[23] K. S. Gatlin and L. Carter, “Faster FFT’s via architecture cog-
nizance,” in Proc. Parallel Architectures and Compilation Tech-
niques (PACT), 2000, pp. 249–260.

[24] , “Architecture-cognizant divide and conquer algorithms,” pre-
sented at the Conf. Supercomputing, Portland, OR, 1999.

[25] D. H. Bailey, “Unfavorable strides in cache memory systems,” Sci.
Program., vol. 4, pp. 53–58, 1995.

[26] N. Park, D. Kang, K. Bondalapati, and V. K. Prasanna, “Dynamic
data layouts for cache-conscious factorization of DFT,” in Proc.
IEEE Int. Parallel and Distributed Processing Symp. (IPDPS),
2000, pp. 693–701.

[27] J. Johnson and M. Püschel, “In search for the optimal
Walsh–Hadamard transform,” in Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP), vol. 4, 2000, pp.
3347–3350.

[28] J. Lebak, J. Kepner, H. Hoffmann, and E. Rutledge, “Parallel
VSIPL++: An open standard software library for high-performance
parallel signal processing,” Proc. IEEE, vol. 93, no. 2, pp. 313–330,
Feb. 2005.

[29] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, “A comparative
study of static and profile-based heuristics for inlining,” in Proc.
ACM SIGPLAN Workshop Dynamic and Adaptive Compilation and
Optimization, 2000, pp. 52–64.

[30] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. M. W. Hwu, “Profile-
guided automatic inline expansion for C programs,” Softw. Pract.
Exper., vol. 22, no. 5, pp. 349–369, 1992.

[31] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Pro-
cessing, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[32] “Information Technology—JPEG 2000 Image Coding
System—Part 1: Core Coding System,” Int. Org. Standardiza-
tion/Int. Electrotech. Comm., ISO/IEC 15 444-1 : 2000.

[33] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A
methodology for designing, modifying, and implementing Fourier
transform algorithms on various architectures,” Circuits, Syst.,
Signal Process., vol. 9, no. 4, pp. 449–500, 1990.

[34] C. Van Loan, Computational Framework of the Fast Fourier Trans-
form. Philadelphia, PA: SIAM, 1992.

[35] G. E. Révész, Introduction to Formal Languages. New York: Mc-
Graw-Hill, 1983.

[36] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier
Transforms and Convolution, 2nd ed. New York: Springer-Verlag,
1997.

[37] M. Püschel, “Cooley–Tukey FFT like algorithms for the DCT,” in
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP), vol. 2, 2003, pp. 501–504.

[38] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Engle-
wood Cliffs, NJ: Prentice-Hall, 1993.

[39] G. Strang and T. Nguyen, Wavelets and Filter Banks. Reading,
MA: Addison-Wesley, 1998.

[40] I. Daubechies and W. Sweldens, “Factoring wavelet transforms
into lifting steps,” J. Fourier Anal. Appl., vol. 4, no. 3, pp.
247–269, 1998.

[41] A. Graham, Kronecker Products and Matrix Calculus With Applica-
tions. New York: Wiley, 1981.

[42] N. Dershowitz and D. A. Plaisted, “Rewriting,” in Handbook of Auto-
mated Reasoning, A. Robinson and A. Voronkov, Eds. New York:
Elsevier, 2001, vol. 1, ch. 9, pp. 535–610.

[43] M. Püschel, B. Singer, M. Veloso, and J. M. F. Moura, “Fast au-
tomatic generation of DSP algorithms,” in Lecture Notes in Com-
puter Science, Computational Science—ICCS 2001. Heidelberg,
Germany: Springer—Verlag, 2001, vol. 2073, pp. 97–106.

[44] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D.
Padua, M. Veloso, and R. W. Johnson, “SPIRAL: A generator for
platform-adapted libraries of signal processing algorithms,” Int. J.
High Perform. Comput. Appl., vol. 18, no. 1, pp. 21–45, 2004.

[45] (1997) GAP—Groups, algorithms, and programming. GAP Team,
Univ. St. Andrews, St. Andrews, U.K.. [Online]. Available: http://
www-gap.dcs.st-and.ac.uk/~gap/

[46] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. Englewood Cliffs, NJ: Prentice-
Hall, 1993.

