
Chapter 6
Architectural Metrics

This chapter discusses architectural metrics for the execution of TIGRE.
Section 6.1 describes the cache behavior of TIGRE, including two
methods of exploring the effects of varying cache parameters on TIGRE
performance. Section 6.2 discusses a performance of the DECstation
3100, and uses cache simulation results to predict how cache manage-
ment changes to the 3100 would affect performance. Section 6.3
describes measurements of heap memory use and stack memory use.

6.1. CACHE BEHAVIOR

During the benchmarking of TIGRE on various platforms, it became
apparent that unexpected variations in performance (both good and bad)
were taking place. These variations were eventually conjectured to be
caused by implementation differences among platforms, especially with
regard to cache management policy. In order to better understand the
operation of TIGRE, a set of cache simulations was run to measure
TIGRE’s use of cache memory.

The first simulation experiment was an exhaustive exploration of
a number of cache design parameters to search for the best combination.
An exhaustive search was performed to avoid the pitfalls of hill-climbing
search strategies that may become trapped at local extrema. The second
simulation experiment examined the sensitivity of performance to chan-
ges in individual parameters.

6.1.1. Exhaustive Search of the Cache Design Space

An enumeration of possible combinations of parameter variations for
cache design were simulated, using memory access traces of TIGRE and
a trace-driven cache simulator program. The goal of the set of simula-
tions was to explore a range of values for several independent cache
parameters (such as cache size, block size, memory write policy, and
replacement policy), and then pick two or three different values for each
parameter. By then simulating performance on all possible combina-

63

tions of these parameter values, the performance of TIGRE across the
entire cache design was mapped. As a result, similarities and differen-
ces between the best-performing sets of parameter combinations could
lead insight into what kind of cache memory organization best supports
TIGRE.

The DineroIII cache simulator program was used (Hill 1984). The
simulation parameters varied were: cache size (64K and 16K bytes),
cache organization (unified and split), block size (also known as line size,
of 4, 8, and 16 bytes), associativity (direct-mapped and 4 way set
associative), replacement policy (LRU and FIFO), write policy (write-
through and copy-back), and write allocation (allocate on write miss,
and no allocation on write miss). Kabakibo et al. (1987) and Smith
(1982) provide more information on cache management strategies and
terminology.

All meaningful combinations of parameters were run (some com-
binations, such as varying replacement policy on a direct-mapped cache,
are meaningless). The split caches divide the available cache memory
evenly between instruction and data caches, as is commonly done on
real systems (e.g. a split 64K cache allocates 32K each to the instruction
cache and data cache).

The fib(16) benchmark using the SKI combinator set (consisting of
the combinators S, K, I, +, -, <, IF, 1, 2, 3, and LIT) was chosen for the
exhaustive design space search. The SKI set was chosen instead of the
Turner Set for initial study because it was believed that the SKI set has
worse performance on conventional architectures (i.e. it “breaks” ar-
chitectures more effectively). A large enough heap was used to avoid
the need to simulate garbage collection.

Table 6-1 shows the simulation results for the program skifib(16).
The primary ranking is by miss ratio, which has a strong effect on
program running time. Miss ratio is the number of memory accesses
that result in cache misses normalized to the number of total accesses
(e.g. 0.3000 would represent a 30% miss ratio). The secondary ranking
is by bus traffic ratio. Traffic ratio is the number of words transferred
on the data bus from the combination of cache misses and writes of
modified cache contents to memory, normalized to the total number of
accesses.

Each simulation run involved a total of 1449864 memory accesses,
1042523 of which were instruction reads, and 407341 of which were data
accesses. 71.9% of all memory traffic was instruction accesses, 15.9%
was memory reads, and 12.2% was memory writes. To avoid the
possibility of misleading results because of an insufficiently large
simulation data set size, the simulation was rerun on several data points

64 Chapter 6. Architectural Metrics

S = CACHE SIZE (BYTES)
U = CACHE ORGANIZATION (UNIFIED / SPLIT)
B = BLOCK SIZE (BYTES)
A = ASSOCIATIVITY (DIRECT-MAPPED / 4-WAY SET)
R = REPLACEMENT POLICY (LRU / FIFO)
T = MEMORY UPDATE POLICY (THRU / COPY-BACK)
W = WRITE ALLOCATE? (YES/NO)
1042523 INSTRUCTION, 407341 DATA ACCESSES

 MISS S U B A R T W TRAFFIC

0.0096 64K U 16 4 L C Y 0.0767
0.0096 64K S 16 4 L C Y 0.0768
0.0096 64K U 16 4 L T Y 0.1609
0.0096 64K S 16 4 L T Y 0.1610
0.0097 16K U 16 4 L C Y 0.0773
0.0097 16K U 16 4 L T Y 0.1612
0.0098 64K U 16 4 F C Y 0.0776
0.0098 16K S 16 4 L C Y 0.0777
0.0098 64K S 16 4 F C Y 0.0779
0.0098 16K S 16 4 L T Y 0.1615
0.0098 64K U 16 4 F T Y 0.1615
0.0098 64K S 16 4 F T Y 0.1617
0.0101 64K S 16 D – C Y 0.0795
0.0101 64K S 16 D – T Y 0.1627
0.0102 64K U 16 D – C Y 0.0799
0.0102 64K U 16 D – T Y 0.1632
0.0104 16K U 16 4 F C Y 0.0810
0.0104 16K U 16 4 F T Y 0.1642
0.0105 16K S 16 4 F C Y 0.0819
0.0105 16K S 16 4 F T Y 0.1644
0.0129 16K S 16 D – C Y 0.0962
0.0129 16K S 16 D – T Y 0.1739
0.0192 64K U 8 4 L C Y 0.0766
0.0192 64K S 8 4 L C Y 0.0767
0.0192 64K U 8 4 L T Y 0.1609
0.0192 64K S 8 4 L T Y 0.1609
0.0193 16K U 8 4 L C Y 0.0770
0.0193 16K U 8 4 L T Y 0.1611
0.0194 16K S 8 4 L C Y 0.0773
0.0194 16K S 8 4 L T Y 0.1612
0.0195 64K U 8 4 F C Y 0.0773

Table 6-1. Cache performance simulation results for TIGRE on a MIPS
R2000.

