
Representing Embedded System Sequence Diagrams As
A Formal Language

Elizabeth Latronico and Philip Koopman
Carnegie Mellon University

Electrical and Computer Engineering Department
D-202 Hamerschlag Hall, 5000 Forbes Avenue

Pittsburgh, PA 15213
beth@cmu.edu, koopman@cmu.edu

Abstract. Sequence Diagrams (SDs) have proven useful for describing
transaction-oriented systems, and can form a basis for creating statecharts.
However, distributed embedded systems require special support for branching,
state information, and composing SDs. Actors must traverse many SDs when
using a complex embedded system. Current techniques are insufficiently rich to
represent the behavior of real systems, such as elevators, without augmentation,
and cannot identify the correct SD to execute next from any given state of the
system. We propose the application of formal language theory to ensure that SDs
(which can be thought of as specifying a grammar) have sufficient information to
create statecharts (which implement the automata that recognize that grammar). A
promising approach for SD to statechart synthesis then involves `compiling` SDs
represented in an LL(1) grammar into statecharts, and permits us to bring the
wealth of formal language and compiler theory to bear on this problem area.

1 Introduction

 One of a designer’s toughest challenges is attaining the appropriate level of
abstraction. Include too little information, and a design is under-specified, often
resulting in an incorrect or incomplete implementation. Include too much information,
and the design is overly constrained or exceeds time-to-market allowances. Distributed,
embedded systems present particularly onerous design challenges, combining complex
behavior with a need for quick development cycles.
 The Unified Modeling Language (UML) supplies an approach to express
requirements and design decisions at various stages in the product development life
cycle. The ideal level of abstraction provides the minimum sufficient amount of
information required to create a set of correct, cohesive diagrams. UML offers two main
diagrams for modeling system behavior: sequence diagrams and statecharts. While
related, these diagrams often originate separately and serve diverse purposes. Sequence
diagrams (SDs) are easier for people to generate and discuss, while statecharts provide a
more powerful and thorough description of the behavior of a system. We present an
algorithm to ensure that sequence diagrams contain sufficient information to be
translated into statecharts. Specifically, this algorithm determines whether or not a set
of sequence diagrams produces deterministic statecharts. This allows a designer to start
with a skeletal structure and add information only when necessary. If automated, this
technique could relieve a large burden of manual consistency-checking.

 UML can be used to model a wide range of systems. To ensure that our results are
applicable to actual embedded systems, the problem space needs to be carefully defined.
Embedded systems may differ from the traditional transaction processing paradigm.
Three major differences include:

• Multiple initial conditions
Distributed, embedded systems typically run continuously and handle many
user requests concurrently. Therefore, the system may not necessarily be in the
same initial state for each user. Additionally, users may have disjoint objectives
and responsibilities, so a second user may finish what a first user started.

• Same user action evokes different system response
In transaction processing systems, there tends to be a one-to-one mapping from a
user request to a system response. Embedded systems often have a limited user
interface, so interface component functionality may depend on context.

• Timing sensitivity
Embedded system functionality may depend on temporal properties such as
duration, latency, and absolute time.

 Sequence diagrams may contain information besides objects and messages. Three
categories of additional information are presented, to show the scalability of the method
and to provide examples of situations where supplemental information is required.

• State
System history may affect present behavior. One example is a toggle power
switch. The switch turns the system on or off, depending on current system
state. Systems typically have a finite number of states.

• Data
System behavior may depend on the current value of a variable with effectively
infinite range. For example, in many elevators, selecting a floor will cause the
doors to close, unless the user selects the current floor - then the doors will open.

• Timing
Properties such as latency, duration, and absolute time may affect system
response. One example is a car radio, where buttons are held to set the station.