[47] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language
and compiler for DSP algorithms,” in Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), 2001,
pp. 298–308.

[48] N. Rizzolo and D. Padua, “Hilo: High level optimization of FFTs,”
presented at the Workshop Languages and Compilers for Parallel
Computing (LCPC), West Lafayette, IN, 2004.

[49] Y. Voronenko and M. Püschel, “Automatic generation of implemen-
tations for DSP transforms on fused multiply-add architectures,”
in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP), vol. 5, 2004, pp. V-101–V-104.

[50] C. W. Fraser, D. R. Hanson, and T. A. Proebsting, “Engineering
a simple, efficient code-generator generator,” ACM Lett. Program.
Lang. Syst., vol. 1, no. 3, pp. 213–226, 1992.

[51] E. Linzer and E. Feig, “Implementation of efficient FFT algorithms
on fused multiply-add architectures,” IEEE Trans. Signal Process.,
vol. 41, no. 1, p. 93, Jan. 1993.

[52] C. Lu, “Implementation of multiply-add FFT algorithms for complex
and real data sequences,” in Proc. Int. Symp. Circuits and Systems
(ISCAS), vol. 1, 1991, pp. 480–483.

[53] F. Franchetti and M. Püschel, “A SIMD vectorizing compiler for
digital signal processing algorithms,” in Proc. IEEE Int. Parallel and
Distributed Processing Symp. (IPDPS), 2002, pp. 20–26.

[54] , “Short vector code generation for the discrete Fourier trans-
form,” in Proc. IEEE Int. Parallel and Distributed Processing Symp.
(IPDPS), 2003, pp. 58–67.

[55] F. Franchetti, “Performance portable short vector transforms,” Ph.D.
dissertation, Inst. Appl. Math. Numer.Anal., Vienna Univ. Technol.,
2003.

[56] F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhuber, “Efficient
utilization of SIMD extensions,” Proc. IEEE, vol. 93, no. 2, pp.
409–425, Feb. 2005.

[57] R. E. J. Hoeflinger, Z. Li, and D. Padua, “Experience in the auto-
matic parallelization of four perfect benchmark programs,” in Lec-
ture Notes in Computer Science, Languages and Compilers for Par-
allel Computing, vol. 589. Heidelberg, Germany, 1992, pp. 65–83.

[58] R. E. J. Hoeflinger and D. Padua, “On the automatic parallelization
of the perfect benchmarks,” IEEE Trans. Parallel Distrib. Syst., vol.
9, no. 1, pp. 5–23, Jan. 1998.

[59] K. Chen and J. R. Johnson, “A prototypical self-optimizing package
for parallel implementation of fast signal transforms,” in Proc. IEEE
Int. Parallel and Distributed Processing Symp. (IPDPS), 2002, pp.
58–63.

[60] , “A self-adapting distributed memory package for fast signal
transforms,” in Proc. IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS), 2004, p. 44.

[61] (1998) OpenMP C and C++ Application Program Interface, Version
1.0. OpenMP. [Online]. Available: http://www.openmp.org

[62] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir, and M. Snir, MPI: The Complete Reference, 2nd
ed. Cambridge, MA: MIT Press, 1998.

272 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

[63] P. Kumhom, “Design, optimization, and implementation of a uni-
versal FFT processor,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Drexel Univ., Philadelphia, PA, 2001.

[64] F. Ergün, “Testing multivariate linear functions: Overcoming the
generator bottleneck,” in Proc. ACM Symp. Theory of Computing
(STOC), vol. 2, 1995, pp. 407–416.

[65] J. Johnson, M. Püschel, and Y. Voronenko, “Verification of linear
programs,” presented at the Int. Symp. Symbolic and Algebraic
Computation (ISSAC), London, ON, Canada, 2001.

[66] S. Winograd, Arithmetic Complexity of Computations, ser.
CBMS-NSF Regional Conf. Ser. Appl. Math. Philadelphia,
PA: SIAM, 1980.