6.1.CACHE BEHAVIOR 65

 MISS S U B A R T W TRAFFIC

0.0195 64K S 8 4 F C Y 0.0775
0.0195 64K U 8 4 F T Y 0.1614
0.0195 64K S 8 4 F T Y 0.1614
0.0198 64K S 8 D – C Y 0.0783
0.0198 64K S 8 D – T Y 0.1620
0.0199 64K U 8 D – C Y 0.0786
0.0199 64K U 8 D – T Y 0.1623
0.0206 16K U 8 4 F C Y 0.0800
0.0206 16K S 8 4 F C Y 0.0805
0.0206 16K S 8 4 F T Y 0.1636
0.0206 16K U 8 4 F T Y 0.1636
0.0228 16K S 8 D – C Y 0.0873
0.0228 16K S 8 D – T Y 0.1680
0.0232 16K U 16 D – C Y 0.1347
0.0232 16K U 16 D – T Y 0.2152
0.0309 64K U 4 4 L C Y 0.0581
0.0309 64K S 4 4 L C Y 0.0582
0.0309 64K U 4 4 L T Y 0.1533
0.0309 64K S 4 4 L T Y 0.1533
0.0310 16K U 4 4 L C Y 0.0583
0.0310 16K U 4 4 L T Y 0.1534
0.0311 16K S 4 4 L C Y 0.0585
0.0311 16K S 4 4 L T Y 0.1535
0.0312 64K U 4 4 F C Y 0.0586
0.0312 64K S 4 4 F C Y 0.0587
0.0312 64K U 4 4 F T Y 0.1537
0.0312 64K S 4 4 F T Y 0.1537
0.0314 64K S 4 D – C Y 0.0589
0.0314 64K S 4 D – T Y 0.1538
0.0315 64K U 4 D – C Y 0.0590
0.0315 64K U 4 D – T Y 0.1540
0.0325 16K S 4 4 F C Y 0.0606
0.0325 16K S 4 4 F T Y 0.1550
0.0327 16K U 4 4 F C Y 0.0604
0.0327 16K U 4 4 F T Y 0.1551
0.0336 16K S 4 D – C Y 0.0621
0.0336 16K S 4 D – T Y 0.1560
0.0415 16K U 8 D – C Y 0.1233
0.0415 16K U 8 D – T Y 0.2054
0.0551 64K U 16 4 L C N 0.1080
0.0551 64K U 16 4 L T N 0.1608

Table 6-1. (continued).

66 Chapter 6. Architectural Metrics

 MISS S U B A R T W TRAFFIC

0.0552 64K S 16 4 L C N 0.1081
0.0552 16K U 16 4 L C N 0.1082
0.0552 16K S 16 4 L C N 0.1084
0.0552 64K S 16 4 L T N 0.1609
0.0552 16K U 16 4 L T N 0.1610
0.0552 16K S 16 4 L T N 0.1611
0.0553 64K U 16 4 F C N 0.1086
0.0553 64K S 16 4 F C N 0.1086
0.0553 64K S 16 4 F T N 0.1613
0.0553 64K U 16 4 F T N 0.1613
0.0554 64K S 16 D – C N 0.1091
0.0554 64K S 16 D – T N 0.1616
0.0555 64K U 16 D – C N 0.1092
0.0555 64K U 16 D – T N 0.1619
0.0558 16K U 16 4 F C N 0.1109
0.0558 16K S 16 4 F C N 0.1110
0.0558 16K S 16 4 F T N 0.1631
0.0558 16K U 16 4 F T N 0.1633
0.0559 16K U 4 D – C Y 0.0840
0.0559 16K U 4 D – T Y 0.1783
0.0567 16K S 16 D – C N 0.1132
0.0567 16K S 16 D – T N 0.1648
0.0654 64K U 8 4 L C N 0.0969
0.0654 64K U 8 4 L T N 0.1499
0.0655 64K S 8 4 L C N 0.0969
0.0655 16K U 8 4 L C N 0.0970
0.0655 16K S 8 4 L C N 0.0970
0.0655 64K S 8 4 L T N 0.1499
0.0655 16K U 8 4 L T N 0.1499
0.0655 16K S 8 4 L T N 0.1500
0.0656 64K U 8 4 F C N 0.0972
0.0656 64K S 8 4 F C N 0.0973
0.0656 64K S 8 4 F T N 0.1502
0.0656 64K U 8 4 F T N 0.1502
0.0657 64K S 8 D – C N 0.0974
0.0657 64K S 8 D – T N 0.1503
0.0658 64K U 8 D – C N 0.0974
0.0658 64K U 8 D – T N 0.1504
0.0662 16K S 8 4 F C N 0.0987
0.0662 16K S 8 4 F T N 0.1513
0.0663 16K U 8 4 F C N 0.0987

Table 6-1. (continued).

6.1.CACHE BEHAVIOR 67

from various regions of the chart with a data set ten times as large
(created by running skifib with a larger input). These expanded simula-
tions yielded identical results.

