
Improving System Dependability with Functional Alternatives

Abstract

We present the concept of alternative functionality for
improving dependability in distributed embedded systems.
Alternative functionality is a mechanism that complements
traditional performability and graceful degradation
techniques. Rather than providing reduced performance
or functionality when components or subsystems fail,
alternative functionality replaces a lost feature with
another existing system function that can substitute for the
lost service. This can provide improved system
dependability when it is not feasible to allocate dedicated
backup systems for fault tolerance. We show how
alternative functionality can be applied to enhance system
dependability with a case study of an elevator control
system. In simulation, an elevator design that implemented
alternative functionality in some of its subsystems tolerated
many combinations of component failures that caused
system failures in the original design.

1. Introduction

Many distributed embedded computer systems have
tight cost constraints that make traditional dependability
techniques infeasible. Typically, an embedded system de-
sign uses its available system resources to provide maxi-
mum features and functionality. Adding additional
capacity for fault tolerance mechanisms such as dual or tri-
plex modular redundancy often cannot be justified. Prod-
ucts are marketed based on features, and many customers
will not perceive enough value added to the system for the
additional cost of redundancy, even though it may produce
a more dependable product. However, our society has be-
come increasingly dependent on complex, distributed em-
bedded systems. Despite the fact that they are sold based
on their features, these systems must continually provide
dependable service in the face of harsh environmental con-
ditions, partial system failures or loss of resources, or hu-
man error. People will not tolerate products that do not
meet a certain level of dependability, even though they will
usually only pay increased costs for additional features.

Designing low cost, dependable distributed embedded
systems is difficult. Designs must incorporate mechanisms
for dependability, while not sacrificing resources needed
for functional and performance requirements. Specifying

degraded operating modes that the system can provide in
the event of component or subsystem failures is a popular
approach. Often a distributed embedded system, after suf-
fering some partial failures, may have enough resources to
satisfy some or all of its primary requirements, even though
it cannot provide its complete functionality. However,
specifying and designing degraded operating modes for all
possible combinations of failures becomes exponentially
complex with the number of failures that must be handled.

We introduce the concept of alternative functionality as
a mechanism for specifying and achieving degraded modes
and improved dependability with limited system resources.
For example, consider a vehicle navigation system that pro-
vides turn-by-turn directions to the driver. The system will
have a prioritized list of high-level requirements (typically
referred to as marketing requirements) that define the sys-
tem's services and quality requirements, but usually do not
specify system functionality. We call these requirements
system objectives. Objectives for the navigation system
might include (i) giving the driver timely and accurate turn-
ing cues, (ii) providing the driver with accurate situational
awareness in terms of current location and time or distance
to the next turn, and (iii) indicating how close the driver is
to his or her destination. We define primary objectives as a
minimum set of requirements the system must satisfy to be
considered “working.” Objectives that can be set aside in
degraded operating modes due to failures are considered
auxiliary objectives. The system can potentially lose the
ability to satisfy all of its auxiliary objectives and still be a
working system (albeit a degraded one) as long as it contin-
ues to fulfill its primary objectives. In the navigation sys-
tem, objective (i) may be considered primary, and
objectives (ii) and (iii) may be considered auxiliary.

A system objective will be satisfied by reaching some
minimum defined threshold of service for that objective.
This threshold may be defined qualitatively and/or quanti-
tatively. In the navigation system, objective (i) may be sat-
isfied by giving accurate turning cues within a minimum
defined deadline, and objectives (ii) and (iii) may be satis-
fied by providing a minimum level of accuracy in time, lo-
cation and distance measurements. Most systems will be
designed to optimize features and functionality with their
available resources, and thus will exceed their minimum re-
quirements for system objectives when fully working.

System objectives are further refined into more detailed
functional requirements that specify all of the system's fea-

Charles P. Shelton
Research and Technology Center

Robert Bosch Corporation
Pittsburgh, PA, USA
cshelton@ieee.org

Philip Koopman
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA
koopman@cmu.edu

koopman
Text Box
Preprint: The International Conference on Dependable Systems and Networks, DSN-2004.



tures. These requirements determine the system's imple-
mented functionality, where each feature specified should
satisfy a subset of system objectives. In our example navi-
gation system we specify three high level system features:
an LCD visual display that provides a map and location in-
formation, audio output that provides voice directions, and
the ability to provide turning hints by illuminating the turn
signal lights on the dash board. Each of these features can
satisfy the navigation system's objectives to some degree.
The visual display provides high quality service for objec-
tive (ii) with a map and text, can adequately satisfy objec-
tive (iii) by marking the destination on the map, but only
minimally satisfies objective (i) because turns may be diffi-
cult to see on the map. The voice directions provide high
quality service for objective (i), and can adequately satisfy
objectives (ii) and (iii) with periodic update messages, al-
though the audio cannot provide visual location informa-
tion. The ability to blink the turn signals for an upcoming
turn may minimally satisfy objective (i), can somewhat sat-
isfy objective (ii) by blinking the signals faster the closer
the car is to the next turn, but cannot readily satisfy objec-
tive (iii).

The features defined in the navigation system demon-
strate alternative functionality. Alternative functionality
can exploit the system's available features to provide some
system redundancy when failures occur without additional
redundant components. The display, audio, and turn signal
features are not equivalent and are not designed to provide
redundancy, but they satisfy overlapping system objectives.
The components that implement each of the three system
features satisfy separate functional requirements and com-
bine to provide high quality service for all of the system's
objectives. However, the failure of components that imple-
ment one feature can be partially compensated by the re-
maining available features, despite the fact that they were
not originally designed to serve as redundant backups. The
complete system should provide all three features, but the
failure of one or two does not necessarily mean the system
can no longer satisfy its primary objective. Clearly the sys-
tem is in a degraded mode when one or two of the three fea-
tures has failed, but such a mode is better than shutting the
system down, because the system's primary objective can
still be minimally satisfied.