[67] J. R. Johnson and A. F. Breitzman, “Automatic derivation and imple-
mentation of fast convolution algorithms,” J. Symbol. Comput., vol.
37, no. 2, pp. 261–293, 2004.

[68] E. Linzer and E. Feig, “New scaled DCT algorithms for fused mul-
tiply/add architectures,” in Proc. IEEE Int. Conf. Acoustics, Speech,
and Signal Processing (ICASSP), vol. 3, 1991, pp. 2201–2204.

[69] N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd
ed. Philadelphia, PA: SIAM, 2002.

[70] P. R. Cappello and K. Steiglitz, “Some complexity issues in digital
signal processing,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-32, no. 5, pp. 1037–1041, Oct. 1984.

[71] O. Gustafsson, A. Dempster, and L. Wanhammar, “Extended results
for minimum-adder constant integer multipliers,” in IEEE Int. Symp.
Circuits and Systems, vol. 1, 2002, pp. I-73–I-76.

[72] A. C. Zelinski, M. Püschel, S. Misra, and J. C. Hoe, “Automatic cost
minimization for multiplierless implementations of discrete signal
transforms,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSP), vol. 5, 2004, pp. V-221–V-224.

[73] M. Püschel, A. Zelinski, and J. C. Hoe, “Custom-optimized multi-
plierless implementations of DSP algorithms,” presented at the Int.
Conf. Computer Aided Design (ICCAD), San Jose, CA, 2004.

[74] “Information technology-coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbits/s,” Int. Org.
Standardization/Int. Electrotech. Comm., ISO/IEC 11 172, 1995.

[75] H.-J. Huang, “Performance analysis of an adaptive algorithm for
the Walsh–Hadamard transform,” M.S. thesis, Dept. Comput. Sci.,
Drexel Univ., Philadelphia, PA, 2002.

[76] M. Furis, “Cache miss analysis of Walsh–Hadamard transform algo-
rithms,” M.S. thesis, Dept. Comput. Sci., Drexel Univ., Philadelphia,
PA, 2003.

[77] A. Parekh and J. R. Johnson, “Dataflow analysis of the FFT,” Dept.
Comput. Sci., Drexel Univ., Philadelphia, PA, Tech. Rep. DU-CS-
2004-01, 2004.

[78] J. Johnson, P. Hitczenko, and H.-J. Huang, “Distribution of a class
of divide and conquer recurrences arising from the computation of
the Walsh–Hadamard transform,” presented at the 3rd Colloq. Math-
ematics and Computer Science: Algorithms, Trees, Combinatorics
and Probabilities, Vienna, Austria, 2004.

[79] P. Hitczenko, H.-J. Huang, and J. R. Johnson, “Distribution of a class
of divide and conquer recurrences arising from the computation of
the Walsh–Hadamard transform,” Theor. Comput. Sci., 2003, sub-
mitted for publication.

[80] D. E. Knuth, The Art of Computer Programming: Fundamental Al-
gorithms, 3rd ed. Reading, MA: Addison-Wesley, 1997, vol. 1.

[81] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[82] B. Singer and M. Veloso, “Stochastic search for signal processing
algorithm optimization,” Proc. Supercomputing, 2001.

[83] L. Torgo, “Inductive learning of tree-based regression models,”
Ph.D. dissertation, Dept. Comput. Sci., Faculty Sci., Univ. Porto,
Porto, Portugal, 1999.

[84] B. Singer and M. Veloso, “Learning to construct fast signal pro-
cessing implementations,” J. Mach. Learn. Res., vol. 3, pp. 887–919,
2002.

[85] , “Learning to generate fast signal processing implementa-
tions,” in Proc. Int. Conf. Machine Learning, 2001, pp. 529–536.

[86] B. Singer and M. M. Veloso, “Automating the modeling and op-
timization of the performance of signal transforms,” IEEE Trans.
Signal Process., vol. 50, no. 8, pp. 2003–2014, Aug. 2002.

[87] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing, 2nd
ed. Cambridge, U.K.: Cambridge Univ. Press, 1992.

[88] Ph.D. dissertation, Dept. Elect. Comput. Eng., Carnegie Mellon
Univ., Pittsburgh, PA.

