
Chapter 5
TIGRE Performance

Obtaining accurate and fair performance measurement data is difficult
to do in any field of computing. In combinator reduction, performance
measurement is further hindered by a lack of commonly used
benchmark programs, a lack of statistics about program execution
characteristics (at least partially because slow execution speed makes
developing large programs difficult), and poor reporting methods in the
available literature.

Unfortunately, solving the problem of accurate and consistent
performance measurement and reporting will take time and consensus
among those doing research in this area. Therefore, the results
presented in this chapter reflect the limitations of available resources.
Performance for TIGRE has been measured for several programs on a
wide variety of platforms, which should help others publish comparisons
to TIGRE.

Section 5.1 presents the results of TIGRE performance measure-
ments on a variety of hardware platforms. Section 5.2 compares some
of these measurements with published benchmark results for other
combinator reduction strategies. Section 5.3 compares TIGRE execu-
tion speeds with other languages. Section 5.4 provides a brief analysis
of the performance results.

5.1. TIGRE PERFORMANCE ON VARIOUS PLATFORMS

The performance of TIGRE can, in turn, only be compared to available
performance measures for other machines. The available performance
measures vary, and include reduction applications per second (RAPS,
which may be thought of as the number of Turner Set combinators
executed per second), and nfib recursions per second (the number of
increments performed by the recursive nfib benchmark per second).
These performance metrics are far from ideal, but are all that are
available in the way of information about other implementations. The
comparisons of TIGRE performance to other methods are as fair and
accurate as possible, with careful attention paid to selecting an ap-

49

Time Speed
Platform Language Program (sec) (RAPS)
DECstation 3100 Assembler SKIFIB(23) 2.20 495000
(16.7 MHz) FIB(23) 1.58 470000

NFIB(23) 2.68 484000
TAK 12.58 420000
NTHPRIME(300) 2.60 364000
QUEENS(20) 5.63 433000

C SKIFIB(23) 6.55 166000
FIB(23) 5.08 147000
NFIB(23) 9.02 144000
QUEENS(20) 15.80 154000

VAX 8800 Assembler SKIFIB(23) 2.82 387000
(22 MHz) FIB(23) 2.10 355000

NFIB(23) 3.55 366000
TAK 16.07 329000
NTHPRIME 3.91 242000
QUEENS(20) 8.33 293000

C SKIFIB(23) 6.50 168000
FIB(23) 5.01 149000
NFIB(23) 9.13 142000
QUEENS(20) 18.34 133000

VAXstation 3200 Assembler SKIFIB(23) 6.33 172000
FIB(23) 4.80 155000
NFIB(23) 8.23 158000

C SKIFIB(23) 13.12 83000
FIB(23) 10.75 69000
NFIB(23) 19.16 68000

SUN 3/260 C SKIFIB(23) 8.62 126000
(24 MHz) FIB(23) 7.01 105000

NFIB(23) 12.37 105000

SUN 3/75 C SKIFIB(23) 14.62 75000
(16 MHz) FIB(23) 12.75 58000

NFIB(23) 22.02 59000

Cray Y-MP C SKIFIB(23) 3.09 352000
(167 MHz) FIB(23) 2.40 310000

NFIB(23) 4.25 305000
TAK 14.69 360000
NTHPRIME(300) 3.40 277000

RTX 2000 (10 MHz) Forth SKIFIB – 450000

Table 5-1. TIGRE performance on a variety of platforms.

50 Chapter 5. TIGRE Performance

propriate level of compiler technology (i.e. whether supercombinator
compilation is used), and hardware platform performance levels.

5.1.1. TIGRE Performance for the Turner Set

Table 5-1 shows the performance of TIGRE using Turner Set com-
binators. Simple stop-and-copy garbage collection (Baker 1978) is used.
The allocated heap space is small enough to force several dozen garbage
collection cycles in order to represent fairly the average cost of garbage
collection. No sharing analysis or other optimizations beyond compiling
to the Turner Set of combinators has been used.

Table 5-2 shows source code for the smaller benchmarks along with
S-expression representations for some of the compiled program graphs.
The fib benchmark is a doubly recursive implementation of the Fibonacci
sequence. The nfib benchmark is similar to fib, except that it returns
the number of recursions taken in computing the nth Fibonacci number
instead of the actual Fibonacci number. Tak is a test of recursive
function calls with input arguments of (18,12,6). The nthprime
benchmark computes the nth prime number using implicit coroutines to
implement an infinite-length list of prime numbers, and performs a
large number of integer divisions. The queens benchmark finds the nth

board solution to the 8 queens problem, with heavy use of list data
structures.