 In this paper, we explore how to use UML sequence diagrams to support the needs of
embedded systems designers. Section 2 reviews methods for composing sequence
diagrams that support flexible embedded systems modeling. Section 3 shows how
determining required information content can be represented as a grammar parsing
problem to guarantee correct, cohesive diagrams. A generic approach is described, with
supporting embedded systems examples incorporating state, data, and timing
information. Finally, the more commonly discussed transaction processing model is
revisited to illustrate system differences. Section 4 summarizes conclusions.

2 Terminology and Related Work
2.1 Scenarios

2.1.1 Sequence Diagrams and Message Sequence Charts
 A scenario describes a way to use a system to accomplish some function [5]. UML
supports two main ways of expressing scenarios: collaboration diagrams and sequence
diagrams. Sequence diagrams emphasize temporal ordering of events, whereas
collaboration diagrams focus on the structure of interactions between objects [7]. Khriss
et al. show how each may be readily translated into the other [7].
 We concentrate on sequence diagrams because they elucidate temporal and object
relation properties. As defined in the UML standard 1.3, a sequence diagram models
temporal and object relationships using two dimensions, vertical for time and horizontal
for objects [14]. Activity diagrams may also specify temporal properties, but typically
do not include objects. As statecharts are usually defined per object, sequence diagrams
are a more natural candidate for synthesis. The notation of sequence diagrams is based
on, and is highly similar to, the Message Sequence Chart standard [6].

2.1.2 Composition of Scenarios
 A crucial challenge in describing distributed embedded systems is the composition of
scenarios. In order to be adequately expressive, sequence diagrams must reflect the
structures of the programs they represent. In this paper, we survey approaches to
modeling execution structures and transfer of control, and select a method that lends
itself to embedded systems.
 Our first objective is to refine a model that utilizes sequential, conditional, iterative,
and concurrent execution. As many ideas exist, our task is to determine which are
appropriate for embedded systems. Hsia et al. [5] discuss a process for scenario analysis
that includes conditional branching. Somé et al. [12] present three ways of composing
scenarios: sequential, alternative, and parallel. Glinz [2] includes iteration as well.
Koskimies et al. [8] and Systä [13] present a tool that handles “algorithmic scenario
diagrams” - sequence diagrams with sequential, iterative, conditional and concurrent
behavior. We use elements of each, for a combined model that allows sequential,
conditional, iterative, and concurrent behavior.
 Our second objective is to model transfer of control through sequence diagram
composition. The main concern is where to annotate control information. One approach
is to include composition information in individual diagrams. Hitz and Kappel [4]
examine sequence diagram generation from use cases, and discuss the probe concept -
the insertion of a small scenario into a larger one at a specified juncture. Koskimies et al.
[8] present a similar method using sub-scenarios. A second approach is to use a separate
hierarchical diagram, instead of embedding control information in the constituent
diagrams. The Message Sequence Chart (MSC) standard specifies a separate diagram to
organize sub-diagrams [6]. Leue et al. [9] explore the usage of base MSCs and
high-level MSCs. The high-level MSC graph describes how to compose base MSC
graphs to obtain sequential, conditional, iterative, and concurrent execution. Li and
Lilius [10] present an additional example of a high-level MSC graph, and apply this

method to UML sequence diagrams to assess timing inconsistency. We use the
hierarchical diagram approach.

2.1.3 Finite State Machines and Statecharts
 Finite state automata describe the possible states of a system and transitions between
these states. Unfortunately, properties of complex systems such as concurrent execution
of components lead to extremely large state machines that challenge human
comprehension. Statecharts were proposed by Harel [3] to control state explosion
problems with finite state machines by introducing the concepts of hierarchy and
orthogonal execution, and are the basis for UML statecharts [14].