Some obviously desirable characteristics appear from an inspec-
tion of Table 6-1. The write allocation policy should be set to write-al-
locate, and the block size should be set to 16 bytes for good performance.
There is relatively little difference among the miss ratios given near the

 MISS S U B A R T W TRAFFIC

0.0663 16K U 8 4 F T N 0.1515
0.0666 16K S 8 D – C N 0.0992
0.0666 16K S 8 D – T N 0.1517
0.0679 16K U 16 D – C N 0.1580
0.0679 16K U 16 D – T N 0.2100
0.0696 64K U 4 4 L C N 0.0785
0.0696 64K S 4 4 L C N 0.0785
0.0696 64K U 4 4 L T N 0.1403
0.0696 64K S 4 4 L T N 0.1403
0.0697 16K U 4 4 L C N 0.0785
0.0697 16K S 4 4 L C N 0.0786
0.0697 16K U 4 4 L T N 0.1404
0.0697 16K S 4 4 L T N 0.1404
0.0698 64K U 4 4 F C N 0.0787
0.0698 64K S 4 4 F C N 0.0787
0.0698 64K U 4 4 F T N 0.1405
0.0698 64K S 4 4 F T N 0.1405
0.0699 64K S 4 D – C N 0.0788
0.0699 64K U 4 D – C N 0.0788
0.0699 64K S 4 D – T N 0.1405
0.0699 64K U 4 D – T N 0.1405
0.0705 16K S 4 4 F C N 0.0796
0.0705 16K S 4 4 F T N 0.1411
0.0706 16K U 4 4 F C N 0.0796
0.0706 16K U 4 4 F T N 0.1412
0.0707 16K S 4 D – C N 0.0798
0.0707 16K S 4 D – T N 0.1412
0.0861 16K U 8 D – C N 0.1379
0.0861 16K U 8 D – T N 0.1906
0.0932 16K U 4 D – C N 0.1020
0.0932 16K U 4 D – T N 0.1636

Table 6-1. (continued).

68 Chapter 6. Architectural Metrics

beginning of the table, indicating that some of the design parameters,
including the cache size, have little effect on performance.

Details of the cache simulation results showed that a unified cache
is slightly better than a split cache because the interpretive program
was quite small. Thus, a unified cache gives more total cache memory
with which to work for the data portion of the program. However, split
caches will be considered to be more desirable, since most RISC proces-
sors require the extra bandwidth available from a split cache scheme.
From the data in these tables, a cache design of 64K bytes, split I/D
cache (giving 32K bytes each for program and data caches), 16 byte
blocks, 4-way set associative, LRU replacement, copy-back, and write-
allocate was chosen as the most desirable strategy based on the results
of this first experiment.

6.1.2. Parametric Analysis

The initial exhaustive search of the design space gave a good starting
point for determining the optimum cache design parameters. But, there
was no precise indication of the sensitivity of the performance to varia-
tion in the parameters. For this reason, a second set of cache simula-
tions was conducted to measure the performance effects of changing the
parameters.

For this second set of simulations, the above-mentioned desirable
cache design was used as a baseline. Individual parameters were then
altered, one at a time, across a wide range to observe performance
trends. The first set of simulations confirmed that the instructions
needed to run the combinator reducer were almost immediately loaded
into cache and stayed in cache throughout the program execution.

parameter value
cache organization split I/D (32K bytes each)
associativity 4-way set associative
replacement policy LRU
memory update policy copy-back
write allocation write allocate

characteristic SKI set Turner Set Super+Strict
miss ratio 0.0341 0.0300 0.0528
traffic ratio 0.2721 0.2209 0.4223

Table 6-2. Baseline for parametric analysis.

6.1.CACHE BEHAVIOR 69

Therefore, the parametric analysis simulations modelled only the data
accesses of the programs, and collected statistics for just the data cache
(assuming a split I/D cache scheme). The baseline configuration,
against which sensitivity to change was measured, is shown in Table
6-2. The benchmark program run was fib(18), with data collected for
three implementations of the program: the SKI combinator set, the
Turner Set, and supercombinator compilation with strictness analysis.

6.1.2.1. Write Allocation

Table 6-3 shows the results of varying the write allocation policy. This
design decision is more important by far than any of the other design
tradeoffs, with very poor cache hit ratios of 76% to 85% awaiting the
user of a machine which incorporates a write-no-allocate policy. A 95%
or higher cache hit ratio is generally considered desirable for most
systems running conventional software.

The reason for the extreme sensitivity to write-allocation policy
lies with the use of heap nodes. Graph reduction allocates nodes from
a garbage-collected heap frequently during program execution. As heap
nodes are allocated, the addresses of the new cells are generated without
accessing heap memory (using a stop-and-copy garbage collection algo-
rithm). After heap nodes are allocated, graph data is first written to the
heap, then read back from it for further reduction operations. The first
time the node is written, a cache miss is generated. A write-allocate
strategy will load the node into the cache, while a write-no-allocate
strategy will simply write the node value into main memory. The
problem comes on the subsequent read of this node, which typically
happens within a few hundred clock cycles. A write-no-allocate policy
will experience a second cache miss, while a write-allocate policy will
usually get a cache hit on the previously written element. This second
cache miss with a write-no-allocate policy significantly degrades perfor-
mance. The effect becomes even more pronounced when a long sequence

MISS RATIOS
Allocation Strategy SKI set Turner Set Super+Strict
write allocate 0.0341 0.0300 0.0528
write no allocate 0.1914 0.1522 0.2433

Table 6-3. TIGRE performance with varying cache write allocation
strategy.

70 Chapter 6. Architectural Metrics

of writes (each generating a cache miss) is performed in succession
before the first read, as can happen when performing a sequence of
graph rewrites on a small portion of the program graph.