[89] S. R. Ladd. (2004) ACOVEA: Analysis of Compiler Options
via Evolutionary Algorithm. [Online]. Available: http://www.
coyotegulch.com/acovea/

[90] RS/6000 Enterprise Server Model S80, Technology and Archi-
tecture. IBM. [Online]. Available: http://www.rs6000.ibm.com/
resource/technology/s80techarch.html

[91] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a
compiler algorithm for prefetching,” in Proc. Int. Conf. Architectural
Support for Programming Languages and Operating Systems, 1992,
pp. 62–73.

[92] L. J. Chang, I. Hong, Y. Voronenko, and M. Püschel, “Adaptive map-
ping of linear DSP algorithms to fixed-point arithmetic,” presented
at the Workshop High Performance Embedded Computing (HPEC),
Lexington, MA, 2004.

Markus Püschel (Member, IEEE) received the
Diploma (M.Sc.) degree in mathematics and
the Ph.D. degree in computer science from the
University of Karlsruhe, Karlsruhe, Germany, in
1995 and 1998, respectively.

From 1998 to 1999, he was a Postdoctoral Re-
searcher in the Department of Mathematics and
Computer Science, Drexel University, Philadel-
phia, PA. Since 2000, he has held a Research Fac-
ulty position in the Department of Electrical and
Computer Engineering, Carnegie Mellon Univer-

sity, Pittsburgh, PA. He was a Guest Editor of the Journal of Symbolic Com-
putation. His research interests include scientific computing, compilers, ap-
plied mathematics and algebra, and signal processing theory/software/hard-
ware. More details can be found at http://www.ece.cmu.edu/~pueschel.

Dr. Püschel is on the Editorial Board of the IEEE SIGNAL PROCESSING

LETTERS and was a Guest Editor of the PROCEEDINGS OF THE IEEE.

José M. F. Moura (Fellow, IEEE) received the
engenheiro electrotécnico degree from Instituto
Superior Técnico (IST), Lisbon, Portugal, in
1969 and the M.Sc., E.E., and D.Sc. degrees
in electrical engineering and computer science
from the Massachusetts Institute of Technology
(MIT), Cambridge, MA, in 1973, 1973, and
1975, respectively.

He has been a Professor of Electrical and Com-
puter Engineering at Carnegie Mellon University,
Pittsburgh, PA, since 1986. He held visiting fac-

ulty appointments with MIT (1984–1986 and 1999–2000) and was on the
faculty of IST (1975–1984). His research interests include statistical and al-
gebraic signal and image processing and digital communications. He has
published over 270 technical journal and conference papers, is the coeditor
of two books, and holds six U.S. patents. He currently serves on the Edito-
rial Board of the ACM Transactions on Sensor Networks (2004-).

Dr. Moura is a Corresponding Member of the Academy of Sciences of
Portugal (Section of Sciences). He was awarded the 2003 IEEE Signal
Processing Society Meritorious Service Award and the IEEE Millen-
nium Medal. He has served the IEEE in several positions, including
Vice-President for Publications for the IEEE Signal Processing Society
(SPS) (2000–2002), Chair of the IEEE TAB Transactions Committee
(2002–2003), Editor-in-Chief for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING (1975–1999), and Interim Editor-in-Chief for the IEEE
SIGNAL PROCESSING LETTERS (December 2001–May 2002). He currently
serves on the Editorial Boards of the PROCEEDINGS OF THE IEEE (2000-)
and the IEEE Signal Processing Magazine (2003-).

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 273

Jeremy R. Johnson (Member, IEEE) received
the B.A. degree in mathematics from the Univer-
sity of Wisconsin, Madison, in 1985, the M.S.
degree in computer science from the University
of Delaware, Newark, in 1988, and the Ph.D.
degree in computer science from Ohio State
University, Columbus, in 1991.

He is Professor and Department Head of Com-
puter Science at Drexel University, Philadelphia,
PA, with a joint appointment in Electrical and
Computer Engineering. He is on the Edito-

rial Board of Applicable Algebra in Engineering, Communication and
Computing and has served as a Guest Editor for the Journal of Symbolic
Computation. His research interests include algebraic algorithms, computer
algebra systems, problem-solving environments, programming languages
and compilers, high-performance computing, hardware generation, and
automated performance tuning.