Figures for the C implementation on VAX 8800, microVAX
(VAXstation 3200), Sun 3/75, and Sun 3/260 used the gcc compiler
(Stallman 1988) with the optimization switch turned on. Analysis of the
generated code shows that there is little room for improvement by
changing compilers. The DECstation 3100 C implementation uses the
vendor-supplied MIPS C compiler. The DECstation 3100 assembly
language implementation uses hand-scheduled assembly language to
eliminate almost all of the many NOP instructions caused by load- and
branch-delay slot restrictions that are present in the C compiler-
generated code.

The DECstation 3100 is a 16.67 MHz workstation using the MIPS
R2000 processor (Digital Equipment Corporation 1989). The RTX 2000
is a 10 MHz 16-bit stack-based processor (Harris Semiconductor 1989).
The VAX 8800 is a 22 MHz mainframe with cache memory support, a
wide system bus, and high-speed emitter coupled logic (ECL) circuits
(Burley 1987). Only one CPU of the two CPUs available on the VAX
8800 was used. The VAXstation 3200 is a high-end microVAX worksta-
tion. The Sun 3/260 system is a 24 MHz 68020 workstation with cache
memory. The Sun 3/75 system is a 16 MHz 68020 workstation with no

5.1. TIGRE PERFORMANCE ON VARIOUS PLATFORMS 51

cache memory. All measurements were taken with system load as low
as possible to reduce contention for resources with other users.

In order to give an idea of potential TIGRE performance on a
supercomputer, times for one processor of a Cray Y-MP are also shown
in Table 5-1. The Cray Y-MP is a multiprocessor supercomputer with
a 167 MHz clock. The times are not as fast as one might expect given
the clock speed because TIGRE performs a large number of pointer
dereferences that cannot be handled efficiently by a heavily pipelined
supercomputer.

The measurements for Table 5-1 are given in Turner Set RAPS.
This metric is subject to some variation because not all combinators
perform the same amount of work. However, the table shows that RAPS
numbers vary over relatively narrow ranges across benchmark
programs on each platform. Therefore, RAPS numbers for a few varied
benchmarks can probably accurately represent performance on a par-
ticular hardware platform.

SKIFIB:
fib n = 1 ; n < 3

= fib(n-1) + fib(n-2)

((S ((S ((S (K IF)) ((S <) (K 3))))
(K 1))) ((S ((S (K +)) ((S (K CYCLE))
((S -) (K 1))))) ((S (K CYCLE))
((S -) (K 2)))))

FIB:
fib n = 1 ; n < 3

= fib(n-1) + fib(n-2)

((S (((S’ IF) ((C) 3)) (K 1)))
(((S’ +) ((B CYCLE) ((C -) 1)))
((B CYCLE) ((C -) 2))))

NFIB:
nfib n = 1 ; n < 2

= 1 + nfib(n-1) + nfib(n-2)

TAK:
tak x y z = z ; not (y < x)

 = tak (tak(x-1) y z) (tak(y-1) z x)
(tak (z-1) x y))

Table 5-2. Benchmark listings.

52 Chapter 5. TIGRE Performance

5.1.2. TIGRE Performance for Supercombinator Compilation

Supercombinator compilation, combined with strictness and sharing
analysis, has been shown to give up to an order of magnitude speed
improvement for other combinator reduction methods (Fairbairn &
Wray 1987). Of course, when the complexity of a combinator definition
is not held constant, the concept of simply measuring the number of
combinator reductions per second directly is not very meaningful.
Therefore, all results for supercombinator reduction will be expressed
in terms of absolute time and a newly created metric, normalized RAPS.

Normalized RAPS (nRAPS) shall be defined as the number of
reduction applications executed by a Turner Set implementation of a
program divided by the execution time of the program. Thus, for a
program that makes use of a supercombinator compiler, the nRAPS
rating will in general be faster than the raw supercombinator RAPS,
and will accurately reflect the elapsed time speedups obtained by using
supercombinators instead of Turner Set combinators. For example, a
program having a Turner Set RAPS rating of 400,000 and a supercom-
binator nRAPS rating of 1,200,000 reflects that the supercombinator
version ran exactly three time faster in terms of elapsed time than the
Turner Set version. Henceforth, RAPS will always refer to Turner Set
RAPS, and raw reduction rates for other methods will not use the term
“RAPS”.