The Turner Set numbers showed the least degradation from using
write-no-allocate because it does not create a large number of super-
fluous nodes as the SKI set does (by using the B and C combinators
instead of S and K combinations). But, the Turner Set does have a large
number of redundant reads of elements for intermediate graph rewrit-
ing that are eliminated by the supercombinator approach, so the super-
combinator version shows even more degradation in performance from
using a write-no-allocate strategy.

As an example of the importance of this range of cache performan-
ces, a DECstation 3100 class machine would be 18000 RAPS slower on
the Turner Set version using a write-no-allocate strategy. On a
mainframe or other large processor, cache miss delays may be consid-
erably longer, increasing this delay further. For instance, on a VAX
8800 a write-no-allocate strategy may account for a 75000 RAPS speed
degradation.

The difference in write allocation policy partially explains the
result that a VAX 8800 mainframe was outperformed by a DECstation
3100 workstation (376000 RAPS for the VAX 8800 compared to 475000
RAPS for the DECstation 3100). The VAX 8800 uses a write-no-allocate
policy, while the DECstation 3100 uses a write-allocate policy. This
greatly increases the cache miss ratio for the VAX. The difference in
miss ratios is exacerbated by the fact that mainframes tend to have a
longer memory access time (and therefore cache miss penalty) than
workstations.

Fortunately, there is a work-around available for existing architec-
tures that have a write-no-allocate policy. To reduce the effects of the
problem on the VAX 8800, TIGRE executes a dummy read (i.e. a memory
read, the results of which are discarded) each time a heap cell is
allocated. This dummy read improves overall program Turner Set
performance on skifib by approximately 20%, despite the overhead of
executing extra instructions to perform the memory reads. This perfor-
mance increase comes about because a read miss, a write hit, and a read
hit are significantly quicker on a VAX 8800 than a write miss followed
by a read miss.

Graph reduction makes extremely heavy use of a garbage-collected
heap, so the effectiveness of write-allocation on cache miss ratios is quite
pronounced. However, the need for a write-allocate cache policy when
using garbage-collected heaps extends beyond the graph reduction
domain. Since a heap, by its very nature, is used in a write-followed-

6.1.CACHE BEHAVIOR 71

by-read manner, a write-allocate cache policy is important to support
any system that uses a heap.

6.1.2.2. Cache Size

Figure 6-1 shows the results of varying cache size over a range of 128
bytes to 128K bytes. Since most newer designs tend to use large cache
memories to improve performance (with 64K bytes in a data cache often
the minimum acceptable amount for a RISC implementation), it is
surprising to see that performance for all three implementations stays
at approximately 95% to 98% hit ratio with a cache as small as 2K bytes,
which corresponds to only 256 graph nodes. This suggests that com-
binator graph reduction has much better temporal locality than conven-
tional programs. This temporal locality may be due in part to a high
infant mortality rate among allocated heap nodes.

As already noted, the supercombinator implementation strategy
is more efficient at accomplishing tree rewritings (because one com-
binator reduction can rewrite a large section of the graph). This efficien-
cy is reflected in a somewhat higher cache miss ratio, since fewer
redundant memory accesses are used. The SKI and Turner Set num-
bers might be considered diluted by multiple accesses to intermediate
result graph nodes that decrease the miss ratio, but also slow down
program execution speed. Because of this effect, the data reported in
this section should not be used to compare the merits of SKI reduction,

M
i
s
s

R
a
t
i
o

Cache Size

.35

.30

.25

.20

.15

.10

.05

0

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

TURNER

SUPER

SKI

Figure 6-1. TIGRE performance with varying cache size.

72 Chapter 6. Architectural Metrics

Turner Set reduction, and supercombinator reduction against each
other, but rather to understand the effects of varying design parameters
given a certain graph reduction strategy.

High temporal locality suggests that generational garbage collec-
tion techniques (Appel et al. 1988) may be useful with combinator graph
reduction. It is possible that frequent changes of pointers in older
generations may negate any advantages that might be gained using
generational techniques , but this issue has not been explored in detail.

A word of caution on the interpretation of the cache size data
collected here is in order. The benchmarks used are rather small a
certain sense. They access a large amount of heap space, so it cannot
be said that the programs are too small to exercise a large cache.
However, only a few thousand heap nodes are actually active (i.e., not
garbage) at any given time during a computation, so it might be argued
that good performance of small caches is a factor of running small test
programs. This issue is revisited by simulating larger programs in
Section 6.2.

6.1.2.3. Block Size

Figure 6-2 shows the results of varying block size over a range of 4 bytes
to 8K bytes. The cache miss ratio decreases up to a cache size of 2K
bytes for the SKI method, and up to 8K bytes (the limit to block size
given 4-way set associativity) for the other methods. This suggests very
strong spatial locality. This spatial locality is probably due to the fact
that short-lived cells are allocated from the heap space in sequential
memory locations (this sequentiality is an inherent property of compact-
ing garbage collectors, such as the stop-and-copy garbage collector used
by TIGRE).

One could, at first glance, decide to build a machine with a 2K byte
cache line size based on the miss ratios alone. For conventional
programs, this decision would be unwise, because the traffic ratio (the
number of words of data moved by the system bus) usually increases
dramatically with an increased block size. This heavy traffic can slow
a system down by greatly increasing the time required to refill a cache
block after a miss. With combinator graph reduction, this effect is much
less pronounced. The traffic ratio does not increase appreciably until
the block size is between 1K and 4K bytes in size. So, a machine with
a 256 byte or 512 byte cache line size is entirely reasonable for this
application.