Alternative functionality identifies sets of functions in
the system that can satisfy the same objectives, possibly
with different levels of service, rather than allocating sets of
redundant components that provide identical functionality.
When the system loses a function that satisfied a primary
objective due to a component or subsystem failure, a func-
tion that was originally installed to fulfill a different pri-
mary or an auxiliary objective may be substituted if it can
also satisfy that primary objective, perhaps at a lower level
of service. This may result in a reduction of service for the
substitute function's original main objective, but this is of-
ten preferable to a system failure.

Our view is that alternative functionality is a generaliza-
tion of redundancy mechanisms. Traditional brute force re-
dundancy, where identical components are duplicated, are
simply identical functional alternatives. Analytic or algo-

rithmic redundancy, where multiple algorithms provide
similar functionality, are functional alternatives that have
the same functionality with different implementations. In
general, functional alternatives may be subsystems or com-
ponents designed to provide distinct system features, but
can also be used to compensate for other subsystem or com-
ponent failures when they occur.

We present an initial technique for evaluating a system
architecture to identify where functional alternatives, and
other redundancy mechanisms, may be applied. We take a
bottom-up approach that evaluates the functions imple-
mented in the architecture to identify functional alterna-
tives. We present techniques for evaluating how functional
alternatives affect the utility of a system, identifying com-
ponent or subsystem “dependability bottlenecks” that can
benefit from alternative functionality, and validating that
the implementation of functional alternatives will satisfy
system objectives as predicted by the analysis. We demon-
strate the applicability of our approach with a case study of
an elevator control system design.

This paper is organized as follows. Section 2 identifies
related work. Section 3 describes the system model we
have developed as a basis for our analysis. Section 4 de-
scribes our techniques for analyzing and applying alterna-
tive functionality in a system architecture. Section 5 gives
the results of our elevator control system case study. Fi-
nally, Section 6 concludes the paper.

2. Related work

Our work on alternative functionality is closely related
to survivability, performability and graceful degradation.
Survivability [5, 6] is a property of dependability that has
been proposed to define explicitly how systems degrade
functionality in the presence of failures. Researchers in
survivability have taken a top-down approach that focuses
on specifying all necessary degraded operating modes up
front and designing the system to provide those modes in
the corresponding failure scenarios. Thus, a survivability
specification may provide multiple sets of functional re-
quirements that each satisfy a different subset of system ob-
jectives. Each set of requirements must minimally fulfill all
primary objectives, but differs in which auxiliary objec-
tives it supports, and at what level. Each degraded operat-
ing mode maps to a different set of functional requirements
and can satisfy a different set of objectives. If the system
must tolerate a large number of failure modes, the surviv-
ability specification will become increasingly complex, es-
pecially if all combinations of failure modes must be
considered. Current survivability research has focused on
large-scale information systems rather than embedded sys-
tems, and thus far does not address scalability issues.

Performability [7, 8] combines system performance and
reliability measures into a single metric. Performability
models have focused mainly on hardware performance and
failures rather than software, and have typically not consid-
ered changes in system functionality. Performability tech-
niques have traditionally focused on trading performance



for reliability. If the system cannot include redundant
backup components that provide full functionality for criti-
cal subsystems, redundant components that consume fewer
resources but satisfy a subset of requirements are designed
into the system. In contrast, alternative functionality fo-
cuses on tolerating failures not with a redundant backup,
but by relying on another component or subsystem that pro-
vides an alternative function. The system is in a degraded
operating mode, but the degradation is a change in func-
tionality rather than a loss of performance.

Researchers in dependable distributed systems define
graceful degradation as a combination of performability
and real-time quality of service [9, 13, 19]. Real-time qual-
ity of service specifications define levels of performance
that the system can maintain given available system re-
sources. As resources are lost, system performance will de-
grade and some system services may be stopped to provide
resources for other services that are mission-critical. How-
ever, this view of graceful degradation primarily deals with
system hardware resources such as network bandwidth or
processor utilization, and focuses on the effects of timing
faults and resource overload faults. Our main focus is on
how changes in system functionality can compensate for
component and subsystem failures.

3. System model

Our system model is not the primary focus of this paper
and is described briefly here. More information on the de-
tails of our model is available in [15] and [16]. The model
is based on the system's software architecture. Since we fo-
cus on real-time distributed embedded systems, we make
several assumptions about the system’s organization and
fault model. Such systems are often composed of autono-
mous periodic tasks (e.g. reading a sensor value, updating a
controller output) that only communicate via state variables
(e.g. sensor data values, control system parameters, actua-
tor command values). Examples of such systems include
automotive and avionics control systems. Therefore our
model of communication among software components is
based on data flow rather than control flow, and assumes a
fault-tolerant, broadcast network. Components in the sys-
tem can be sensors, actuators, or software components.
Functional alternatives may be represented by multiple sets
of software components or subsystems.

Our system fault model uses the traditional assumption
that individual components will be fail-fast and fail-silent,
which is best practice for distributed embedded systems.
All faults in our model thus manifest themselves as the loss
of outputs from failed components. The loss of a failed
component’s outputs enables the other components in the
system to detect the component’s failure, and prevents an
error from propagating through the rest of the system. Soft-
ware components either provide their outputs to the system
or do not. Hardware component failures cause the loss of
all software components hosted on that node. Network fail-
ures can be modeled as a loss of inputs and outputs between
distributed components.