2.1.4 Statechart Synthesis
 The second challenge in describing distributed embedded systems is ensuring there is
sufficient information for correct, cohesive diagrams. Sequence diagrams are often
constructed first in the design life cycle; therefore, we addresses synthesis of statecharts
from sequence diagrams.
 Existing work has two shortcomings. First, sufficiency of information for generating
statecharts is not checked. Additional information is either absent or applied globally.
Our goal is to provide an approach by which a designer can include a minimum amount
of information, thereby reducing design time and guaranteeing a correct set of
statecharts. We present a methodology to verify sufficiency, by applying
well-established parsing theory.
 Second, systems with all three embedded system qualities of multiple initial
conditions, mapping identical user actions to different system responses, and timing
dependencies have not been scrutinized. Systems that lack one of these three qualities
generally do not require additional information to produce correct statecharts; therefore,
the sufficiency question seems to not have arisen.
 We present three embedded systems and show, by applying grammar parsing
techniques, that these embedded systems do require additional information to produce
correct statecharts. Additionally, we examine a transaction processing system, to
illustrate that additional information is not required.
 Prior work contains a number of suggestions as to what information sequence
diagrams should include to enable statechart synthesis. Information is used for various
purposes, but deterministic translation to statecharts has not been emphasized, and
information is globally annotated. Hsia et al. [5] give a regular grammar for scenarios in
order to construct a deterministic finite state machine. This grammar is similar to ours,
but information sufficiency is assumed, not proven. Other work has proposed additional
information, comprising three categories: state, data, and timing information. Douglass
[1] advocates incorporating state symbols to represent object state. Somé et al. [12] use
data pre-conditions and post-conditions to define possible scenario execution ordering.
Whittle and Schumann [15] discuss implications of repeated user actions as a
motivation for incorporating data pre-conditions and post-conditions. Koskimies et al.
[8] annotate sequence diagrams with assertions on data variables. Timing intervals
between messages are included by Li and Lilius [10]. Our examples examine these three

categories, exposing situations where additional information is needed for statechart
synthesis, and situations where it is not.
 A number of different systems have been explored and documented; however, these
systems lack the combination of multiple initial conditions, same user action evoking
different system responses, and timing criteria. Systems without one of these
characteristics often fail to manifest sufficiency issues.
 A library checkout system is explored by Glinz [2] and by Khriss et al. [7]. In [2],
scenarios have differing initial conditions, and system response depends on data
attributes. However, statecharts are constructed directly from an informal textual
description, not sequence diagrams. [7] synthesizes statecharts from UML
collaboration diagrams, but these diagrams have identical initial conditions, one-to-one
response mapping, and no timing criteria.
 The Automated Teller Machine (ATM) system is a common example, discussed by
Somé et al. [12], Whittle and Schumann [15], and Koskimies et al. [8]. [12] permits
timeouts and global timed transitions, but all scenarios share a single initial condition,
and user actions are mapped one-to-one with system responses (aside from
time-influenced transitions). Scenarios in [15] can have a one-to-many action-response
mapping, but have identical initial conditions and no timing restrictions. [8] approaches
the problem iteratively, generating partial statecharts from sequence diagrams and vice
versa. Different subscenarios may handle the same user request; however, there is a
single initial condition and timing information is not discussed. The methodology in [8]
is extended by Systä [13] for a File Dialog application with the same properties.
 We examine three embedded systems to provoke sufficiency questions, then apply our
methodology to a traditional transaction processing system to show that these systems
do not require additional information for sufficiency.

2.2 Sequence Diagram Composition

 The hierarchical graph approach used by the Message Sequence Chart community
 [6, 9, 10] explicitly represents composition information not shown in standard UML
sequence diagrams. Figure 1 shows a set of sequence diagrams for a television power
switch. TV1 and TV2 are regular sequence diagrams. The system has two objects - the
user and the TV. The user can send one message, power. The TV can send two
messages, turn_on and turn_off. TVmain expresses the relationships between TV1
and TV2. The triangle indicates a possible initial condition - the system may start out in

TV2

User TV

power

turn on

User TV

power

turn off

TV1

TV1 TV2

TVmain

 Figure 1 : Sequence diagrams for a television power switch

TV1 or TV2 . Arrows indicate legal compositions. TV1 and TV2 must alternate - the
sequence TV1 TV1 is not allowed. Without TVmain , composition information is absent.
 Embedded system statechart synthesis typically requires more information than solely
the messages an object receives. Three cases will be examined where sequence
diagrams can be extended using state, data, and timing information to generate a
deterministic grammar. Customary representations include state symbols, pre-
conditions and post-conditions, and timing marks. Finally, the widely used ATM
example will be reviewed to show that the ATM sequence diagrams generate a
deterministic grammar without additional information regarding state, data, or timing.