The strong difference in traffic ratio between a block size of 4 bytes
and 8 bytes on the SKI set and Turner Set implementation is worthy of

6.1.CACHE BEHAVIOR 73

T
r
a
f
f
i
c

R
a
t
i
o

Block Size

.55

.50

.45

.40

.35

.30

.25

.20

.15

.10

.05

0

4 8 16 32 64 128 256 512 1K 2K 4K 8K

M
i
s
s

R
a
t
i
o

Block Size

.20

.15

.10

.05

0

4 8 16 32 64 128 256 512 1K 2K 4K 8K

TURNER

SUPER

SKI

TURNER

SUPER

SKI

Figure 6-2. TIGRE performance with varying cache block size.

74 Chapter 6. Architectural Metrics

comment. This increase is caused by the fact that left-hand sides of
nodes are seldom accessed after the stack unwinding operation, whereas
right-hand sides are frequently accessed to first retrieve a value (per-
haps using a recursive evaluation call), then to write that value. Thus,
a cache which must retrieve both halves of a node wastes time fetching
left-hand side values which will never be used in the case that the cache
miss occurs on an access to a right-hand side. The traffic ratio on the
supercombinator implementation is almost identical for the 4 byte and
8 byte block size cases, because that particular code only had one
argument to evaluate for the supercombinator. The supercombinator
body fetched and evaluated the argument as soon as the supercom-
binator body was entered, avoiding cache misses.

The fact that the miss ratio stays very low until the cache block
size increases to within a factor of between four and sixteen of the total
cache size gives further insight into the behavior characteristics of
graph reduction. The code in this experiment tends to access ap-
proximately four to sixteen regions of memory at a time, since the miss
ratio begins to climb when the 32K byte cache can hold fewer than
sixteen cache blocks. This suggests excellent temporal locality.

The excellent temporal locality observed bodes well for virtual
memory management behavior. Since most translation lookaside buf-
fers are limited in size (for example, 64 entries addressing to 4K bytes
each on a MIPS R2000), good spatial locality is important limit the
number of TLB misses. At a second level, good spatial locality also limits
thrashing of virtual memory pages between main memory and secon-
dary storage devices. The result is that combinator graph reduction
seems to provide excellent virtual memory behavior even without the
use of compacting techniques (since no garbage collection was done for
this example).

Block sizes of greater than 16 bytes are seldom seen in practice,
because most conventional programs do not have enough spatial locality
to support very large block sizes. Another consideration is that a large
block size usually requires a very wide memory access bus to provide
the data to fill the block. But, the significant performance increases
possible with this application give strong incentive to consider large
block sizes.

6.1.2.4. Associativity

Table 6-4 shows the results of varying the associativity of the cache from
direct mapped (1-way associative) to 8-way associative. 2-way set

6.1.CACHE BEHAVIOR 75

associative seems to bring a slight performance improvement, but
beyond that there is no discernible advantage to adding cache sets.

Many systems use direct mapped caches because they are simpler
to build and can be more easily made to run at high speeds (Przybylski
et al. 1988). The cost of using such a direct mapped cache is a only a
0.17% additional miss ratio penalty, so such a performance tradeoff of
using direct mapped caches seems desirable.

6.1.2.5. Replacement Policy

Table 6-5 shows the results of varying the replacement policy for the
cache. LRU replacement was found to be the best by a small margin.
In the original simulation with both program and memory sharing a
unified cache, LRU replacement was more important, since it prevented
the program words from being flushed from the cache when using
multi-way associativity. In a separated data cache, the performance
improvement is smaller.

MISS RATIOS
Associativity SKI set Turner Set Super+Strict
direct mapped 0.0358 0.0317 0.0536
2-way set 0.0341 0.0300 0.0528
4-way set 0.0341 0.0300 0.0528
8-way set 0.0341 0.0300 0.0528

Table 6-4. TIGRE performance with varying cache associativity.

MISS RATIO
Replacement Policy SKI set Turner Set Super+Strict
LRU 0.0341 0.0300 0.0528
FIFO 0.0347 0.0305 0.0531
RANDOM 0.0349 0.0306 0.0531

Table 6-5. TIGRE performance with varying cache replacement
policies.

76 Chapter 6. Architectural Metrics

6.1.2.6. Write-Through Policy

Table 6-6 shows the results on miss ratio and traffic ratio for a write-
through versus copy-back management policy. The cache miss ratios
are the same, as expected, since this policy does not affect whether
misses occur. However, the bus traffic generated for the write-through
method is significantly higher than for copy-back. This can cause severe
problems with system performance, even on a uniprocessor.

With a write-through policy with a line size of 16 bytes (4 words),
14.3% of data cache accesses for the SKI implementation generate a bus
transaction. This is manageable on most systems. Unfortunately, it is
more common for processors to have narrower buses to memory, with
most microprocessors supporting only a 4-byte bus. In this case, a
memory bus access would be generated on average on 57.2% of data
accesses, which can easily swamp a bus, causing memory-bandwidth
performance limitations even on uniprocessors. This bus overloading
takes place because a microprocessor bus can only sustain a data
transfer every 4 to 8 clock cycles, whereas a 57.2% bus access rate
demands bandwidth corresponding to a transfer for every 1.7 clock
cycles. Clearly, a copy-back policy is desired to limit the effects of bus
saturation. Even if cache line size is reduced, similar bus write satura-
tion effects are possible.