David Padua (Fellow, IEEE) received the Ph.D.
degree in computer science from University of
Illinois, Urbana-Champaign, in 1980.

He is a Professor of Computer Science at the
University of Illinois, Urbana-Champaign, where
he has been a faculty member since 1985. At Illi-
nois, he has been Associate Director of the Center
for Supercomputing Research and Development,
a member of the Science Steering Committee of
the Center for Simulation of Advanced Rockets,
Vice-Chair of the College of Engineering Execu-

tive Committee, and a member of the Campus Research Board. His areas of
interest include compilers, machine organization, and parallel computing.
He has published more than 130 papers in those areas. He has served as Ed-
itor-in-Chief of the International Journal of Parallel Programming (IJPP).
He is a Member of the Editorial Boards of the Journal of Parallel and Dis-
tributed Computing and IJPP.

Prof. Padua has served as a Program Committee Member, Program
Chair, or General Chair for more than 40 conferences and workshops. He
served on the Editorial Board of the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS. He is currently Steering Committee Chair of
ACM SIGPLAN’s Principles and Practice of Parallel Programming.

Manuela M. Veloso received the B.S. degree
in electrical engineering and the M.Sc. degree
in electrical and computer engineering from the
Instituto Superior Técnico, Lisbon, Portugal, in
1980 and 1984, respectively, and the Ph.D. de-
gree in computer science from Carnegie Mellon
University, Pittsburgh, PA, in 1992.

She is Professor of Computer Science at
Carnegie Mellon University. She researches in
the area of artificial intelligence with focus on
planning, control learning, and execution for

single and multirobot teams. Her algorithms address uncertain, dynamic,
and adversarial environments. Prof. Veloso has developed teams of robot
soccer agents, which have been RoboCup world champions several times.
She investigates learning approaches to a variety of control problems, in
particular the performance optimization of algorithm implementations, and
plan recognition in complex data sets.

Prof. Veloso is a Fellow of the American Association of Artificial Intelli-
gence. She is Vice President of the RoboCup International Federation. She
was awarded an NSF Career Award in 1995 and the Allen Newell Medal for
Excellence in Research in 1997. She is Program Cochair of 2005 National
Conference on Artificial Intelligence and the Program Chair of the 2007 In-
ternational Joint Conference on Artificial Intelligence.

Bryan W. Singer was born in Indiana in 1974. He received the B.S. de-
gree in computer engineering from Purdue University, West Lafayette, IN,
in 1997 and the Ph.D. degree in computer science from Carnegie Mellon
University, Pittsburgh, PA, in 2001.

His research interests include machine learning and automatic perfor-
mance tuning.

Jianxin Xiong received the B.E. and M.E.
degrees in computer science from Tsinghua
University, Beijing, China, in 1992 and 1996,
respectively, and the Ph.D. degree in computer
science from the University of Illinois, Ur-
bana-Champaign, in 2001.

From 1996 to 1998, he was a Lecturer at
Tsinghua University. From 2001 to 2002 he
worked as a Compiler Architect at StarCore
Technology Center (Agere Systems), Atlanta,
GA. He is currently a Postdoctoral Research

Associate in the Department of Computer Science, University of Illinois,
Urbana-Champaign. His research interests include parallel/distributed
computing, programming languages, compiler techniques, and software
development tools.

Franz Franchetti received the Dipl.-Ing. degree
and the Ph.D. degree in technical mathematics
from the Vienna University of Technology,
Vienna, Austria, in 2000 and 2003, respectively.

From 1997 to 2003, he was with the Vienna
University of Technology. Since 2004, he has
been a Research Associate with the Department
of Electrical and Computer Engineering at
Carnegie Mellon University, Pittsburgh, PA. His
research interests center on the development
of high-performance digital signal processing

algorithms.