Table 5-3 shows the results of applying two levels of supercom-
binator compilation optimizations to the performance on the fib and nfib
benchmarks. The first level of optimization was supercombinator com-
pilation, and the second level of optimization was strictness analysis in
addition to supercombinator compilation. In both cases, factors of three
to four in speedup were observed when using a supercombinator com-
piler. That the factor of ten speed improvement observed by others on

Time Speed
Platform Language Program (sec) (nRAPS)
DECstation 3100 ASM FIB(25) 4.07 470000
 super. ASM FIB(25) 1.52 1258000

super. + strict ASM FIB(25) 0.95 2014000
ASM NFIB(25) 6.92 470000

 super. ASM NFIB(25) 3.03 1073000
super. + strict ASM NFIB(25) 2.08 1564000

Table 5-3. TIGRE speedups using supercombinator compilation.

5.1. TIGRE PERFORMANCE ON VARIOUS PLATFORMS 53

the same benchmarks was not observed probably indicates both that the
underlying TIGRE graph traversal mechanism is very efficient (so there
is less inefficiency to remove by eliminating overhead for graph traver-
sal and invocation of combinators), and that the TIGRE supercom-
binator compilation technology is still rather simplistic.

The supercombinator compilation results presented were derived
from hand-generated supercombinators using standard algorithms
(Peyton Jones 1987).

5.2. COMPARISONS WITH OTHER METHODS

This section attempts a comparison between TIGRE performance meas-
urements and results for the fastest known or, (in the case of Miranda)
most widely available implementations of combinator reduction sys-
tems. The methods chosen are the same ones describe in Section 2.2
(previous research). In all cases, every attempt is made to present
results in terms of comparable hardware and compiler technology. One
disappointment was the unavailability of an Acorn RISC Machine
(ARM) system for use with TIGRE, since some of the European re-
searchers report their results for this machine.

5.2.1. Miranda

Table 5-4 shows the measured performance of Miranda on a Sun 3/75
compared to TIGRE performance (in C) on exactly the same machine.
It should be noted that the C performance of TIGRE can be expected to
be approximately one-third to one-half the speed of assembly language,
based upon results with other TIGRE platforms. It is not known, but is
reasonable to assume, that Miranda uses at least some assembly lan-
guage support for critical operations.

Time Speed
Platform Language Program (sec) (nRAPS)
SUN 3/75 TIGRE C FIB(23) 12.75 58000

NFIB(20) 5.22 59000

MIRANDA FIB(23) 86.55 8600
NFIB(20) 22.17 13800

Table 5-4. Performance of TIGRE versus Miranda.

54 Chapter 5. TIGRE Performance

5.2.2. Hyperlazy Evaluation

The reported speed for the Hyperlazy Evaluator shown in Table 5-5 is
4000 nfib recursions per second. This speed was measured on an Acorn
Archimedes system (using the ARM CPU) running at 8 MHz. It is
difficult to draw a direct comparison between the ARM processor and
other machines, but the VAXstation 3200 (a microVAX) is probably a
reasonable comparison, since both machines are rated at three million
instructions per second (Connolly 1987, Pountaine 1986). In any event,
Hyperlazy evaluation seems to be poorly suited to supercombinators
because it suffers a combinatorial explosion in machine states with an
increase in the number of combinators.

5.2.3. The G-Machine

Absolute performance information for the G-Machine has not been made
widely available. However, there are some indicators that may be used
for comparison with other implementations. The code listed by Peyton
Jones (1987) for the stack unwinding operation indicates that four VAX
instructions (including a doubly indirect jump with offset) are executed
for each node traversed. Also, seven VAX instructions must be executed
as a preamble to combinators to rearrange the stack. TIGRE uses a
single instruction for each stack element unwound (the jsb instruction
in the VAX implementation) and requires no preamble to its com-
binators.

The original G-Machine was reputed to be the most efficient graph
reducer for which information is available, but is general thought to be
less efficient than the TIM closure reducer (which was built, in part,
upon a refinement of ideas generated from the G-Machine). Newer
implementations of the G-Machine, including the spineless tagless
G-Machine (Peyton Jones & Salkild 1989) have improved charac-

Time Speed
Platform Language Program (sec) (nfib/s)
microVAX TIGRE ASM. NFIB(20) 1.92 11400

ARM Hyperlazy NFIB(?) ? 4000

Table 5-5. Performance of TIGRE versus Hyperlazy evaluation.