3 Diagram Content
3.1 Deterministic Grammar

 The main challenge in statechart synthesis is generating correct statecharts from a set
of sequence diagrams with minimum sufficient information. The statecharts do not
necessarily need to be complete, but they should give an unambiguous representation of
the system. Rather than attempt an exhaustive annotation, a more achievable goal is to
include the minimum sufficient amount of information.
 Correct statechart synthesis from sequence diagrams with minimal annotation can be
posed as a context-free grammar parsing problem. A similar approach was used by Hsia
et al. [5] for text-based scenarios. To identify information gaps, we locate sequence
diagram messages that translate into non-deterministic transitions in statecharts, as
non-deterministic transitions often indicate information deficiencies. Standard methods
for removing non-determinism, such as left factoring [11], and for implementing
non-determinism, such as backtracking [11], cannot always be applied to embedded
system sequence charts because messages may have global side effects on the external
environment. Therefore, the only guaranteed correct approach is to ensure that
sequence diagrams form an LL(1) grammar without left factoring or backtracking.
 The context-free grammar for a sequence diagram may be defined as a set of
message-response pairs. Given a message or set of messages, an object must produce a
unique response or set of responses. An SD can be defined as a series of
message-response events:

SD messageresponse SD | (1)

where indicates the absence of a message or response. The goal is to construct an SD
with a context-free grammar of the form

message response ResponseA | ResponseB | ResponseC … (2)

where , and are distinct sequences of messages. A grammar of the form

message response ResponseA | ResponseB (3)

does not produce a deterministic state machine. Upon receipt of , the object does not
know whether to execute ResponseA or ResponseB. The sequence diagram set for
this grammar is shown in Figure 2. The system may start in either Seq1 or Seq2, and
execute any combination of Seq1 and Seq2.

 Left factoring transforms the grammar in (3) to

message response A’
A’ ResponseA | ResponseB

(4)

 This is equivalent to the sequence diagram set given in Figure 3. The sequence
diagram Seqfactor is executed, followed by either Seq1 or Seq2. However, this only
changes the composition of the diagrams. The problem of whether to execute
ResponseA or ResponseB after the receipt of remains.

 The backtracking method picks a random response to be executed, and backtracks if
the incorrect response was selected. Say the grammar is

message response ResponseA | ResponseB (5)

Seq2

User Object

Response A

User Object

Response B

Seq1

Seq1 Seq2

Seqmain

Figure 2 : Sequence diagrams for a generic non-deterministic grammar

Seq2

User Object

Response A

User Object

Response B

Seq1
Seq1 Seq2

SeqmainUser Object

Seqfactor

Seqfactor

Figure 3 : Left-factored sequence diagrams for a generic non-deterministic grammar

 Upon receipt of , it is unclear whether ResponseA or ResponseB is the correct
behavior. Suppose ResponseA is randomly selected. The next message is .
ResponseA was clearly incorrect, so the system backtracks and chooses ResponseB
instead. However, in many real-time embedded systems, responses cannot be undone.
For example, a microwave oven cannot undo burning popcorn, and an airbag cannot
undo triggering its pyrotechnic charge. A greater difficulty emerges in scenarios where
it is impossible to select a correct response based on messages alone. For instance, if
is the only message the user can generate, no amplifying information can be acquired;
thus, the correct choice will never be known without querying existing system state.

