
Learning product set models of fault triggers
in high-dimensional software interfaces

Paul Vernaza
pvernaza@nec-labs.com

David Guttendorf
dguttendorf@nrec.ri.cmu.edu

Michael Wagner
mwagner@cmu.edu

Philip Koopman
koopman@cmu.edu

Abstract— We propose a method for generating interpretable
descriptions of inputs that cause faults in high-dimensional
software interfaces. Our method models the set of fault-
triggering inputs as a Cartesian product and identifies this set
by actively querying the system under test. The active sampling
scheme is very efficient in the common case that few fields
in the interface are relevant to causing the fault. This scheme
also solves the problem of efficiently finding sufficient examples
to model rare faults, which is problematic for other learning-
based methods. Compared to other techniques, ours requires no
parameter turning or post-processing in order to produce useful
results. We analyze the method qualitatively, theoretically, and
empirically. An experimental evaluation demonstrates superior
performance and reliability compared to a basic decision tree
approach. We also briefly discuss how the method has assisted
in debugging a commercial autonomous ground vehicle system.

I. INTRODUCTION

Recent advances in robotics have cleared many technical
hurdles towards fielding complex, ubiquitous autonomous
systems such as robotic cars. Our work addresses a remaining
area that is critical and yet often overlooked: testing and de-
bugging these systems to ensure their robustness and safety.
Particularly, we aim to help a developer diagnose the cause of
a failure by producing a human-interpretable description of
the inputs that trigger the failure. This is especially important
when diagnosing bugs in complex autonomous systems with
high-dimensional software interfaces.

Figure 1 illustrates our general approach to testing
such a system, which is based on the robustness testing
paradigm [1]. Given an exposed interface to a system under
test (SUT), the interface is bombarded with a mixed stream
of nominal and exceptional inputs until a fault (software bug)
is triggered, resulting in a system failure. This approach is
highly effective at finding “edge cases” that cause system
failures due to non-robust handling of exceptional inputs such
as null pointers or NaN values. The stream of inputs can
then be reduced via a test case reduction step using delta
debugging [2] to isolate a minimal test case that reproduces

This work was performed while Paul Vernaza was affiliated with the
National Robotics Engineering Center (NREC), Carnegie Mellon University,
10 40th Street, Pittsburgh, PA 15201. David Guttendorf and Michael Wagner
are affiliated with the NREC. Philip Koopman is affiliated with the Electrical
and Computer Engineering Department, Carnegie Mellon University.

This work was supported by the Test Resource Management Center
(TRMC) Test and Evaluation / Science Technology (TE/ST) Program
through the U.S. Army Program Executive Office for Simulation, Training
and Instrumentation (PEO STRI) under Contract No. W900KK-11-C-0025,
Stress Testing for Autonomy Architectures (ASTAA).

This document is marked with Distribution Statement A; case number
2014-08-28. Approved for public release; distribution is unlimited.

Fig. 1: Illustration of typical robustness testing pipeline,
augmented with the novel generalization step proposed here.

the failure. For low-dimensional input spaces it is often easy
to determine the trigger for a system failure by inspection [3].
But fielded robotic systems often have high-dimensional
input spaces in which even a minimal test case may contain
hundreds of input parameter values—far too many for a
human to readily identify the trigger for the system failure.

Our technique was developed in the course of robustness
testing a prototype commercial autonomous vehicle system,
which we will refer to as SystemX. The drive-by-wire
subsystem of SystemX can be modeled as as a function
taking as input a vector of over 1000 fields; these fields
convey histories of information such as the state of the brakes
and the speed of the vehicle at various instants in time.
Suppose now that we find a fault-triggering input. Standard
practices would entail having the developer manually diag-
nose the cause of the failure from this input. Unfortunately,
the high input dimensionality in our case makes this approach
infeasible, since the developer can only guess as to which
of the thousands of fields are really relevant to the failure.
For example, perhaps the failure is triggered if and only
if we activate the brakes at time step 2 and then activate
the emergency stop at time step 3. Although every failure-
triggering input must possess these features, it is impossible
to identify these features as necessary and sufficient for the
failure given just a single input; how do we know the fault
is not triggered by activating the headlights at step 2 and
deactivating the windshield wipers at step 10, if these are

koopman
Typewritten Text
Preprint: International Conference on Intelligent Robots and Systems (IROS 2015)

also features of the observed fault-triggering input?
Fig. 1 illustrates our solution to this problem, which

consists of generalizing a single fault-triggering input. This
produces a set of fault-triggering inputs characterized by a
few, simple, human-interpretable rules that implicate specific
field-value assignments in triggering the bug. Even if these
rules are not perfect, they can serve as hints to lead a
developer towards the area of code that contains the bug.