The supercombinator implementation has even worse bus write
characteristics. This is caused by a difference in the percentage of bus
write operations, since supercombinator code does less graph traversing
(and hence fewer reads) per combinator. This effect is exacerbated by
the fact that supercombinator compilation reduces the redundancy of
computations, resulting in fewer instances of repeated overwriting of
nodes. This, in turn, limits the effectiveness of the copy-back strategy
(which is attenuates bus write traffic only to the extent that nodes are
written more than once while the node is resident in the cache memory).
Thus, with supercombinators it is even more important to use a copy-

MISS RATIO / TRAFFIC RATIO
Memory Update SKI set Turner Set Super+Strict
copy back 0.0341/0.2721 0.0300/0.2209 0.0528/0.4223
write through 0.0341/0.5721 0.0300/0.5431 0.0528/0.6849

Table 6-6. TIGRE performance with varying cache write-through
strategy.

6.1.CACHE BEHAVIOR 77

back strategy, but even this strategy is likely to make significant
demands on bus bandwidth.

6.1.3. A Desirable Cache Strategy

Based on the findings of these simulations, a cache design which
minimizes complexity and cost while achieving reasonable performance
would have the following characteristics: cache size of 16K bytes each
for split instruction and data caches, 16 byte block size, direct mapped,
write-allocate, and copy-back. This cache configuration was simulated
to have a 98.94% hit ratio overall for the SKI method (96.24% data hit
ratio, and 99.99+% instruction hit ratio), and a traffic ratio of 0.0827
words transferred on average per memory access.

Unfortunately, even though data prefetching or sub-block filling
could efficiently support a block size of 16 bytes, most microprocessors
in workstations support block sizes of 4 bytes. The same cache con-
figuration with a 4 byte block size was simulated to have a 96.80% hit
ratio overall (92.13% data hit ratio, and 99.99+% instruction hit ratio)
with bus traffic of 0.0599 words transferred on average per memory
access. This difference of 2.14% in cache hit ratio represents ap-
proximately a 44000 RAPS (nearly 10%) speed penalty for a DECstation
3100 class machine.

6.2. PERFORMANCE OF REAL HARDWARE

Section 6.1 discussed a search for a good cache strategy without regard
to commercially available hardware, and using a single benchmark
program (mostly because of the impracticality of collecting data for the
large number of simulation runs required for multiple benchmark
programs). This section reports a set of simulations with a slightly
different viewpoint: a group of benchmark programs are measured,
using the DECstation 3100 design characteristics as a starting point for
parametric analysis. We shall be seeing another instance of using a
DECstation 3100 as a basis for comparison in Chapter 7.

6.2.1. Simulation Results for a DECstation 3100

The curves and ratios measured for the DECstation 3100 are different
from those shown in Section 6.1, even for the fib benchmark, since the
base case for the DECstation 3100 is different than that used in Section
6.1. However, we shall see that even with a different starting point, the

78 Chapter 6. Architectural Metrics

general relationships between performance and changes in cache design
parameters will, for the most part, hold true. For that reason, the
results in this section may be considered a double-check on the pre-
viously discussed results.

For these cache simulations, individual parameters were altered,
one at a time, across a wide range to observe performance trends. The
benchmark programs run were: fib (recursive Fibonacci calculation),
nthprime (a prime number generator), queens (the N-queens problem),
real (infinite precision real arithmetic), and tak (a program that tests
recursive function calls). All programs used the Turner Set of com-
binators. In all cases, between one and two million data memory
accesses were simulated, with accesses to a memory range of at least
320K bytes.

The DECstation 3100 has a split cache with 64K bytes in each
cache, a block size of 4 bytes, direct mapped organization, and uses a
write-through strategy with write-allocate management. (Digital

parameter value
cache organization split I/D (64K bytes each)
associativity direct mapped
replacement policy n/a
memory update policy write-through
write allocation write allocate

characteristic Fib NthPrime Queens Real Tak
miss ratio 0.1434 0.1768 0.1554 0.1595 0.1912
traffic ratio 0.5854 0.6262 0.5942 0.5971 0.6478

Table 6-7. Baseline for DECstation 3100 analysis.

MISS RATIOS
Allocation Strategy Fib NthPrime Queens Real Tak
write allocate 0.1434 0.1768 0.1554 0.1595 0.1912
write no allocate 0.2405 0.3099 0.2669 0.2848 0.3271

Table 6-8. Performance with varying cache write allocation strategy.

6.2.PERFORMANCE OF REAL HARDWARE 79

Equipment Corporation 1989) Table 6-7 summarizes the results of
simulating the baseline cache configuration of the DECstation 3100.

Two important characteristics emerge from the simulation. The
cache miss ratio is a relatively high 14% to 19% for all the programs.
Furthermore, the bus traffic ratio is between 0.58 and 0.65. As a result,
graph reduction programs generate memory references in excess of
DECstation 3100 available bus bandwidth.

Table 6-8 shows the results of varying the write allocation policy.
These results show that using a write-no-allocate strategy significantly
increases cache misses compared to the write-allocate case.

M
i
s
s

R
a
t
i
o

Cache Size

.35

.30

.25

.20

.15

.10

.05

0

128 256 512 1K 2K 4K 8K 16K 32K 64K

FIB
NTHPRIME
QUEENS
REAL
TAK

Figure 6-3. Cache performance with varying cache size.

MISS RATIOS
Associativity Fib NthPrime Queens Real Tak
direct mapped 0.1434 0.1768 0.1544 0.1595 0.1912
2-way set 0.1425 0.1724 0.1515 0.1530 0.1858
4-way set 0.1425 0.1724 0.1514 0.1530 0.1857
8-way set 0.1425 0.1724 0.1513 0.1530 0.1857

Table 6-9. Cache performance with varying cache associativity.

80 Chapter 6. Architectural Metrics

T
r
a
f
f
i
c

R
a
t
i
o

Block Size

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0

4 8 16 32 64 128 256 512 1K 2K

M
i
s
s

R
a
t
i
o

Block Size

.25

.20

.15

.10

.05

0

4 8 16 32 64 128 256 512 1K 2K

QUEENS

TAK

FIB

NTHPRIME

REAL

QUEENS

TAK

FIB

NTHPRIME

REAL

Figure 6-4. Performance with varying cache block size.