5.2. COMPARISONS WITH OTHER METHODS 55

teristics created by combining concepts from graph reduction and
closure reduction.

5.2.4. TIM

TIM makes use of sophisticated compiler technology for supercom-
binator compilation, strictness analysis, and sharing analysis.

Published performance information for TIM, shown in Table 5-6,
includes a rating for nfib(20) of 1.21 seconds on an Acorn RISC Machine
(Fairbairn & Wray 1987). This number includes sharing and some
strictness analysis. Without such analysis (but still with the use of
supercombinators), TIM executes nfib(20) in 1.96 seconds. Table 5-6
compares this performance to TIGRE running on roughly comparable
hardware with Turner Set combinators, supercombinator compilation,
and supercombinator with some sharing and strictness analysis (but,
almost certainly, not as good an analysis as that available through the
TIM compiler). From this limited data, TIGRE appears to be faster than
TIM on small benchmarks.

Time Speed
Platform Language Program (sec) (nfib/s)
microVAX TIGRE ASM. NFIB(20) 1.92 11400

TIGRE super + strict NFIB(20) 0.50 43800

ARM TIM super. NFIB(20) 1.96 11200
TIM optimized NFIB(20) 1.21 18100

Table 5-6. Performance of TIGRE versus TIM.

Time Speed
Platform Language Program (sec) (nRAPS)
DECstation 3200 TIGRE ASM. FIB(23) 1.58 470000

VAX 8800 TIGRE ASM. FIB(23) 2.10 355000

NORMA NORMA FIB(23) 3.1 240000

Table 5-7. Performance of TIGRE versus NORMA.

56 Chapter 5. TIGRE Performance

5.2.5. NORMA

At one time, NORMA was widely acknowledged to be the highest
performance special-purpose hardware for combinator graph reduction.
NORMA is rated by its designers at 250,000 Turner Set RAPS. Table
5-7 shows NORMA performance compared to TIGRE performance on
the DECstation 3100. TIGRE is significantly faster than NORMA in
terms of elapsed time and RAPS rating.

The problem with performance in NORMA is probably not the
speed or capability of the hardware, but rather the underlying tag-based
abstract machine implemented by the NORMA hardware.

5.3. TIGRE VERSUS OTHER LANGUAGES

In order for TIGRE to come into wide use as a research platform, it is
not enough that it be faster than other methods of combinator reduction
(although that is sufficient to commend its use by researchers already
using functional programming languages). TIGRE should also be fast
enough when compared to other programming environments that it can
handle programs of the same order of complexity without undue execu-
tion speed problems. It is probably too much to hope that TIGRE will
actually be faster than other methods for the general uniprocessor case,
but it is reasonable to desire that TIGRE at least be within an order of
magnitude of the speed of other languages. To the extent that other
languages are not able to easily support lazy programming methods
such as implicit coroutining, TIGRE will of course have an advantage
in terms of ease of use, potential for automatic exploitation of paral-
lelism, and perhaps speed in some cases.

Time Speed
Platform Language Program (sec) (nRAPS)
SUN 3/75 TIGRE C FIB(25) 33.38 58000

TIGRE C NFIB(25) 57.65 59000

T3.0 FIB(25) 36.44 53500
T3.0 NFIB(25) 41.01 82900

Table 5-8. TIGRE performance compared to T3.0.

5.3. TIGRE VERSUS OTHER LANGUAGES 57

5.3.1. Non-Lazy Language: T Version 3.0

T3.0 is a dialect of the Scheme language (Kranz et al. 1986) noted for
efficient compilation and program execution. For the purposes of this
discussion, T3.0 may be considered a strict functional language (i.e. a
functional language that does not directly support lazy evaluation).
Table 5-8 shows a comparison between TIGRE and T3.0 running on a
Sun 3/75 in elapsed time.

This comparison should be considered rough at best, but indicates
that TIGRE performance is quite close to T3.0 performance (and, TIGRE
would be faster if an assembly language implementation were available
for the Sun).

5.3.2. Imperative Language: MIPS R2000 C Compiler

Of course, the ultimate speed comparison is one with a mainstream
imperative language such as C. If combinator reduction can (some day)
be made approximately as fast as C program execution, then lazy
functional programming or some other programming style that maps
onto combinator reduction may become viable for widespread use in
production programming. Furthermore, the potential for easy paral-
lelization of combinator reduction methods may outweigh any speed
deficiencies if the inefficiency can be limited sufficiently.