The key idea of this paper is to represent the fault-
triggering inputs as a Cartesian product set. Product sets
provide a simple, interpretable model of independence that
allows us to efficiently sift through a very high-dimensional
input space to identify candidate trigger values for specific
fields. We achieve this via a novel algorithm that exactly
identifies an unknown product set from oracle queries, using
a number of queries scaling only logarithmically in the input
dimensionality and linearly in the number of relevant fields
The algorithm achieves this by singling out the rare queries
that are informative for fitting our model. Compared to a
naive approach based on decision trees, we will also see that
our approach produces reliable and repeatable results without
requiring any sort of parameter tuning or pruning heuristics.
Our approach is also efficient and easy to implement.

This work provides three main contributions. First, we
propose and justify the idea of interpretably generalizing
fault triggers via product set modeling. Next, we propose
and analyze a novel active learning algorithm to efficiently
identify product sets when the number of relevant fields is
small. Finally, we provide anecdotal and quantitative evi-
dence that our method is useful in the context of debugging
a fielded, complex, autonomous system.

II. METHOD

Before describing our method in detail, we now introduce
some key assumptions and notation. First, we assume access
to an oracle indicating whether a given input caused a
specific failure. In our case, the oracle may be obtained with
black-box techniques—such as runtime verification [4] or
crash detection—or white-box techniques, such as assertions
inside the SUT [5]. Each input is composed of a fixed set
of N fields, each of which takes on values in a finite set
X . Our rationale for assuming X is finite (even though the
field may admit continuous values) comes from robustness
testing, which makes the key observation that robustness
vulnerabilities can often be found by probing with a small
number of data-type-specific values. Supposing there are N
fields, each input is a vector ∈ XN , and the oracle is a
function XN → {0, 1}, such that the output is equal to one
iff. the input triggers a fault. Although it is straightforward
to extend the methods below to heterogeneous inputs of
the form ΠN

i=1Xi, we assume homogeneous input types
for notational simplicity. The assumption of determinism is
straightforward to relax, but we omit details for the sake of
brevity. We will denote by τ ⊂ XN the subset of fault-
triggering inputs; we will sometimes refer to inputs ∈ τ as
positive examples and inputs /∈ τ as negative examples. When
τ is assumed to be a product set, we will assume τ = ΠN

f=1τf

M1.BrakeApplied = true
M1.EStopButton = true
M2.BrakeApplied = false
M2.EStopButton = true

Message 1

Message 2

SUT

Oracle value = 1
(fault triggered)

one input consists of
assignments to 4 �elds

input vector

Fig. 2: Caricature illustrating basic assumptions and notation.

for some component sets τf ⊂ X . We will generally use
subscripts to index elements of Cartesian products.

Figure 2 illustrates our notation for a trivial example. Here,
we assume the SUT accepts a stream of network messages
as input; specifically, we assume the SUT is a deterministic
function of the last two messages sent to it over a network.
Each of these messages consists of a set of assignments to a
fixed set of variables or fields; in this case, these fields are
named BrakeApplied and EStopButton. In order to convert
this sequence of messages to a fixed-length input vector, we
simply concatenate the field values. The figure indicates that
the input vector {true, true, false, true} triggers a fault.

A. Product sets for fault diagnosis

A description of τ in the form of a product set is especially
useful for fault diagnosis in that it provides an intuitive means
for expressing which fields are relevant to triggering the fault,
resulting in system failure. If τ is a product set, then any field
f such that τf = X is irrelevant, since the value of f for a
particular input does not affect whether the fault is triggered.
We therefore identify all the components τf , discard those
such that τf = X , and communicate the rest to the developer.
This allows the developer to quickly focus on the fields and
values that are relevant to causing the failure, no matter how
many irrelevant fields may present in an input. Taking this
approach implies a model of independence that has proven
to be useful in practice for the systems we have studied.

Figure 4 shows examples of product sets generated for a
example failure in SystemX. The particular values included
are from the dictionary of valid and exceptional inputs used
for robustness testing. Normal robustness testing followed by
delta debugging identifies a minimal length set of function
calls that triggers a fault. Our algorithm then mutates the
baseline set of inputs to determine which fields actually
affect whether the fault is triggered. In this case, 10 relevant
fields were identified in an input composed of 1176 fields
spanning several function calls, along with the particular
values necessary to trigger the fault. This information was
sufficient to diagnose and fix the bug.