3.2 State Information

 A system may require state information to generate a deterministic set of statecharts.
State symbols, advocated by Douglass [1], provide a succinct annotation. (Pre-
conditions and post-conditions may alternatively be used, and are discussed in the next
section). Figure 1 shows the sequence diagram set for a television with a power button.
The television either turns on or off in response to the power message. Two initial
conditions are possible – the television may be on or off when the user enters the room.
 The grammar for the television is

SD messageresponse SD |
message response power turn_on | power turn_off

(6)

 This is of the form

message response turn_on | turn_off (7)

and therefore non-deterministic, per the discussion in section 3.1
 Adding state information can solve this non-determinism. The problem is that the state
of the television is not represented in either sequence diagram, so the response to the
power message is ambiguous. The television can be in two states, on or off. Appending
this information to the sequence diagrams yields Figure 4.

User TV

power

turn on

off

on

User TV

power

turn off

on

off

TV1 TV2

TV1 TV2

TVmain

Figure 4 : Sequence diagrams for a television power switch, including state information

 The new state information can be incorporated into the grammar. The template for
constructing the grammar is now

SD state message response SD |
state message response off power turn_on | on power turn_off

(8)

 This is of the form

message response turn_on | turn_off (9)

and is therefore deterministic.

3.3 Data

 Execution may depend on the value of a stored piece of data that is not directly
modeled as a state or transition. Pre-conditions/post-conditions and assertions have
been used to represent this additional information (e.g, [8, 13, 15]). Statements are
annotated, usually in a formal language, that specify interesting properties of variables.
 As an example, consider an elevator. The elevator contains a set of numbered car
buttons, one per floor, that passengers use to select a destination floor. While inside the
car, if a passenger pushes the button for the floor the elevator is already on, the doors will
open. This is required to allow passengers inside an idle elevator to disembark at the
current floor. If the passenger pushes the button for a floor other than the current floor,
the doors will close. This is a common, although not universal, set of elevator behaviors.
The sequence diagram set for car button behavior is shown in Figure 5.

 The grammar for this example is

SD message response SD |
message response push(f) close | push(f) open

(10)

 This is of the form

message response close | open (11)

and therefore non-deterministic.

User Car Button Door

push(f)

push(f)

open

User Car Button Door

push(f)

push(f)

close

Elevatpr1 Elevator2

Elevator1 Elevator2

Elevatormain

Figure 5 : Sequence diagrams for an elevator

 Pre-conditions for the messages can be added to make this example deterministic, as
shown in Figure 6. The crucial piece of missing information is that the response of the
elevator depends on the value of (f) in push(f) compared to the current state. The value
of (f) in push(f) can be either the same as the current floor or other than the current floor.

 The template for constructing the grammar with pre-conditions is

SD pre-condition message response SD |
pre-condition message response

(f == currentFloor) push(f) open | (f != currentFloor) push(f) close
(12)

 This is of the form

message response close | open (13)

and is deterministic.

3.4 Timing Information

 The response of an embedded system may depend on timing information, such as the
duration of the stimulus. Consider a car radio with a set of buttons to allow users to save
and switch to preferred stations. If the button is held for a short time, the radio will
change stations to the button’s preset station when the button is released. If the button is

User Car Button Door

push(f)

push(f)

open

User Car Button Door

push(f)

push(f)

close

Elevatpr1 Elevator2

Elevator1 Elevator2

Elevatormain

push(f : Floor)
precondition : f == CurrentFloor

push(f : Floor)
precondition : f != CurrentFloor

Figure 6 : Sequence diagrams for an elevator, including pre-conditions

User Button Radio

hold hold

change station

User Button Radio

hold hold

station set

Radio1 Radio2

Radio1 Radio2

Radiomain

release
release

Figure 7 : Sequence diagrams for a radio

held longer, the radio will save the current station as the value of the button. The basic
sequence charts for this system are given in Figure 7.
 The grammar for the car radio is

SD message response SD |
message response hold release change_station | hold station_set

(14)

 This is of the form

message response release change_station | station_set (15)

and therefore non-deterministic. At first glance, it may seem deterministic because of
the release message. However, assume the system receives the hold message.
Does it do nothing (waiting for release), or set the station?
 Timing information is needed to express which transition should be taken. Figure 8
illustrates the car radio sequence charts with timing information included.