Aca Gačić (Student Member, IEEE) received
the Dipl.-Ing. degree in electrical engineering
from the University of Novi Sad, Novi Sad,
Serbia, in 1997 and the M.Sc. degree in electrical
engineering from the University of Pittsburgh,
Pittsburgh, PA, in 2000. He is currently working
toward the Ph.D. degree in electrical and com-
puter engineering at Carnegie Mellon University,
Pittsburgh, PA, working on automatic generation
and implementation of digital signal processing
(DSP) algorithms.

His research interests include representation and implementation of algo-
rithms for signal and image processing, automatic performance tuning for
DSP kernels, sensor networks, multiagent control systems, and applications
of game theory.

Yevgen Voronenko received the B.S. degree
in computer science from Drexel University,
Philadelphia, PA, in 2003. He is currently
working toward the Ph.D. degree in electrical
and computer engineering at Carnegie Mellon
University, Pittsburgh, PA.

His research interests include software engi-
neering, programming languages, and compiler
design.

274 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Kang Chen received the M.S. degree in computer
science from Drexel University, Philadelphia, PA,
in 2002, where he worked on the SPIRAL project
and did an M.S. thesis on “A prototypical self-
optimizing package for parallel implementation
of fast signal transforms.”

He is currently employed as a Software Design
Engineer by STMicroelectronics, Inc., Malvern,
PA, and is working on embedded systems for
video processing.

Robert W. Johnson received the A.B. degree
from Columbia University, New York, in 1962,
the M.S. degree from the City College of New
York in 1965, and the Ph.D. degree in mathe-
matics from the City University of New York in
1969.

He is Professor Emeritus of Computer Science
at St. Cloud State University and is Founder and
President of Qwarry Inc. a company devoted to
providing hardware/software solutions in math-
intensive digital signal processing (DSP) applica-

tions. He is also a Cofounder and former Chief Scientific Officer of Math-
Star, Inc., a fabless semiconductor manufacturer of DSP devices. He has
also been the principal or coprincipal investigator for numerous Defense
Advanced Research Projects Agency research and development grants over
the last two decades. His recent research has centered on the application of
abstract algebra to the design and implementation of DSP algorithms.

Nicholas Rizzolo received the B.S. and M.S.
degrees in computer science from the University
of Illinois, Urbana-Champaign (UIUC), in 2002
and 2004, respectively. He is currently working
toward the Ph.D. degree at UIUC, where his
research interests include machine learning,
programming languages, and compilers.

PÜSCHEL et al.: SPIRAL: CODE GENERATION FOR DSP TRANSFORMS 275

	toc
	SPIRAL: Code Generation for DSP Transforms
	MARKUS PÜSCHEL, MEMBER, IEEE, JOSÉ M. F. MOURA, FELLOW, IEEE, JE
	I. I NTRODUCTION
	II. SPIRAL: O PTIMIZATION A PPROACH TO T UNING I MPLEMENTATIONS
	A. Optimization: Problem Statement

	Fig.€1. The architecture of SPIRAL.
	B. Set of Implementations ${\cal I}$
	C. Minimization of ${\bf C}$
	D. General Comments
	E. Applications of SPIRAL
	III. SPIRAL' S M ATHEMATICAL F RAMEWORK AND F ORMULA G ENERATION
	A. Transforms

	Fig.€2. Filter bank interpretation of the DWT.
	B. SPL

	Table 1 Definition of the Most Important SPL Constructs in BNF;
	Table 2 Some Rules for Trigonometric Transforms
	C. Rules

	Table 3 Some Rules for Filters and the DWT
	D. Ruletrees and Formulas
	E. Formula Generation

	Table 4 Examples of Templates for SPL Constructs: Symbols
	IV. F ROM SPL F ORMULAS TO C ODE
	A. SPL and Templates

	Table 5 Examples of Templates for SPL Constructs: Matrix Constru
	B. Standard Code Generation

	Fig.€3. SPL compiler.
	C. Code Optimization

	Fig.€4. DFT performance before and after SPL compiler optimizati
	D. Compilation Example

	Table 6 Code Generation for Formula (41) . Left: Initial Code Ge
	E. Vector Code Generation