6.2.PERFORMANCE OF REAL HARDWARE 81

Figure 6-3 shows the results of varying cache size over a range of
128 bytes to 64K bytes. While different programs show different degrees
of temporal locality, the curves suggest that increases in cache size
beyond 64K will not significantly change the miss ratio. So, convention-
al hardware platforms seem to be adequate with respect to cache size.
The example of fib given in Section 6.1 was slightly misleading, as shown
by Figure 6-3. Fib has a miss ratio curve that dips significantly below
the curves for other programs. Based on Figure 6-3, one could speculate
that the required cache size varies with the number of active, or “live”
nodes in the program graph. Results from larger benchmarks would be
required to confirm this speculation.

Figure 6-4 shows the results of varying block size over a range of
4 bytes to 2K bytes. The cache miss ratio for all programs decreases up
to a cache size of 256 bytes. The traffic ratio starts increasing noticeably
at between 128 and 256 bytes, suggesting that a block size of 128 bytes
would be advantageous.

Table 6-9 shows the results of varying the associativity of the cache
from direct mapped (1-way associative) to 8-way associative. 2-way set

associative seems to bring a slight performance improvement, but
beyond that there is little or no advantage to adding cache sets.

Table 6-10 shows the traffic ratio for a write-through versus
copy-back management policy. The cache miss ratios are the same since
this policy does not affect whether misses occur. However, the bus
traffic generated for the write-through method is significantly higher
than for copy-back.

To sum up, the simulations in this section corroborate the results
of Section 6.1, except that the results from Section 6.1 slightly over-
stated the maximum advantageous cache block size, and exaggerated
the temporal locality of the programs.

 TRAFFIC RATIO
Memory Update Fib NthPrime Queens Real Tak
write through 0.5854 0.6262 0.5942 0.5971 0.6478
copy back 0.2863 0.3507 0.3063 0.3123 0.3769

Table 6-10. Cache performance with varying cache write-through
strategy.

82 Chapter 6. Architectural Metrics

6.2.2. Comparison with Actual Measurements

Cache simulation results are an important architectural tool. However,
there is always the question of whether the results of such simulations
correspond to the “real world”. In order to establish some confidence in
the simulation results, a comparison will be made between the results
of a simulation of the DECstation 3100 and the results of actual program
execution.

Simulation indicates that for skifib, the MIPS R2000 processor
executes 27.82 instructions per combinator reduction application (on
average). The R2000 also performs 33.95 memory reads (including both
instruction reads and data reads) accesses per combinator reduction
application, which when multiplied by a simulated miss ratio of 0.0097,
gives 0.33 cache read misses per combinator reduction. The DECstation
3100 has a cache read miss latency of 5 clock cycles, resulting in a cost
of 1.65 clock cycles per combinator because of cache misses. This, when
added to the 27.82 cycle instruction execution cost (27.82 instructions
at one instruction per clock cycle), yields an execution time of 29.47 clock
cycles per combinator.

The DECstation 3100 has a cost of zero clock cycles for a cache
write miss, so long as the write buffer does not overflow. With an
average of 4.74 writes (at 6 clock cycles per write) plus 0.33 cache miss
reads (at 5 clock cycles per read) per combinator, a total of 30.09 clock
cycles is needed per combinator to provide adequate memory bandwidth
for the write-through strategy.* This is somewhat longer than the 29.47
clock cycle instruction execution speed, leading to the conclusion that
the DECstation 3100 implementation of TIGRE is constrained by
memory bandwidth.

As a result of this analysis, we calculate the simulated execution
speed of the DECstation 3100 to be 30.09 clock cycles per combinator.
At 16.67 MHz, this translates into a speed of 554000 RAPS between
garbage collections.

When actually executing the skifib benchmark, the DECstation
3100 performed approximately 495000 reduction applications per
second (RAPS) including garbage collection time. Garbage collection
overhead was measured at approximately 1%. This rather low cost is
attributed to the fact that a small number of nodes actually in use at
any given time, so a copying garbage collector must typically copy just

6.2.PERFORMANCE OF REAL HARDWARE 83

* Actually, it may be worse than this steady-state rate, since bursts in memory accesses
may overflow the write buffer, causing even more stalling, but this is difficult to
measure without detailed simulation of the actual system involved.

a few hundred nodes for each collection cycle on the benchmark used.
Virtual memory overhead can be computed based on a 0.0091 miss ratio
for a block size of 4K bytes, with 6.67 data access per combinator, giving
a computed virtual memory miss ratio of 0.00136 per combinator.
Assuming 13 clock cycles overhead per TLB miss (based on an 800 ns
TLB miss overhead for a MIPS R2000 with a 16 MHz clock as reported
by Siewiorek & Koopman (1989)), and noting that an average com-
binator takes 30.09 clocks, this gives a penalty of:

 0.00136 * 13 / 30.09 (clocks per combinator) = 0.06%
Together with the 1% garbage collection overhead, this 1.06%

overhead predicts a raw reduction rate of:
495000 * 1.0106 = 500000 RAPS

This rate is 11% slower than the 554000 RAPS predicted raw
reduction rate.

A major portion of the discrepancy is probably caused by bursts of
traffic to the write buffer, which stalls the processor under many
conditions. The rest of the discrepancy is due to subtle system over-
heads such as interference between memory refresh operations and
cache misses, as well as cache cold starts on a multiprogrammed
operating system.