 The template for constructing the grammar with timing information is

SD message duration response SD |
message duration response
hold (holdDuration < 2 seconds) release change_station |
hold (holdDuration reaches 2 seconds) station_set

(16)

 This is of the form

message response release change_station | station_set (17)

and is deterministic.

3.5 ATM example

 To demonstrate the distinction between embedded systems and transaction processing
systems, the classic Automated Teller Machine (ATM) example will be analyzed.
Whittle and Schumann [15] synthesize statecharts from a set of four scenarios for the

User Button Radio

hold hold

change station

User Button Radio

hold hold

station set

Radio1 Radio2

Radio1 Radio2

Radiomain

release release

[release - hold <
2 seconds] [hold == true for

2 seconds]

Figure 8 : Sequence diagrams for a radio, including timing information

ATM system. Figure 9 is the sequence diagram for the first scenario. (The complete set
of SDs can be found in [15]). Four objects exchange messages : the user, the ATM, the
consortium, and the bank. In this example, statecharts are generated for the ATM object
only. The scenarios share the same initial condition. We constructed grammar
descriptions for the set of diagrams, given in formulas 18-21. We will apply grammar
parsing to locate any non-determinism present.

SD message response SD |
messageresponse Display_main_screen |
Insert_card Request_password | Enter_password Verify_account |
Bad_account Bad_account_message Eject_card Request_take_card |
Take_card Display_main_screen

(18)

SD message response SD |
message response Display_main_screen |
Insert_card Request_password | Enter_password Verify_account |
Bad_password Request_password |
Cancel Canceled_message Eject_card | Take_card Display_main_screen

(19)

SD message response SD |
message response Display_main_screen |
Insert_card Request_password |
Cancel Canceled_message Eject_card Request_take_card |
Take_card Display_main_screen

(20)

User ATM Consortium

Insert card
Request password

Bank

Display main screen

Enter password
Verify account

Verify card with bank
Bad bank account

Bad account
Bad account message

Print receipt
Eject card

Request take card
Take card

Display main screen

Figure 9 : Interaction with an ATM (from Whittle and Schumann [15])

SD message response SD |
messageresponse Display_main_screen |
Insert_card Request_password | Enter_password Verify_account |
Cancel Canceled_message Eject_card Request_take_card |
Take_card Display_main_screen

(21)

 Table 1 lists all the message-response pairs observed in the grammar for the sequence
diagram set.

 Note that each incoming message produces a unique set of system responses, with the
exception of Cancel. In the second SD grammar (19), Cancel evokes
Canceled_message and Eject_card. In the third and fourth SD grammars, (20)
and (21), Cancel evokes Canceled_message, Eject_card, and
Request_take_card. Upon reflection, this is likely an omission in the second
sequence diagram, not a design decision.
 The Display_main_screen message occurs before the receipt of any user
messages, but does not cause non-determinism because the ATM has a single initial
condition. If multiple initial conditions existed, this would pose a problem. Whittle and
Schumann [15] discuss a permutation of SD1, where Insert_card is repeated.

Table 1 : Message-response pairs for the ATM system

Message ATM Response Used in SD#

 Display main screen All

Insert card Request password All

Bad account

Bad account message
Print receipt
Eject card
Request take card

SD1

Bad password Canceled message
Eject card

SD2

Cancel Canceled message
Eject card

SD2

Cancel
Canceled message
Eject card
Request take card

SD3, SD4

Take card Display main screen All

message response Insert_card | Insert_card Request_Password (22)

 This is non-deterministic and would mandate additional information for constructing
statecharts (which the authors provided).