Our system model for specifying functional alternatives
is based on identifying the relative utility of all possible
valid system component configurations. Overall system
utility may be a combination of functionality, performance,
and dependability properties, based on the system's primary
and auxiliary objectives. For a system that is a set of N soft-
ware components, sensors, and actuators, the total possible
system configurations are represented by the system’s
power set. Thus, there are 2N possible system configura-
tions. If we were to specify the relative utility values of
each of these 2N configurations, then we could evaluate the
effect of redundancy and functional alternatives on system
utility based on the utility differences among different soft-
ware configurations.

The effort required to specify the system utility function
grows exponentially with the number of components in the
system, and is clearly infeasible for more than a handful of
components. Typical distributed embedded systems may
contain hundreds or thousands of software components,
sensors, and actuators. However, our model enables com-
plete definition of the system utility function without hav-
ing to evaluate the relative utility of all 2N possible
configurations. Our model splits the system into orthogo-
nal software and hardware views so that we can specify the
utility of all software configurations without considering
the hardware system, but still see the effects of hardware re-
dundancy on the system's functional alternatives.

We focus our analysis on the software view of the model
because this view identifies all possible software configu-
rations, the system utility function, and the sets of func-
tional alternatives in the system. In the software view, the
software architecture is a data flow graph that shows the de-
pendencies and communication links among software com-
ponents. In this graph, vertices represent software
components, sensors, and actuators, and edges represent
system variables. System variables are an abstraction of the
input and output interfaces of the system's software compo-
nents. Feature subsets represent logical subsystems of
components that output sets of system variables. Feature
subsets are not necessarily disjoint and can share compo-
nents across multiple subsets. Feature subset definitions
enable the system model's scalable analysis because they
encapsulate subsets of components to reduce the complex-
ity of the system utility function. Feature subsets may also
represent functional alternatives.

We have applied this model to several distributed em-
bedded system software architectures, including the eleva-
tor case study described in this paper, a robot that performs
autonomous navigation, and an example automotive navi-
gation system described in [10]. Each of these systems had
at least 40 components, which means there were at least 240

= 1.1 * 1012 possible system configurations to be consid-
ered for the system utility function. Using our system
model, we were able to completely specify the system util-
ity function by evaluating a total of fewer than 450 feature
subset configurations in each system. This was possible
with two key insights gained from our model. The first in-
sight was that dependencies among components due to data
flow in the architecture greatly reduced the number of valid



configurations that must be considered. In the systems we
evaluated, over 90% of the total possible configurations of
the system were invalid because missing components broke
data flow from sensors to actuators necessary for function-
ality. The second insight was that we could use the feature
subset definitions to form a hierarchical structure that en-
abled us to calculate system utility based on feature subset
component configurations rather than a flat system compo-
nent configuration. Since feature subsets generally had sig-
nificantly fewer components than the entire system, this
reduced the number of configurations to be manually eval-
uated. We used this model to aid our analysis of the eleva-
tor system and identify where functional alternatives could
be applied to achieve dependability improvements.

4. Implementing functional alternatives

This section describes our approach for designing func-
tional alternatives, some initial techniques we have identi-
fied for applying them to a system architecture, and our
evaluation mechanism. The model we have developed
identifies all feature subsets in the system and the depend-
encies among them, which we use as a basis for identifying
functional alternatives. The model also enables us to evalu-
ate the relative utility of any configuration of failed compo-
nents in the system, which means we can determine
combinations of component or feature subset failures that
may cause greatly reduced system utility or a complete sys-
tem failure. The model alone does not provide insight on
how we should apply functional alternatives in the system
to maximize dependability, but it does give us a means to
evaluate design choices as to where we allocate resources
for functional alternatives or redundancy. We can also use
the model as a validation tool to ensure that the configura-
tions evaluated in the architecture model provide their
specified relative utility in the system implementation.

4.1. Designing functional alternatives

Alternative functionality encompasses many existing
redundancy mechanisms. Triplex modular hardware re-
dundancy [14], recovery blocks [12], and multi-version
software redundancy [1] are all examples of possible alter-
native functionality mechanisms that could be applied to a
system to improve dependability. However, each of these
techniques has a significant cost in terms of resources re-
quired in the system as well as design complexity.

Other functional alternatives may be implemented as
heterogeneous redundancy. Heterogeneous redundancy
can take many forms. One example is analytical redun-
dancy [11], where there may be several related sensors
available in the system. These sensors may monitor differ-
ent aspects of the environment that are physically related,
such that one sensor’s data can be synthesized by applying
a transform function to another sensor’s data. For example,
if a system has sensors that monitor temperature, pressure,
and volume of a gas, a software component can be designed
to implement a transform function to synthesize the output

of one sensor based on the readings of the other two. Thus,
one sensor failure could be tolerated with this transformer
component, without having to add redundant sensors.

The simplex architecture [2] is another technique that
can be used for implementing functional alternatives. It is a
control system architecture for using design diversity to im-
prove the reliability of a software control system. It explic-
itly defines tradeoffs between low-performance, more
reliable controllers and high performance controllers that
may contain more residual design defects. Rather than de-
velop multiple versions of software from the same specifi-
cation and with the same requirements as in traditional
multi-version software redundancy, the simplex architec-
ture requires at least two different control algorithms with
different specifications and requirements to be imple-
mented as separate software controllers. The simplex
method specifically targets each alternate algorithm to sat-
isfy different levels of system objectives: one focusing on
high reliability, and the other on high performance.