B. Identifying a product set with queries

The problem of identifying the product set is readily
treated as an active learning problem [6], in which the
learning algorithm has the ability to construct and label
arbitrary examples using a labeling oracle. Minimizing the

Function GetFieldTriggers(F , s)=
Input: a set of fields F , a seed s ∈ τ
Retrieve all values x such that the fault is triggered
when we substitute sf = x, ∀f ∈ F :
X := {x ∈ X | sx→F ∈ τ}
if |F| = 1 or X = X then

return {(f,X) | f ∈ F}
end
else
F0, F1 = EvenlySplitFields (F)
return GetFieldTriggers (F0, s)
∪ GetFieldTriggers (F1, s)

end
Algorithm 1: Hierarchical Product Set Learning (HPSL)

number of oracle queries is very desirable in our case because
evaluating the oracle involves running a complex system.

The algorithm is a search for fields and values that are
relevant to triggering the system failure. Assuming only
k fields are relevant and given a seed input s ∈ τ , Al-
gorithm 1 (Hierarchical Product Set Learning, or HPSL)
identifies the product set using only O(k|X | logN) samples.
Given a set of fields F and the baseline seed set of test
inputs s, GetFieldTriggers returns the elements of the
component sets τf , ∀f ∈ F . If all fields in the input set
F are irrelevant, it correctly returns X , ∀f ∈ F after |X |
oracle queries. Each query consists of setting sf to some
x ∈ X , ∀f ∈ F , denoted by sx→F , and checking whether
the resulting input triggers the fault (i.e., whether sx→F ∈ τ).
If at least one input field is relevant, GetFieldTriggers
detects this when sx→F fails to trigger the fault for some
x ∈ X . It then splits the input set in half, and recurses on
each half. When the set of input fields is a singleton {f}, sf
is mutated while fixing all other fields in order to identify τf .
A sample execution of the algorithm is depicted in Fig. 3.

C. Precision of approximate product sets

When τ is not a product set, Algorithm 1 can still be
used to obtain a product set τ̂ that approximates τ . In this
case, it is important to communicate to the developer that not
all inputs in τ̂ will actually trigger the fault. We therefore
estimate and report the classification precision along with
a product set. Specifically, we define the precision of a set
τ̂ to be the fraction of inputs in τ̂ that actually trigger the
fault (i.e., |τ̂ ∩ τ |/|τ̂ |). A high precision estimate gives us
confidence that our assumptions were valid, implying that
the product set probably contains most of the information
relevant to debugging the defect. The lower the precision, the
more likely it is that the product set lacks some important
bit of information: for example, the defect may actually
depend on some field that was not identified as relevant.
Figure 4 (discussed in detail later) shows an example of
this phenomenon: the product set in Fig. 4a is missing
two relevant fields, which manifests as reduced precision
compared to a product set that contains the missing fields.

Precision is easily estimated by sampling the product set.
We can also compute and report a confidence interval for the

true precision. Given T samples and a confidence level of
1− perr, the Hoeffding bound yields a confidence interval of
size ε =

√
−(log perr)/2T .

By contrast, the classification recall is not as important
for our purposes, as debugging generally favors the ability
to reliably reproduce a bug over finding most ways to trigger
the bug. Furthermore, once identified, a bug can be corrected,
and testing re-run to see if there are any residual bugs that
weren’t identified by the previous testing session.

III. DISCUSSION

In this section, we justify our method for our particular
application and describe its limitations.

1) Generative models for high-dimensional faults: Al-
though we have proposed an essentially generative approach,
it is natural to consider potential discriminative alternatives
that are also capable of producing interpretable rules, such
as decision trees. The discriminative approach is problematic
for several reasons. First, there is no natural distribution over
inputs with respect to which we might judge the performance
of a discriminative classifier; e.g., training a classifier on
a uniform distribution over inputs with only a very few
system failures favors labeling no input faulty, but label-
balancing the distribution is also difficult and unmotivated.
Devising heuristics to locate additional positive examples in
the vicinity of an identified system failure is a path that leads
back to our proposed approach.

2) Simplicity: As previously mentioned, decision trees are
an obvious alternative to our method, with the limitation
that they are only practical when system failures are dense
enough in the input space for random sampling to find a
sufficient number of examples to use as training data. In
our context, a decision tree can produce an arbitrary union
of product sets, and is therefore more expressive. However,
it can only be trained in a myopic way that is prone to
high variability in results. We prefer low variability, and are
willing to accept the cost of increased bias by adopting the
model of a single product set.