4 Conclusions
 We have presented a methodology that guarantees sufficient sequence diagram
information to generate correct statecharts. We convert sequence diagrams to a
context-free grammar and apply parsing theory to locate non-deterministic behavior.
When state, data, and timing information are included in a grammar, being LL(1) seems
to be sufficient to guarantee determinism for the embedded systems we discussed. We
showed how this approach identified additional information needed to attain
deterministic behavior, and provided examples incorporating state, data, and timing
information. Finally, we discussed a transaction processing example to show that
transaction processing systems commonly used as examples tend to be more
deterministic than embedded control systems.
 We have also examined diagram composition and information content to assess
adequacy for embedded systems. We advocate hierarchical diagrams [6, 9, 10] as the
preferred format for sequence diagram composition for designing embedded systems.
Hierarchical diagrams work well for expressing sequential, conditional, iterative, and
concurrent execution of sequence diagrams common in embedded systems. Further,
they support multiple initial conditions, one-to-many action-response mapping and
timing dependencies.

Acknowledgements
 This research is supported by the General Motors Satellite Research Lab at Carnegie
Mellon University, Intel and the United States Department of Defense (NDSEG/ONR).
Additionally, this paper would not have been possible without the scrutiny and guidance
of John DeVale.

References
[1] Douglass, B. Doing Hard Time. Addison-Wesley, 1999.
[2] Glinz, M. An Integrated Formal Model of Scenarios Based on Statecharts. In

Proceedings of the 5th European Software Engineering Conference (ESEC 95),
Sitges, Spain, 1995, pp. 254-271.

[3] Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, vol.8, no.3, 1987, pp. 231-274.

[4] Hitz, M., and G. Kappel. Developing with UML - Some Pitfalls and Workarounds.
UML ‘98 - The Unified Modeling Language, Lecture Notes in Computer Science 1618,
Springer-Verlag, 1999, pp. 9-20.

[5] Hsia, P. et al. Formal Approach to Scenario Analysis. IEEE Software, vol.11, no.2,
1994, pp. 33-41.

[6] ITU-T. Recommendation Z.120. ITU - Telecommunication Standardization
Sector, Geneva, Switzerland, May 1996.

[7] Khriss, I., M. Elkoutbi, and R. Keller. Automating the Synthesis of UML
StateChart Diagrams from Multiple Collaboration Diagrams. UML ‘98 - The Unified
Modeling Language, Lecture Notes in Computer Science 1618, Springer-Verlag, 1999, pp.
132-147.

[8] Koskimies, K., T. Systä, J. Tuomi, and T. Männistö. Automated Support for
Modeling OO Software. IEEE Software, vol.15, no.1, 1998, pp. 87-94.

[9] Leue, S., L. Mehrmann, and M. Rezai. Synthesizing Software Architecture
Descriptions from Message Sequence Chart Specifications. In Proceedings of the
13th IEEE International Conference on Automated Software Engineering, Honolulu,
Hawaii, 1998, pp. 192-195.

[10]Li, X. and J. Lilius. Checking Compositions of UML Sequence Diagrams for
Timing Inconsistency. In Proceedings of the Seventh Asia-Pacific Software Engineering
Conference (APSEC 2000), Singapore, 2000, pp. 154-161.

[11]Louden, K. Compiler Construction : Principles and Practice. PWS Publishing
Company, 1997.

[12]Somé, S., R. Dssouli, and J. Vaucher. From Scenarios to Timed Automata:
Building Specifications from User Requirements. In Proceedings of the 1995
Asia-Pacific Software Engineering Conference, Australia, 1995, pp. 48-57.

[13]Systä, T. Incremental Construction of Dynamic Models for Object-Oriented
Software Systems. Journal of Object-Oriented Programming, vol.13, no.5, 2000, pp.
18-27.

[14]Unified Modeling Language Specification, Version 1.3, 1999. Available from the
Object Management Group. http://www.omg.com.

[15]Whittle, J., and J. Schumann. Generating Statechart Designs from Scenarios. In
Proceedings of the 2000 International Conference on Software Engineering (ICSE 2000),
Limerick, Ireland, 2000, pp. 314.