We can also improve the effectiveness of alternative
functionality on system dependability by designing indi-
vidual components (and feature subsets) to be robust to in-
put failures. If a component can tolerate the loss of a
system variable when all of its input sources have failed, it
may still provide reduced utility and prevent a system fail-
ure. This may not be possible in all situations, but we can
identify some guidelines that might help implement this de-
sign approach. One approach might be to initially specify
the component’s outputs to provide some “base level” util-
ity with a minimum of system variable inputs and a default
behavior. Then any other inputs that are available should
be treated by the component as “advice” that modifies the
default behavior in specific ways. This technique assumes
that received inputs will not be erroneous, which is compat-
ible with our fail-fast, fail-silent component fault model.

4.2. Applying functional alternatives

Each alternative functionality mechanism can poten-
tially improve system dependability by providing redun-
dant functions for satisfying primary system objectives.
However, it is not feasible to add alternative functionality
to every feature subset in the system. Each additional func-
tional alternative has increased design or resource costs.

Ideally, we would like to identify existing feature sub-
sets that may serve as functional alternatives for primary
system objectives with little or no modification. For exam-
ple, if one feature subset's output is semantically similar to
another, it may be a candidate for a functional alternative
with the addition of an adapter component to transform its
output to match the other feature subset's interface. This
process requires domain knowledge to recognize similar
interfaces across feature subsets and components. This has
the benefit of adding additional redundancy to the system
with little or no additional resources, but requires signifi-
cant analysis effort from the designer. Our model provides
a basis for this analysis with all of the feature subset inter-
faces identified.



There are several properties in the architecture that indi-
cate which parts of the system could best be augmented
with functional alternatives. For example, using the system
model, we can evaluate the utility of every configuration
with a single failed component or feature subset. If any of
these configurations are invalid (provide zero system util-
ity) we have identified a single point of failure, which could
benefit from a functional alternative mechanism.

Another approach to identifying where functional alter-
natives should be installed could be to analyze which sys-
tem variables are required inputs to a large number of
components in the system. The more components that re-
quire any one system variable as an input, the more impor-
tant that variable is to system utility. Therefore, we should
provide adapters to increase the number of components and
feature subsets that can output that system variable.

4.3. Evaluating the system implementation of
functional alternatives

In addition to using the model at design time to deter-
mine where functional alternatives should be applied in the
system, the model can also be used to validate whether or
not the system implementation can tolerate the component
failure configurations evaluated. In an ideal case a utility
model should perfectly reflect each component and feature
subset’s contribution to system utility. If we have a utility
metric that incorporates all of the desired system properties
defined in the system’s requirements, and these attributes
can be measured in the system implementation, then every
system configuration’s actual measured utility should equal
the utility predicted by the model. If we were to graph each
configuration’s utility from the model versus its measured
utility for all 2N configurations, the result should be a
straight line with a slope of 1 as shown in Figure 1. Unfor-
tunately, in general this ideal case is not possible. Many
system properties such as usability, maintainability, and de-
pendability cannot be readily quantified, and it is nontrivial

to combine these properties along with system functionality
and performance into a single utility metric.

Rather than focus on absolute utility measurements that
may be inaccurate, we can use the relative utility values of
system configurations to rank all 2N configurations in order
of increasing utility according to the model. Then we may
select a system property or set of properties such as perfor-
mance and reliability that may be measurable for the system
implementation, and use these measurements as a proxy for
a system utility metric. If we graph the system configura-
tions by comparing their utility values as predicted by the
model and their system property metrics that substitute for
system utility measurements, we expect a graph that may
not be linear, but will be monotonically increasing such that
configurations with higher utility values in the model will
have higher system property measurements. If there are
configurations that do not fit the curve in this graph (e.g.
configurations ranked as low utility that have unusually
high measured system properties or configurations ranked
as high utility that have low measured system properties),
they may indicate either an inaccuracy in the system model,
a dependability problem in the system implementation, or a
violation of the model’s assumptions. We can apply this
analysis iteratively to both refine the system model and
identify dependability bottlenecks.

This analysis assumes that the utility values specified by
the system model for all 2N configurations are reasonably
accurate, and that the properties selected to measure the
system implementation are indicators of system utility as
defined by the system's objectives. The system designer
should choose properties for this metric that are both quan-
tifiable and general indicators of overall system utility.
This may be difficult depending on which properties are
considered important by the system requirements, and
whether these properties have tradeoffs with one another.
The current best practice for combining properties into a
single utility metric is multi-attribute utility theory [3, 4].

5. Case study: elevator system

To illustrate how we can apply alternative functionality,
we use a design of a relatively complex distributed elevator
control system. This system was designed by an engineer
with industrial experience in elevator architecture (the sec-
ond author) and has been implemented in a discrete event
simulator written in Java as a course project for several se-
mesters. Since we have a complete architectural specifica-
tion as well as an implementation, we can directly observe
how alternative functionality affects the system's ability to
tolerate combinations of component failures by performing
simulation experiments.

A requirements document specifies each system compo-
nent’s inputs and outputs, as well as its functional behavior.
Component interfaces are specified by a message dictio-
nary. We created a system model and used the analysis
techniques described in Section 4 to apply functional alter-
natives and improve the system's dependability. We then
ran a set of experiments on the elevator system using imple-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Predicted Model Utility

M
e

a
s

u
re

d
S

y
s

te
m

U
ti

li
ty

Invalid Configurations
(Zero Utility)

Configuration with
no failed components

(Maximum Utility)

Id
eal C

ase

Figure 1. Graph of ideal case of predicted model

utility vs. measured system utility.



mentations of both the original system architecture and the
new architecture with our alternative functionality im-
provements. We failed several combinations of compo-
nents and observed the effect on the system’s ability to
deliver passengers.

