
Chapter 1
Introduction

This chapter contains both an overview of the problem area to be
discussed and an overview of the structure of the rest of the book.

1.1. OVERVIEW OF THE PROBLEM AREA

Functional programming provides a new way of writing programs and
a new way of thinking about problem solving (Backus 1978). A specific
advantage of functional programs is the fact that they are easy to reason
about, since they can be viewed as mathematical specifications of
algorithms, and are therefore amenable to automatic verification tech-
niques. Also, there is a belief in some circles that functional programs
are easier to write than other programs. This is because functional
programming languages provide powerful higher-order composition
mechanisms which are not found in conventional imperative languages
such as C. Furthermore, the combination of these mentioned qualities
can lead to reliable software systems (Hughes 1984). Although the
foundations of functional programming have been known for some time
(Curry & Feys 1968, Landin 1966, Reynolds 1972), most of what we
know about the field has been discovered in the last ten years. There-
fore, the potential benefits of using functional programming techniques
are still largely unexplored.

Lazy evaluation (Henderson & Morris 1976, Freedman & Wise
1976) of functional programs allows the use of powerful programming
structures such as implicit coroutining and infinitely long lists. Unfor-
tunately, the power and flexibility of lazy evaluation has, in the past,
been associated with extreme inefficiency when executing programs. It
is common for programs to be 100 times slower in a lazy functional
language than in an imperative language such as C.* Because programs
written in these languages execute so slowly, it is difficult to build a
large software base to gain experience in using the languages. And,

1

* Actual comparisons will be given in a later chapter.

without a large software and user base, it will be difficult to gain insights
on the appropriateness of lazy functional programming languages for
solving real problems.

One important evaluation strategy for lazy functional program-
ming languages is graph reduction. Graph reduction involves convert-
ing the program to a lambda calculus expression (Barendregt 1981), and
then to a graph data structure. One method for implementing the graph
data structure is to translate the program to combinators (Curry & Feys
1968). A key feature of this method is that all variables are abstracted
from the program. The program is represented as a computation graph,
with instances of variables replaced by pointers to subgraphs which
compute values. Graphs are evaluated by repeatedly applying graph
transformations until the graph is irreducible. The irreducible final
graph is the result of the computation. In this scheme, the rewriting of
the graph data structure, also called combinator graph reduction, is the
method used to execute the program.

A great allure of combinator graph reduction is that it may provide
an automatic approach to parallel computation, since the available
parallelism of a program compiled to a graph is directly represented by
the graph structure (Peyton Jones 1987). Such parallelism tends to be
fine-grained, where each quantum of work available is small in size.
Overhead in managing resources and task scheduling can quickly
dominate the performance of a fine-grained parallelism system, so it is
important to find a scheme in which overhead is kept low to achieve
reasonable speedups.

Traditionally, it has been assumed that advanced programming
languages (and in particular functional programming languages) re-
quire radically different, non-vonNeumann architectures for efficient
execution. This book explores mapping functional programming lan-
guages onto conventional architectures using a combination of techni-
ques from the fields of computer architecture and implementation of
advanced programming languages.

The tools of the computer architect shed new light on the behavior
of this special class of programs. The results shown here suggest that
the advanced programming languages being explored by computer scien-
tists do not adhere to the normal expectations of computer architects, and
may eventually force a reevaluation of architectural tradeoffs in system
design. An important point of the findings presented here is that the
combination of architectural features required for efficiency may be
relatively inexpensive, yet omitted from even recent machines because
of relative unimportance for conventional programming language ex-
ecution.

2 Chapter 1. Introduction

1.2. ORGANIZATION OF THIS BOOK

The book examines existing methods of evaluating lazy functional
programs using combinator reduction techniques, implementation and
characterization of a means for accomplishing graph reduction on
uniprocessors, and analysis of the potential for special-purpose
hardware implementations.

Chapter 2 provides a background on functional programming
languages and existing implementation technology. The reader who is
not familiar with the field may wish to read Appendix A, which is a
tutorial on combinator graph reduction. Chapter 2 also contains a
summary of important previous work on the combinator reduction
approach to evaluating lazy functional programming languages.

Chapter 3 describes the TIGRE methodology for implementing
combinator graph reduction. The description is in the form of a progres-
sion of techniques which are added to a graph reduction mechanism
based on previously used methods. The general flow of the incremental
improvements starts with conventional graph reduction methods,
moves on to a fast interpretation scheme for combinator graphs, refines
the method to a direct execution scheme for combinator graphs, and then
discusses supercombinator compilation methods for improved perfor-
mance.

Chapter 4 describes the TIGRE abstract machine, which is used
to implement the graph reduction methodology described in Chapter 3.
TIGRE may be described in terms of an abstract architecture and
abstract assembly languages. These abstract definitions have been
mapped efficiently onto real languages and architectures, including
machine-independent C code and assembly language implementations
for the VAX family and the MIPS R2000 processor.

Chapter 5 gives the results of performance measurements of
TIGRE on a variety of platforms. These results are compared with
available results for other combinator reduction strategies and against
the performance of imperative languages.

Chapter 6 discusses architectural metrics for TIGRE executing on
the MIPS R2000 processor. The architectural metrics include a simula-
tion of cache behavior, combinator execution frequency, and various
dynamic metrics such as heap allocation statistics.

Chapter 7 explores the potential for special-purpose hardware to
yield further speed improvements. In order to maintain some basis in
reality, modifications to the MIPS R2000 architecture as implemented
in the DECstation 3100 platform are proposed, along with predicted
speed improvements.

1.2. ORGANIZATION OF THIS BOOK 3

Chapter 8 summarizes the results of the research, and suggests
areas for further investigation. While the TIGRE method of graph
reduction offers substantial performance improvements over several
other existing methods, more work in the areas of compiler technology
and parallel implementation is needed.

4 Chapter 1. Introduction