Table 5-9 shows a comparison of TIGRE and C versions of fib, nfib,
and nthprime running on a MIPS R2000. The vendor-supplied R2000 C
compiler was used with default optimization levels (-O2), which per-
forms most optimizations that would help for these programs. The
comparison number represents the ratio of TIGRE execution time to C
execution time. Table 5-10 gives code listings for the benchmarks.

Time Speed
Platform Language Program (sec) (nRAPS)
DECstation TIGRE super+strict FIB(30) 10.58 2046000
 3100 TIGRE super+strict NFIB(30) 23.20 1626000

TIGRE ASM NTHPRIME(700) 14.93 340000

MIPS C compiler FIB(30) 3.27 6618000
MIPS C compiler NFIB(30) 5.33 7077000
MIPS C compiler NTHPRIME(700) 2.95 1722000

Table 5-9. TIGRE performance compared to C.

58 Chapter 5. TIGRE Performance

The fib and nfib benchmarks are very suitable for expression in C,
and may be representative of a rather unfavorable case for comparing
TIGRE against C. Nonetheless, TIGRE performance is within a factor
of 5 of C performance.

The nthprime benchmark was more difficult to code in C, because
it makes use of implicit coroutining. Therefore, significant modifica-
tions to the C code had to be made to arrange for a fair comparison.
Hand-compilation of the supercombinator definitions for nthprime was
deemed too laborious, so only a Turner Set implementation is available
for this benchmark on TIGRE. Nonetheless, TIGRE is still competitive
with C (and, perhaps, might be as fast as C with a supercombinator
implementation running on TIGRE).

5.4. ANALYSIS OF PERFORMANCE

TIGRE executing on a MIPS R2000 is (as far as can be discerned) a very
fast combinator reducer. It is faster in absolute terms than special-pur-
pose hardware implementations of graph reduction, and is faster on
comparable hardware than graph and closure reduction implementa-
tions for small benchmarks.

While the comparison of TIGRE performance to T3.0 and C perfor-
mance is not comprehensive enough to be conclusive, it suggests that
the TIGRE combinator reduction technique makes lazy execution of
programs feasible. TIGRE appears to narrow the range of performance
between fast and slow implementations of languages to less than the
range of performance between commonly used hardware platforms.
This makes it reasonable to study new programming languages and
models of computation with respectable execution speed by using high
speed workstations. Presumably, further refinements to TIGRE, espe-
cially in the area of the TIGRE compiler, will further narrow the
performance gap between TIGRE and other computation models.

5.4. ANALYSIS OF PERFORMANCE 59

int fib(int n)
{ int newn ;
 if (n < 3) newn = 1 ;
 else newn = fib(n-1) + fib(n-2) ;
 return(newn) ;

int nfib(int n)
{ int newn ;
 if (n < 2) newn = 1 ;
 else newn = nfib(n-1) + nfib(n-2) + 1 ;
 return(n) ;
}

int sieve_number ; /* state variable for sieve */
int every_other_number ; /* state variable for
every_other */

int every_other(int n)
 { int newn ;
 newn = n + 2 ;
 return(newn);
 }

int filter(int n) /* returns truth flag */
 { int i ; /* loop counter */
 int success ; /* truth flag */
 success = TRUE ;
 i = 3 ;
 while (i < n)
 { if ((n % i) == 0)
 { success = FALSE ;
 break ; }
 i = every_other(i) ;
 }
 return(success);
}

Table 5-10. C program listings for comparison with TIGRE.

60 Chapter 5. TIGRE Performance

int sieve()
 { int newn ;
 int i ; /* loop counter */
 int success ; /* success flag */
 success = FALSE ;
 while (! success)
 { sieve_number = every_other(sieve_number) ;
 success = filter(sieve_number) ;
 }
 return(sieve_number);
 }

int nthprime(int n)
 { int newn;
 int i ; /* loop counter */
 every_other_number = 3 ;
 sieve_number = 1 ;
 if (n < 1)
 { newn = 2 ;
 return(newn); }
 for (i = 1 ; i <= n ; i++)
 { newn = sieve(); }
 return(newn);
 }

Table 5-10. (continued)

5.4. ANALYSIS OF PERFORMANCE 61

62 Chapter 5. TIGRE Performance