Figure 2 shows a high level view of the original elevator
system architecture, with software components, sensors,
and actuators allocated to distributed processors connected
by a fault tolerant broadcast network. The elevator consists
of a single car in a hoistway with access to a set number of
floors f. The car has two independent left and right doors
and door motors, a drive that can accelerate the car to two
speeds (fast and slow) in the hoistway, an emergency stop
brake for safety, and various buttons and lights for deter-
mining passenger requests and providing feedback [17].

5.1. Applying functional alternatives to the
elevator system

An elevator system’s most basic requirements are that it
protect passenger safety while using the system and trans-
port passengers to their destination floors without stranding
them or trapping them in the elevator. We specified these
requirements as the minimum primary objectives. Other
services typically associated with an elevator system, such
as providing appropriate passenger feedback, efficiently
processing passenger requests, and minimizing passenger
travel time, were considered auxiliary objectives. As long
as the elevator maintains passenger safety, and can (eventu-
ally) service all floors, it can still be considered “working.”

Based on the software components defined for this ele-

vator system, the safety, drive control, and door control
components are responsible for satisfying the elevator's pri-
mary objectives. However, these components are also de-
pendent on the outputs of other system components, such as
the dispatcher, button sensors, and floor sensors. We can
improve system dependability by using alternative func-
tionality to compensate for failure of these components to
preserve operation of the safety, drive control, and door
control components.

The safety monitor component requires all of its sensor
inputs to keep track of the elevator’s state and ensure that
the elevator does not violate its safety conditions. If a vio-
lation is detected, the safety monitor will trigger the emer-
gency brake and cause a complete shutdown of the elevator
system. This ensures that the primary objective of keeping
the passengers safe from injury is always satisfied. Unfor-
tunately there is no alternative functionality in the elevator
system that can satisfy this objective. Since safety is a criti-
cal feature of the system, a redundant component is appro-
priate for the safety monitor, but not for all of its sensor
inputs. A loss of any of the sensor inputs by the safety mon-
itor will by design trigger an emergency shut down.

The drive controller sends commands to the drive motor
to move the elevator to different floors and satisfies the pri-
mary objective of delivering passengers to desired floors.
It is dependent on the dispatcher component to provide the
elevator's next floor destination, and the dispatcher is in
turn dependent on the hall call and car call buttons to deter-
mine passenger requests. We can apply alternative func-
tionality to allow the drive controller to continue to
function in the event of dispatcher or button failures. We

Fault Tolerant
Broadcast Network

Safety Monitor
Controller and

Emergency Brake

Drive Motor and
Controller

Drive Speed
Sensor

{Left, Right} Door
Motors and
Controllers

Car Position
Indicator Controller

and Lights

{Left, Right}
Door Closed

Sensors

Car Position
Sensor

{Left, Right}
Door Open

Sensors

{Left, Right}
Door Reversal

Sensors

{Up, Down}
Hoistway Limit

Sensors

{Up, Down}
Lantern Controllers

and Lights

{1 … f} Hall Call
{Up, Down}

Button Sensors,
Controllers, and Lights

{1 … f} Car Call
Button Sensors,

Controllers, and Lights

Dispatcher
Controller

Car Weight
Sensor

{1 … f} AtFloor
Sensors

Sensor

Software Component

Actuator

Hardware Node

Network Connection

Figure 2. Original elevator system architecture.



designed a default behavior such that it periodically visits
every floor. When the dispatcher is working and providing
its outputs, the drive controller lets the dispatcher command
override its default behavior.

The drive controller also uses floor, drive speed, and car
position sensors to determine what commands to send to
the drive motor to travel in the hoistway. At the drive mo-
tor’s slow speed, the elevator only needs floor sensor data
to reliably stop level with a floor. In order to travel faster in
the hoistway, the drive controller uses the car position sen-
sor to calculate the appropriate stopping distance to deter-
mine when to decelerate from fast to slow before
approaching a destination floor. We can ensure that the
drive controller will tolerate car position sensor failures by
designing it to only command the drive motor to fast if the
car position sensor’s input is available, and to command the
drive motor to slow if the car position sensor's data is lost.
This sacrifices the auxiliary objective of minimizing pas-
senger travel time to guarantee the primary objective of de-
livering all passengers when the car position sensor fails.

We also redesigned the dispatcher component to imple-
ment alternative functionality when there are hall and car
call button failures. The dispatcher implements an algo-
rithm to process passenger requests efficiently by listening
to button inputs. When a button fails, the dispatcher peri-
odically synthesizes “faked” requests for floors. This guar-
antees that the primary objective of delivering all
passengers will be satisfied and that the dispatcher does not
“starve” floors on which all buttons have failed. This alter-
native functionality uses a trivial computation to substitute
for missing sensors. However, when failures occur, the
auxiliary objective of elevator performance may suffer be-
cause some floors may be unnecessarily visited when there
are no passengers desiring that floor.

5.2. Experimental setup

We performed a set of experiments using a discrete
event simulation of software components, sensors, actua-
tors and a real-time network with message delay that deliv-
ers broadcast periodic messages between system
components. Sensor and actuator objects interact with sim-
ulated passenger objects. Each simulation experiment
specifies a passenger profile that indicates how many pas-
sengers attempt to use the system, when they first arrive to
use the elevator, what floor they start at, and their intended
destination. The elevator system configuration is deter-
mined by setting which components are failed at the start of
the simulation.

