
Software Defect Masquerade Faults in Distributed Embedded Systems

1. Introduction

Distributed embedded systems often consist of multiple

nodes that communicate over a shared network. For such

systems, dependable message delivery among nodes is

crucial to overall system dependability. One threat to this

dependable message delivery is a software defect

masquerade fault, where a software defect causes one node

or process to send a message as having come from another

node or process. Unfortunately, many embedded system

designs do not address this particular failure mode. This

paper outlines what software defect masquerade faults are

and why they are often ignored in current embedded

systems. We also present preliminary research into

methods to prevent them in embedded system design.

2. What is Software Defect Masquerading?

A masquerade is “in authentication, the pretence by an

entity to be a different entity” [1]. In distributed embedded

systems, masquerading usually occurs when one node or

process sends a message across the embedded network that

only another node or process is authorized to send. This

usually occurs at the application level because resource

constraints in many distributed embedded systems require

the use of either a very simple operating system or none at

all. In these systems the messages are constructed and sent

directly by the application software.

In event-triggered networks that use a header field to

identify the message sender, a node or process may

masquerade by sending a message with a header field of

another node or process. Time-triggered networks do not

necessarily require headers if each node or process is

allocated a particular transmission slot. In these networks,

masquerading may occur if one node or process sends a

message in the transmission slot of another node or process.

Although masquerading in distributed embedded

systems can be intentional (i.e., a malicious attack from an

intruder), it may also result from a defect in the system

itself. In event-triggered systems, a software defect may

cause a message with the wrong header field to be sent; in

time-triggered systems a different software defect could

cause a node to transmit during the wrong time slot. The

result is a software defect masquerade fault.

3. Why is it Overlooked?

Traditionally, masquerading has been viewed as a

malicious attack, rather than a fault tolerance problem. [2]

looked at malicious masquerade attacks in open distributed

agent-based systems and suggest strong cryptography as a

method for preventing such attacks. Embedded systems,

however, are typically closed (i.e., their networks are not

accessible to outside intruders) and usually do not include

security methods for preventing malicious attacks. In fact,

most fault tolerance techniques used in embedded systems

not only fail to prevent masquerading, but also assume fault

models in which masquerade faults do not occur. For

example, the Byzantine fault model assumes that the

identity of each general is correct [3]. If software defects

within the system itself cause masquerading that

invalidates these assumptions, then the fault tolerance

technqiques may or may not work.

Even if software defect masquerade faults are included

in an embedded system design’s fault model, the current

methods for combating malicious masquerade attacks are

often not practical to implement in most embedded

systems. Authentication techniques such as strong digital

signatures, which are designed to withstand malicious

attacks and cryptanalysis, provide more security than is

required to protect against inadvertent software defect

masquerade faults, but require high processing and network

overhead. Cost-focused embedded system designs often do

not have enough resources for such strong cryptographic

protection. For example, the eight bit microcontrollers that

are prevalent in embedded systems are simply not designed

to accommodate the complicated computational algorithms

required to produce strong digital signatures.

4. How Can it be Prevented?

Although the assumption of a closed network is

reasonable for most distributed embedded systems,

nevertheless a dependable embedded system should

provide protection against masquerading caused by

Jennifer Morris, Philip Koopman
Carnegie Mellon University

{jenmorris, koopman}@cmu.edu



software defects. The challenge is to find a method that will

not add an unreasonable burden to product cost.

Many embedded systems developers attempt to mitigate

the effects of software defects by dividing the embedded

software into critical and non-critical components. Critical

software is developed with an expensive, rigorous design

process and is presumed to function correctly, whereas

non-critical software is developed with a less expensive,

less rigorous design process and is presumed to function

incorrectly (for the purposes of safety cases). This method

provides adequate protection against software defect

masquerade faults in the critical components, provided that

the critical and non-critical software are not transmitting

messages over the same network. On a shared network,

however, non-critical software masquerading of critical

nodes and processes may still occur.

One way to prevent software defect masquerade faults

on time-triggered networks is to use a bus guardian. Bus

guardians are modules connected to each node on the

network that prevent the node from sending messages

outside of its designated transmission slot. Even if a node

has a software defect that causes it to send messages in

another node’s time slot, the bus guardian will prevent the

message from being sent at the wrong time. Masquerading

may still occur if there is a defect in the bus guardian

(incorrect synchronization, guarding the wrong time slot,

etc.); however this method provides more protection than

relying solely on the node itself to transmit correctly.

Another possible solution is to create a lightweight

digital signature that uses relatively few system processing

and bandwidth resources, yet is powerful enough to prevent

software defect masquerade faults. Security research

traditionally focuses on creating strong cryptographic

protection; however, embedded systems, which have a

more relaxed fault model but more rigid resource

constraints, could benefit from lightweight cryptographic

techniques for non-malicious fault scenarios.

One preliminary technique we have developed is to use

a modified cyclic redundancy check (CRC) as a lightweight

digital signature. Many distributed embedded system

designs utilize an application-level CRC to verify message

integrity. Although CRC's are useful at providing

protection against random bit errors due to hardware

malfunction or environmental interference, a CRC in its

usual form has inadequate software defect masquerade

coverage. In most implementations, the same CRC

polynomial is used for multiple nodes on the network. For

example, an embedded network for automotive or rail

applications may use one or more CRC's for each message,

but every message will use the same CRC polynomial(s) to

generate the frame check sequence (FCS). If every node or

process uses the same polynomial to generate the CRC,

then the CRC calculated on a header field of one node or

process will be correct whether or not it was actually

generated by another node or process.

The CRC is converted into a lightweight digital

signature by using a different CRC polynomial or a

different seed value for each node to generate the CRC.

The seed value is the initial value of the CRC register used

in the calculation (all ones or all zeros in most CRC

implementations). By setting this number to a distinct

value for each node, the resulting CRC may be used as a

lightweight digital signature, ensuring that software from

any particular node cannot forge CRC values to

masquerade on a different node. Further details on this

method can be found in [4]

5. Ongoing Work

The ideas listed above are preliminary findings in

ongoing research into the problem of software defect

masquerade faults in distributed embedded systems. We

are currently analyzing a variety of embedded network

protocols, such as lightweight embedded IP, CAN, TTP,

and FlexRay, to see where software defect masquerade

faults may occur, as well as which attributes of the protocol

help prevent them. In cases where the network fails to

prevent software defect masquerade faults, we are

exploring protection mechanisms that can be used at other

system levels, such as the application level.

6. Acknowledgements

This work is supported in part by the General Motors

Collaborative Research Laboratory at Carnegie Mellon

University, Bombardier Transportation, and by the

Pennsylvania Infrastructure Technology Alliance. The

authors would also like to thank Bob DiSilvestro for his

loyal support.

7. References

[1] Longley, D., Shain, M., and Caelli, W. Information Security:

Dictionary of Concepts, Standards and Terms, Macmillan

Publishers Ltd., Basingstoke, 1992.

[2] Minsky, Y., van Renesse, R., Schneider, F.B., and Stoller. S.D.

“Cryptographic Support for Fault-Tolerant Distributed

Computing”. Proc. 7th. ACM SIGOPS European Workshop,

1996, pp. 109-114.

[3] Lamport, L., Shostak, R., and Pease, M. “The Byzantine

General’s Problem”, ACM Transactions of Programming

Languages and Systems,4,3, 1982, pp. 382-401.

[4] Morris, J. and Koopman, P. “Critical Message Integrity Over a

Shared Network”, International Conference on Fieldbus Systems

and their Applications, July 2003.