3) Lack of tuning parameters: A key advantage of our
method in practice is that it has no significant parameters to
tune. The only degree of freedom in our algorithm is in the
way the set of input fields is split upon recursion. In practice,
we have observed that choosing different splits has had no
effect on the results. By contrast, training a decision tree is
dependent on many parameters that have major effects on
the result, such as thresholds for various pruning heuristics.

4) Limitations of product set models: The ability of our
method to assist in fault diagnosis is largely determined by
how well the product set model fits the true structure of
the inputs and faults of a system. For example, suppose
that the inputs are interpreted by the SUT as the elements
of a covariance matrix, and a fault is triggered when the
matrix is not positive definite. Since the set of non-positive-
definite matrices cannot be expressed as a product set in the
matrix elements, our method would probably not be very
useful in diagnosing such a fault beyond possibly ruling out
parameters other than the matrix as fault triggers (which may

[1,8]

[1,2]

[3,4]

[1,4]

[5,8]

[1]

[2]

[3]

[4]

True set:

Seed:

Values: Recursion:

mutate

mutate

mutate

mutate

mutate

mutate

mutate

mutate

mutate

[10021210]

(a) Recursive structure of algorithm

Seed value 1 0 0 2 1 2 1 0 FAULT
Trial 1 0 0 0 0 0 0 0 0
Trial 2 0 0 0 0 1 2 1 0 FAULT
Trial 3 1 1 1 1 1 2 1 0
Trial 4 0 0 0 2 1 2 1 0 FAULT
Trial 5 1 1 0 2 1 2 1 0 FAULT
Trial 6 2 2 0 2 1 2 1 0
Trial 7 0 0 0 2 1 2 1 0 FAULT
Trial 8 1 0 0 2 1 2 1 0 FAULT
Trial 9 2 0 0 2 1 2 1 0
Trial 10 1 0 0 0 1 2 1 0 FAULT

(b) First 10 queries made by algorithm

Fig. 3: Execution of the algorithm for a sample input. Fig. 3a illustrates the recursive structure of the algorithm. Each
node indicates the components of the seed mutated in that call of the algorithm. Leaf nodes return the subset of identified
component sets corresponding to the mutated fields. Fig. 3b shows the actual query values chosen by the algorithm.

still be useful). This observation also applies to any case in
which the fault-triggering-inputs constitute a submanifold of
the input space. Another simple example of the limitation of
using a single product set is the case where a fault is triggered
if two fields are not equal to each other or have some other
dependency. In this case, our method may fail to identify
these fields as being relevant to triggering the fault. One
could envision considering pairs or triples of parameters as
potential candidates for chunking into tuples that are treated
as single fields for the purposes of the algorithm, but that
is beyond the scope of this paper. In general, our method is
most useful when applied to interfaces which have a large
number of relatively independent inputs.

IV. ANALYSIS

First, we prove that Algorithm 1 correctly identifies the
underlying product set, if the set of failure-inducing inputs
τ is indeed a product set.

Theorem 1: Suppose that there exist sets τ1, . . . , τN , τf ⊂
X , ∀f ∈ {1, . . . , N}, such that τ = ΠN

f=1τf . Then for all
s ∈ τ , F ⊂ {1, . . . , N}, f ∈ F , and X ⊂ X such that
(f,X) ∈ GetFieldTriggers(F , s), X = τf .

Proof: We proceed by induction on |F|. When |F| = 1,

X = {x | sx→F ∈ τ} (1)

= {x | sx→F ∈ ΠN
f=1τf} (2)

= {x | x ∈ τf , sg ∈ τg,∀g ∈ {1, . . . , N} \ {f}} (3)
= {x | x ∈ τf} (4)
= τf . (5)

Note that we used the assumption s ∈ τ to arrive at (4).
We now assume the conclusion ∀|F| < n and prove it for
|F| = n. We consider two cases. If X = X , then by the
same reasoning as above, we have X = X = {x | x ∈
τf ,∀f ∈ F} ⊂ τf ,∀f ∈ F . Since τf ⊂ X ⊂ τf , we
conclude X = τf = X,∀f ∈ F . Otherwise, if X 6= X , the
result trivially follows from the inductive hypothesis, since
both |F0| and |F1| < n.

We now give a bound on the sample complexity of
GetFieldTriggers showing that it is particularly effi-
cient when the number of relevant fields is much smaller
than the total number of fields, which we have observed is
a likely case for autonomous vehicle software.