We tested two hypotheses with these simulation experi-
ments. The first is that the changes we made to the elevator
system architecture would actually improve the system’s
ability to tolerate component failures. We measured this by
running simulations of both the original elevator architec-
ture and our improved architecture with functional alterna-
tives, and observing which system more efficiently
delivered passengers. The second hypothesis is that our
system model would accurately predict the relative utility

of system configurations, so that we could use it as a valida-
tion tool for the impact of functional alternatives on the sys-
tem's ability to tolerate component failures and continue to
satisfy primary objectives.

We selected a subset of the possible valid elevator sys-
tem configurations that represented a wide range of possi-
ble component failures. We tested several configurations in
which different subsets of car call and hall call buttons were
failed so that the elevator could not receive all passenger re-
quests. We also picked configurations in which the dis-
patcher component was failed so that no destination
commands were sent to the drive controller. There was a
total of 70 configurations tested for both the original and
gracefully degrading elevator architectures.

We also generated a set of passenger arrival profiles
with which to test each of the system configurations. Each
profile had 50 passengers, arriving randomly on different
floors. Elevator systems usually deal with three types of
traffic: two-way, down-peak, and up-peak [18]. Two-way
traffic assumes random passenger requests between floors.
Down-peak traffic is characterized by 90% of the requests
from passengers coming from a random start floor and trav-
eling to the first floor. Up-peak traffic is characterized by
90% of the requests from passengers coming from the first
floor and traveling to a random destination floor. The other
10% of passenger requests in both up-peak and down-peak
traffic profiles are random two-way requests. Our experi-
ments included 10 randomly generated passenger profiles
for each type of traffic for a total of 30 passenger tests. The
total number of simulations we ran were 2 elevator archi-
tectures x 70 configurations per elevator x 30 passenger
profiles per configuration = 4200. For all of our tests, the
elevator serviced seven floors.

Although this is a small number of configurations com-
pared to the total number of possible valid system configu-
rations, we can extrapolate these results to the space of
system configurations because the system is largely con-
structed of components that are replicated per floor. The
dispatcher, car call and hall call buttons are mainly respon-
sible for the elevator’s performance. These components are
strongly decoupled and provide equal utility contributions
to the system per floor. Simulating failures of each button
individually, as well as the dispatcher component, gives
enough data to determine how well the system tolerates
combinations of component failures.

5.3. Results

We compared the original and improved elevator sys-
tems by measuring how many passengers each system de-
livered during the simulation runs. A mean of the number
of passengers delivered for all 30 passenger profiles for
each configuration was used. Every configuration of the el-
evator with alternative functionality delivered 100% of its
passengers for each simulation test. The original elevator
system frequently stranded passengers both in the car and
on each floor waiting to be serviced when any of the car call
and hall call buttons were broken.



Figure 3 shows the average percentage of passengers de-
livered per simulation for each configuration of the original
elevator system. Only three configurations successfully
delivered all passengers in every simulation run. These
configurations corresponded to situations in which only the
passenger feedback lights were failed (car position indica-
tor in configuration ID #4, and the car lanterns and car posi-
tion indicator in configuration ID #5), and the
configuration in which no components were failed (config-
uration ID #69). Only one test out of all of the simulations
run for the other configurations managed, by chance, to de-
liver all 50 of its passengers (one of the two-way test pro-
files for configuration ID #30). Many of the configurations
could not deliver any passengers at all because the dis-
patcher failed.

These results show that our system augmented with
functional alternatives can tolerate combinations of compo-
nent failures that would prevent the original system from
satisfying its objectives. It is certainly more fault-tolerant
than the original system. However, we would like to evalu-
ate how well our system model accurately predicts the rela-
tive change in system utility due to component failures. We
can analyze the relative performance of each of the config-
urations of the system with functional alternatives to ob-
serve whether the system exhibits a gradual drop in utility
as components fail.

In general, system utility should be a measure of how
well the system fulfills its objectives, and could incorporate
many system properties such as performance, functionality,
and dependability. An elevator system’s performance ob-
jective is to transport people efficiently to their destina-
tions, minimizing how long passengers must wait for and
ride in the elevator. Therefore, in our simulation experi-
ments, we use the elevator’s average performance per pas-
senger as a proxy for measuring system utility. We use total
passenger wait time plus transit time as a relatively simple
but useful performance metric. In the data we examined,
using more complex performance metrics did not signifi-
cantly affect the relative order of the configurations tested.

We measured the average performance of each system
configuration for each simulation test, and grouped the re-
sults according to the type of passenger profile tested. If
our model accurately predicts system utility, we should see
configurations that have higher utility measures achieve
better average performance. Figures 4 and 5 graph the util-
ity of the tested system configurations versus the average
elevator performance per passenger per simulation for the
two-way and up-peak profile types. In these graphs, better
elevator performance translates to lower average passenger
delivery times, making the vertical axis reversed in direc-
tion from the ideal sketch of Figure 1. The configurations
on the horizontal axis are ordered by utility, so the mea-
sured average passenger delivery time should decrease as
utility increases to indicate better performance for configu-
rations that provide more utility.

For the random two-way traffic profiles (Figure 4), the
data indicates that the model approximates relative system
utility for the configurations tested. The configuration with
the most components failed and the least utility (ID #1) has
the longest average passenger delivery time at about 898
seconds per passenger. The configuration in which no
components have failed (ID #69) has the shortest time with
about 203 seconds per passenger. There is some variance in
the performance measurements for configurations with
similar utility values, but there is clearly a general trend of
better average performance for systems with higher utility
values. The configurations in the middle of the graph differ
by which combinations of car call and hall call buttons have
failed, and this can have a significant effect on elevator per-
formance depending on the particular passenger requests.