	Table 7 Final Generated C Code and FMA Code for (41)
	Fig.€5. Standard and FMA dataflow graphs generated by SPIRAL for
	Table 8 Short Vector SIMD Extensions
	Table 9 Vectorization of $y=(F_{2}\otimes I_{4})x$ for a Four-Wa
	F. Code Generation for Parallel Platforms

	Table 10 Pseudocode for an SMP Implementation of the WHT of Size
	V. E VALUATION
	A. Compilation
	B. Verification
	C. Performance/Cost Measures

	VI. F EEDBACK O PTIMIZATION: S EARCH AND L EARNING
	A. Search

	Fig.€6. Ruletree manipulation for the evolutionary search. (a)€C
	B. Learning

	Table 11 Error Rates for Predicting Runtimes for WHT Leaves
	Table 12 Error Rates for Predicting Runtimes for Entire WHT Rule
	Fig.€7. Actual runtime versus predicted runtime for all binary r
	Table 13 Error Rates for Predicting Runtimes for Entire DFT Rule
	Table 14 Algorithm for Computing Values of States
	Table 15 Algorithm for Generating Fast Ruletrees
	Table 16 Evaluation of Generation Method Using a WHT Runtime Pre
	Table 17 Evaluation of Generation Method Using a WHT Runtime Pre
	Table 18 Evaluation of Generation Method Using DFT Runtime Predi
	VII. E XPERIMENTAL R ESULTS

	Table 19 Platforms Used for Experiments. HT Means Hyper Threadin
	Fig.€8. Histograms of various data for 10 000 random fast formul
	Fig.€9. Histogram of 20 000 random SPIRAL generated scalar and S
	Fig.€10. FFT performance comparison (in pseudo Mflops) of the be
	Fig.€11. Performance of SPIRAL generated fixed-point DFT code fo
	Fig.€12. (a) Comparing the performance (in Mflops) of SPIRAL gen
	Fig.€13. WHT performance (in Mflops) of SPIRAL generated scalar
	Fig.€14. (a) Runtime comparison of generated filter code (16 tap
	Fig. 15. Left: The best found DFT formulas for $n = 2^{10}$, rep
	Fig.€16. Analysis of the impact of the choice of compiler flags
	Fig. 17. Speedup for parallel code generated for ${\bf WHT}_{2^k
	Fig.€18. Runtime performance (lower is better) of various DFTs o
	VIII. L IMITATIONS OF SPIRAL; O NGOING AND F UTURE W ORK
	IX. C ONCLUSION
	K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D
	T. Kisuki, P. Knijnenburg, and M. O'Boyle, Combined selection of
	W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, Automatic program tr
	D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, D
	F. Allen and J. Cocke, A catalogue of optimizing transformations
	M. E. Wolf and M. S. Lam, A data locality optimizing algorithm,
	I. Kodukula, N. Ahmed, and K. Pingali, Data-centric multi-level
	K. Kennedy and R. Allen, Optimizing Compilers for Modern Archite
	R. Metzger and Z. Wen, Automatic Algorithm Recognition and Repla
	D. Barthou, P. Feautrier, and X. Redon, On the equivalence of tw
	R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirica
	J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R.
	E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don
	K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and
	E.-J. Im, K. Yelick, and R. Vuduc, Sparsity: Optimization framew
	G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Chopp
	G. Baumgartner, D. Bernholdt, D. Cociovora, R. Harrison, M. Nooi
	M. Frigo and S. G. Johnson, The design and implementation of FFT
	M. Frigo, A fast Fourier transform compiler, in Proc. ACM SIGPLA
	D. Mirkovi and S. L. Johnsson, Automatic performance tuning in t
	S. Egner, Zur Algorithmischen Zerlegungstheorie Linearer Transfo
	K. S. Gatlin and L. Carter, Faster FFT's via architecture cogniz
	D. H. Bailey, Unfavorable strides in cache memory systems, Sci.
	N. Park, D. Kang, K. Bondalapati, and V. K. Prasanna, Dynamic da
	J. Johnson and M. Püschel, In search for the optimal Walsh Hadam
	J. Lebak, J. Kepner, H. Hoffmann, and E. Rutledge, Parallel VSIP
	M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, A comparative
	P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. M. W. Hwu, Profile
	A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processi