6.3. DYNAMIC PROGRAM BEHAVIOR

Although cache performance is a crucial part of overall TIGRE perfor-
mance on conventional hardware, there are two other areas of perfor-
mance measurement that deserve attention. One area is in the use of
heap memory, and the other area is access to spine stack memory.

6.3.1. Heap Memory Use

The previous discussions of cache memory behavior have covered most
of the important points about heap use. There are two points left to

NODES ALLOCATED PER COMBINATOR
SKI set Turner Set Super+Strict

nodes / combinator 0.737 0.731 1.000

Table 6-11. TIGRE use of heap memory.

84 Chapter 6. Architectural Metrics

cover: the rate at which heap nodes are consumed, and the importance
of choosing a garbage collection technique.

Table 6-11 shows the average number of heap nodes allocated per
combinator for the fib benchmark. The SKI implementation continually
executes the S combinator, which allocates two nodes of heap memory
each time it is used. K combinators are then used in many instances to
discard one of the two newly created heap nodes. The Turner Set
number, therefore, is similar, since the B and C combinators each
allocate one node, but are used to replace pairs of S and K combinators,
maintaining the ratio of heap nodes allocated per combinator relatively
constant. The supercombinator implementation uses more heap nodes
per combinator, because there are fewer “noise” combinators (e.g. I, K)
executed.

The number of heap nodes consumed per combinator is quite large
when one considers that, at a Turner Set execution rate of 450000
combinators per second, approximately a third of a million heap nodes
(and therefore, eventually, cells to be garbage collected) are generated
each second. This is a heap space consumption rate of 2.63M bytes per
second on the DECstation 3100. One way of understanding this number
is that all physical memory in a minimum configuration system (8M
bytes) can be consumed by heap allocation in approximately three
seconds. Alternately, the heap node consumption rate is equal to 66%
of the maximum I/O transfer rate of the system. In other words, heap
allocation is a significant system load.

In order to alleviate the demands of heap allocation on the system,
an appropriate garbage collection technique is important. This techni-
que must be efficient both at allocation and collection. The original
implementation of TIGRE used a mark/sweep garbage collector.
Upgrading to a stop-and-copy garbage collector resulted in a speed
improvement of 130000 RAPS on the VAX 8800 assembly language
implementation. This significant speedup was caused not only by the
fact that stop-and-copy tends to execute fewer instructions, but also by
the fact that the mark/sweep method sweeps through the heap space,
flushing cache memory. The stop-and-copy algorithm is much better at
preserving locality of reference to the heap, and so results in better
performance.

One design challenge with using a stop-and-copy garbage collector,
or any garbage collector that relocates heap elements, is maintaining
consistency of the state of the computation with the relocated elements.
When performing a stop-and-copy garbage collection, the spine stack
must examined and modified so that the spine stack elements reflect
the new locations of nodes in the graph. This can be accomplished with

6.3.DYNAMIC PROGRAM BEHAVIOR 85

a fixup routine after each garbage collection. A harder problem (and,
one which does not appear easy to solve at first thought) is that some
references to P combinators are used to check for equality between data
structures. Thus, there is a mechanism for the address of a list
(returned by P) to be propagated as a data value in the system. Unfor-
tunately, if a garbage collection happens between two accesses to the
same P combinator, it is possible that an equality test will improperly
fail, since one of the values being checked contains a stale reference to
a pre-collection address.

The stale reference problem with the P combinator is difficult to
solve with a fixup routine. Fortunately, values from P combinators are
ensured by the compilation process to never be used in any computation
except equality checking. TIGRE solves this stale reference problem
(and, the spine stack relocation problem as well) in a very simple way.
TIGRE simply throws away the contents of the spine stack at each
garbage collection. Since the entire state of a computation is contained
in the program graph, the spine stack contains only redundant informa-
tion (and it is, in fact, maintaining consistency between the redundant
representations of information which is the source of the problem). So,
after each garbage collection cycle, TIGRE performs a “warm start” of
graph execution, restarting the spine unwinding from the root of the
program graph. Measurements have been unable to detect any dif-
ference in execution time between this warm start technique and a spine
stack fixup technique. Of course, there is the important difference that
the spine stack fixup technique alone doesn’t work for some programs.

ACCESSES PER COMBINATOR
SKI set Turner Set Super+Strict

top of stack write 2.18 2.54 1.83
top of stack read 1.13 1.54 1.33
second on stack read 0.74 1.08 0.66
third on stack read 0.55 0.35 0.33

spine unwinds 1.37 1.38 1.00
total stack accesses 4.61 5.50 5.33

Note: top of stack writes include one write per spine node unwound.

Table 6-12. TIGRE use of stack memory for fib.

86 Chapter 6. Architectural Metrics

6.3.2. Stack Memory Use

Table 6-12 summarizes the stack access characteristics of TIGRE.
These results were obtained by annotating a simulation of MIPS R2000
assembly language with data indicating load and store instructions that
accessed spine stack elements. The number of spine unwinds per
combinator are included in the number of top of stack writes.

From simulation results discussed earlier, an average Turner Set
combinator performs 10.87 data memory accesses. As Table 6-12 shows,
approximately half of these accesses (5.50) are to the spine stack. This
access pattern is consistent with the notion that most accesses to heap
memory are indirected through the spine stack, causing frequent pair-
ings of accesses to the spine stack with accesses to heap memory.

Another point of interest is that most accesses are to the topmost
stack element. Furthermore, accesses deep into the stack are infre-
quent (and, for the programs measured, no accesses exceeded a depth
of three). This raises the possibility of a small, perhaps even single-ele-
ment, stack buffer register for improved performance.

6.3.DYNAMIC PROGRAM BEHAVIOR 87

88 Chapter 6. Architectural Metrics