For the up-peak traffic profiles (Figure 5), the model
does not seem to be as accurate at predicting relative system
performance. Many configurations that supposedly have
higher utility values and more working components per-
form much worse than configurations with low utility val-
ues. After examining the data, we realized that this is due to

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Configuration ID #

A
v

e
ra

g
e

%
P

a
s

s
e

n
g

e
rs

D
e

li
v

e
re

d
p

e
r

S
im

u
la

ti
o

n

Failed Dispatcher and
Button Combinations

Failed Car Call and Hall Call
Button Combinations

Car Lanterns and Car Position Indicator
are the only failed components

No Components Failed

Figure 3. Average % passengers delivered for the

original elevator system.

0

100

200

300

400

500

600

700

800

900

1000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Configuration Utility ValuesA
v

e
ra

g
e

P
a

s
s

e
n

g
e

r
D

e
li

v
e

ry
T

im
e

(s
e

c
o

n
d

s
)

Config ID #1

Config ID #69

Two-Way Passenger Profiles

Figure 4. Average elevator performance vs. model

utility for two-way traffic profiles.



an unforseen interaction between the characteristics of the
up-peak traffic profiles and the alternative functionality
mechanisms implemented in the system. Since up-peak
traffic is characterized by 90% of the passengers arriving
on the first floor to use the elevator, the drive controller’s
default algorithm for visiting floors is actually better suited
for this traffic than the dispatcher’s normal algorithm, that
was optimized for two-way traffic.

The default drive controller starts at floor 1, stops at ev-
ery floor until it reaches the top floor, and then returns to the
first floor to repeat the process unless it receives an over-
ride destination from the dispatcher. For up-peak traffic,
this will be very efficient since most passengers arrive on
the first floor and exit on other floors. The dispatcher’s al-
gorithm will only perform reasonably well for up-peak traf-
fic if the first-floor hall call button is working. If the
first-floor hall call button is broken, the dispatcher will visit
floor 1 periodically, but it will not process the first floor as
frequently as it should for maximum performance, given
that 90% of the passengers arrive there. All of the extreme
outlying points in Figure 5 were traced to configurations in
which the dispatcher was working but the first-floor hall
call button was not. We encountered similar discrepancies
with the down-peak passenger profiles, and traced them to
the first-floor car call button.

Our utility specification gave equal weights to the utility
contributions from all hall call buttons. Our experiments
indicate that the utility model was relatively accurate for the
general case of random two-way elevator traffic patterns,
but was less accurate for the down-peak and up-peak traffic
profiles. This was partially due to the fact that efficiently
processing the up-peak and down-peak passenger profiles
heavily depends on processing the first-floor button re-
quests. When the first-floor hall call and car call buttons
fail, the system’s performance is severely degraded, and
our utility model does not account for this. These tests indi-
cate that additional hardware redundancy should be added

to these first-floor buttons since they are critical to system
performance for the up-peak and down-peak passenger
profiles. This result also indicates that a new system objec-
tive that specifies that up-peak and down-peak perfor-
mance should not be sacrificed to optimize two-way traffic
performance might be appropriate.

Figure 6 shows the results of experiments with redun-
dant first-floor buttons for the up-peak traffic profiles.
Once the first-floor buttons are removed from the possible
failure configurations, our model more closely matches the
performance of the elevator on the up-peak and down-peak
passenger profiles. Additionally the performance of nearly
all of the configurations significantly improves, as all of the
average passenger delivery times for all configurations are
less than 1,200 seconds, compared to the previous experi-
ments in which some configurations had average passenger
delivery times as bad as 6,000 seconds.

6. Conclusions

This paper introduces alternative functionality as a
mechanism for improving system dependability without re-
quiring dedicated backup redundancy. Alternative func-
tionality exploits the fact that some system functions that
provide different features may still satisfy the same primary
system objectives, although at different levels of service.
We view functional alternatives as a generalization of re-
dundancy mechanisms, with a focus on exploiting existing
functionality available in the system rather than adding
dedicated backup redundancy. Our system model identifies
subsystems that can represent functional alternatives and
enables analysis and evaluation of the architecture and im-
plemented functional alternatives for dependability im-
provements.

The experiments we performed on a simulated imple-
mentation of an elevator control system revealed that the

0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Configuration Utility Values

A
v

e
ra

g
e

P
a

s
s

e
n

g
e

r
D

e
li

v
e

ry
T

im
e

(s
e

c
o

n
d

s
)

Config ID #1 Config ID #69

Up-Peak Passenger Profiles

1000

2000

3000

4000

5000

6000

7000

Working Dispatcher with
Broken First-Floor Buttons

Figure 5. Average elevator performance vs. model

utility for up-peak traffic profiles.

Config ID #1

Config ID #69

Configuration Utility Values

A
v

e
ra

g
e

P
a

s
s

e
n

g
e

r
D

e
li

v
e

ry
T

im
e

(s
e

c
o

n
d

s
)

Up-Peak with Redundant First-Floor Buttons

0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Dispatcher Component failed;
These configurations use a default

simple dispatching algorithm

1000

2000

3000

4000

5000

6000

7000

Figure 6. Average elevator performance vs. model

utility for up-peak traffic profiles with redundant

first-floor buttons.



original elevator design could only tolerate failures in the
car position indicator and car lanterns without failing to de-
liver passengers. However, our elevator design with func-
tional alternatives could withstand a loss of up to 75% of
the system’s components and still provide service to all pas-
sengers, albeit at reduced performance. Every configura-
tion tested on the improved elevator delivered all
passengers in all tests, satisfying the elevator's primary ob-
jectives despite a loss of system functionality.