	Information Technology JPEG 2000 Image Coding System Part 1: Cor
	J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, A
	C. Van Loan, Computational Framework of the Fast Fourier Transfo
	G. E. Révész, Introduction to Formal Languages . New York: McGra
	R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier
	M. Püschel, Cooley Tukey FFT like algorithms for the DCT, in Pro
	P. P. Vaidyanathan, Multirate Systems and Filter Banks . Englewo
	G. Strang and T. Nguyen, Wavelets and Filter Banks . Reading, MA
	I. Daubechies and W. Sweldens, Factoring wavelet transforms into
	A. Graham, Kronecker Products and Matrix Calculus With Applicati
	N. Dershowitz and D. A. Plaisted, Rewriting, in Handbook of Auto
	M. Püschel, B. Singer, M. Veloso, and J. M. F. Moura, Fast autom
	M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D.

	(1997) GAP Groups, algorithms, and programming . GAP Team, Univ.
	N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation an
	J. Xiong, J. Johnson, R. Johnson, and D. Padua, SPL: A language
	N. Rizzolo and D. Padua, Hilo: High level optimization of FFTs,
	Y. Voronenko and M. Püschel, Automatic generation of implementat
	C. W. Fraser, D. R. Hanson, and T. A. Proebsting, Engineering a
	E. Linzer and E. Feig, Implementation of efficient FFT algorithm
	C. Lu, Implementation of multiply-add FFT algorithms for complex
	F. Franchetti and M. Püschel, A SIMD vectorizing compiler for di
	F. Franchetti, Performance portable short vector transforms, Ph.
	F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhuber, Efficient
	R. E. J. Hoeflinger, Z. Li, and D. Padua, Experience in the auto
	R. E. J. Hoeflinger and D. Padua, On the automatic parallelizati
	K. Chen and J. R. Johnson, A prototypical self-optimizing packag

	(1998) OpenMP C and C++ Application Program Interface, Version 1
	W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
	P. Kumhom, Design, optimization, and implementation of a univers
	F. Ergün, Testing multivariate linear functions: Overcoming the
	J. Johnson, M. Püschel, and Y. Voronenko, Verification of linear
	S. Winograd, Arithmetic Complexity of Computations, ser. CBMS-NS
	J. R. Johnson and A. F. Breitzman, Automatic derivation and impl
	E. Linzer and E. Feig, New scaled DCT algorithms for fused multi
	N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd e
	P. R. Cappello and K. Steiglitz, Some complexity issues in digit
	O. Gustafsson, A. Dempster, and L. Wanhammar, Extended results f
	A. C. Zelinski, M. Püschel, S. Misra, and J. C. Hoe, Automatic c
	M. Püschel, A. Zelinski, and J. C. Hoe, Custom-optimized multipl

	Information technology-coding of moving pictures and associated
	H.-J. Huang, Performance analysis of an adaptive algorithm for t
	M. Furis, Cache miss analysis of Walsh Hadamard transform algori
	A. Parekh and J. R. Johnson, Dataflow analysis of the FFT, Dept.
	J. Johnson, P. Hitczenko, and H.-J. Huang, Distribution of a cla
	P. Hitczenko, H.-J. Huang, and J. R. Johnson, Distribution of a
	D. E. Knuth, The Art of Computer Programming: Fundamental Algori
	D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
	B. Singer and M. Veloso, Stochastic search for signal processing
	L. Torgo, Inductive learning of tree-based regression models, Ph
	B. Singer and M. Veloso, Learning to construct fast signal proce
	B. Singer and M. M. Veloso, Automating the modeling and optimiza
	W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterli
	Ph.D. dissertation, Dept. Elect. Comput. Eng., Carnegie Mellon U
	S. R. Ladd . (2004) ACOVEA: Analysis of Compiler Options via Evo

	RS/6000 Enterprise Server Model S80, Technology and Architecture
	T. C. Mowry, M. S. Lam, and A. Gupta, Design and evaluation of a
	L. J. Chang, I. Hong, Y. Voronenko, and M. Püschel, Adaptive map