Additionally, when we compared experimental results
with our system utility model, we discovered that the
first-floor hall call and car call buttons will have a signifi-
cant impact on system performance for up-peak and
down-peak traffic profiles. This led to our decision to in-
corporate redundant components in only these buttons for a
significant utility improvement for many component fail-
ure combinations. This indicates that our model and evalu-
ation techniques are useful as a tool for ensuring that a
system implementation provides the level dependability
expected from the architecture design.

We did not explicitly design failure recovery scenarios
for every possible combination of component failures in the
system, but rather built the individual software components
to take advantage of alternative functionality. The individ-
ual components were designed to ignore optional input
variables when they were not available and follow a default
behavior. This is a fundamentally different approach than
brute-force redundancy or explicitly designing fault toler-
ance for all possible failure combinations. Properties of the
software architecture such as the component interfaces and
the identification and partitioning of system functionality
into logical subsystems seem to be key to effectively imple-
menting functional alternatives. This case study demon-
strates the potential of functional alternatives for improving
dependability in distributed embedded system designs.

7. Acknowledgments

This work was supported in part by the General Motors
Collaborative Research Laboratory at Carnegie Mellon
University, the High Dependability Computing Program
from NASA Ames cooperative agreement NCC-2-1298,
the Pennsylvania Infrastructure Technology Alliance, and
Lucent Technologies.

8. References

[1] Avizienis, A., “The N-version approach to fault-tolerant
software,” IEEE Transactions on Software Engineering,
SE-11(12), December 1985, pp. 1491-1501.

[2] Bodson , M., Lehoczky, J., et al., “Control reconfiguration
in the presence of software failures,” Proceedings of the
32nd IEEE Conference on Decision and Control, San
Antonio, TX, USA, December 1993, pp. 2284-2289.

[3] Keeney, R.L., Raiffa, H., Decisions with Multiple
Objectives: Preference and Value Tradeoffs, John Wiley &
Sons, New York, 1976.

[4] Keeney, R.L., Value-Focused Thinking: A Path to Creative
Decisionmaking, Harvard University Press, Cambridge,

MA, 1992.

[5] Knight, J.C., Sullivan, K.J., “On the Definition of
Survivability,” University of Virginia, Department of
Computer Science, Technical Report CS-TR-33-00, 2000.

[6] Knight, J.C., Strunk, E.A., Sullivan, K.J., “Towards a
Rigorous Definition of Information System Survivability,”
DISCEX 2003, Washington DC, April 2003.

[7] Meyer, J.F., “On Evaluating the Performability of
Degradable Computing Systems,” The Eighth Annual
International Conference on Fault-Tolerant Computing
(FTCS-8), Toulouse, France, June 1978, pp. 44-49.

[8] Meyer, J.F., Sanders, W.H., “Specification and
Construction of Performability Models,” Proceedings of
the Second International Workshop on Performability
Modeling of Computer and Communication Systems, Mont
Saint-Michel, France, June 1993.

[9] Mittal, A., Manimaran, G., Murthy, C.S.R., “Integrated
Dynamic Scheduling of Hard and QoS Degradable
Real-Time Tasks in Multiprocessor Systems,” Proceedings
of the Fifth International Conference on Real-Time
Computing Systems and Applications, Hiroshima, Japan,
October 1998, pp. 127-136.

[10] Nace, W., “Automatic Graceful Degradation for
Distributed Embedded Systems,” Ph.D. dissertation, Dept.
of Electrical And Computer Engineering, Carnegie Mellon
University, May 2002.

[11] Patton, R. J., Chen, J., “Advances in Fault Diagnosis Using
Analytical Redundancy,” IEE Colloquium on Plant
Optimisation for Profit (Integrated Operations
Management and Control), London, UK, January 1993, pp.
6/1 - 6/12.

[12] Randell, B., “System Structure for Software Fault
Tolerance,” IEEE Transactions on Software Engineering,
vol. SE-1, No. 2, June 1975, pp. 220-232.

[13] Ramanathan, P., “Graceful Degradation in Real-Time
Control Applications Using (m, k)-firm Guarantee,” 27th
Annual international Conferences on Fault-Tolerant
Computing, Seattle, WA, USA, June 1997, pp. 132-141.

[14] Rennels, D., “Fault-Tolerant Computing - Concepts and
Examples”, IEEE Transactions on Computers C-33, No.
12, December 1984, pp. 1116-1129.

[15] Shelton, C., Koopman, P., Nace, W., “A Framework for
Scalable Analysis and Design of System-wide Graceful
Degradation in Distributed Embedded Systems,” Eighth
IEEE International Workshop on Object-oriented
Real-time Dependable Systems (WORDS 2003),
Guadalajara, Mexico, January 2003.

[16] Shelton, C., “Scalable Graceful Degradation for Distributed
Embedded Systems,” Ph.D. dissertation, Dept. of Electrical
And Computer Engineering, Carnegie Mellon University,
August 2003.

[17] Shelton, C., Koopman, P., “Using Architectural Properties
to Model and Measure Graceful Degradation,” in
Architecting Dependable Systems, LNCS 2677, pp.
267-289, de Lemos, R. et al. (Eds.), Springer-Verlag,
Berlin, 2003.

[18] Strakosch, G.R., ed., The Vertical Transportation
Handbook, Third Edition, John Wiley & Sons, Inc., New
York, 1998.

[19] Verissimo, P., Rodrigues, L., Distributed Systems for
System Architects, Kluwer Academic Publishers, Boston,
2001.