Theorem 2: Suppose that τ is a product set with k relevant
fields. Then GetFieldTriggers({1, . . . , N}, ·) performs
no more than than 2k(2 + log2N)|X | oracle queries.

Proof: The result is obtained by bounding the total
number of recursive invocations of GetFieldTriggers
and multiplying this by the number of queries directly
performed by each invocation. First, note that each invocation
performs exactly |X | oracle queries. The total number of
recursive invocations can be bounded by the number of in-
vocations at each recursion depth multiplied by the maximum
recursion depth. Assuming ||F0| − |F1|| ≤ 1, the maximum
recursion depth is bounded by 2 + log2N (proof omitted).

Finally, we show that the number of invocations at each
recursion depth is bounded by 2k. This is trivially true at
depth 0. Now consider an arbitrary depth n > 0. The number
of invocations at this depth is equal to twice the number of
invocations at depth n− 1 that resulted in recursion. Of all
the invocations at depth n− 1, only those called with input
sets F containing relevant fields result in recursion, since
the proof of Theorem 1 implies that the recursion terminates
otherwise (this is the case X = X). Therefore, since no
more than k relevant fields exist, no more than k invocations
at depth n − 1 contain relevant fields, and no more than k
invocations at depth n− 1 result in recursion, producing no
more than 2k invocations at depth n.

V. RELATED WORK

As previously discussed, our work assumes that some
initial exploration of the test input space has been done, and
thus is a way to augment rather than replace techniques such
as combinational testing [5], [3], [7]. Most comparable work
on automated fault diagnosis and debugging is discriminative
in nature: fault causes are associated with attributes that differ
between faulty conditions and normal conditions. Works in
this vein include statistical debugging [8], [9], [10], [11]
and spectrum-based fault localization [12], [13]. We have
already argued against such a discriminative approach for
our application in the Discussion section. Furthermore, these
methods are designed for a slightly different scenario, in
which fault causes are identified in terms of features of
heavily instrumented code, rather than exceptional inputs.
The aforementioned delta debugging algorithm has also been
used previously in order to identify relevant differences
between faulty and normal conditions [14].

From an abstract, algorithmic perspective, our method can
be thought of as a generalization of the delta debugging
method. Delta debugging might be interpreted as identifying
a binary product set, whereas we identify a general product
set. The algorithms therefore also share the same general
structure. However, the generalization to arbitrary product
sets allows us to make what we consider a crucial leap from
discriminative to generative models of fault triggers.

The product-set-learning algorithm presented here was in-
spired by the classic algorithm for PAC-learning rectangles in
Euclidean space [15]. We are not directly aware of previous
work on the problem addressed here of efficiently learning
product sets via membership queries when few attributes are
relevant and an initial seed is given. However, similar prob-
lems have been studied many times in computational learning
theory. Common variations consider equivalence queries in
addition to membership queries, unions of discretized boxes
in Euclidean space, and online problems [16], [17], [18].

VI. EXPERIMENTS

We implemented HPSL and evaluated its effectiveness in
diagnosing the causes of actual bugs found in SystemX.
For comparison, we also implemented decision trees based
on the C4.5 algorithm [19], with features corresponding to
field values. The set of inputs positively labeled by such
a decision tree is equivalent to a union of product sets. In
order to generate sufficient positive training examples for
the decision tree, we mutated the same minimal length test
pattern used in our method, randomly choosing 10% of the
fields to mutate for each example. Two different pruning
techniques were evaluated. The first consisted of pruning the
tree at a depth of 10 in addition to pruning branches matching
10 or fewer examples in each class. We also implemented
a pruning technique similar to reduced error pruning [20],
but altered to improve precision instead of reducing error on
a validation set; we will refer to this as improved precision
pruning or IPP. We trained many decision trees on varying
sets of 5000 examples each; for IPP, the input set of 5000
examples was evenly split into a training set and a validation
set. For IPP, the trees were pre-pruned to depth 30.

Figure 4 shows the results obtained for a specific bug,
which we will refer to as bug 116. The results generated
by HPSL were sufficient to diagnose the fault, which was
subsequently fixed in SystemX. The fault associated with
bug 116 is triggered when the vehicle fails to execute a safety
stop despite its speed exceeding a predefined threshold.
Robustness testing was used to find an input triggering this
fault, which was then generalized via our method and via
decision trees. As shown in Table I, the inputs to the system
in this case constituted a 1176-dimensional vector of fields
of varying types. HPSL terminated after querying the system
3459 times, while we trained several decision trees on 5000
training examples generated via the method described above
(varying the training set for each tree). Fig. 4a shows a
typical decision tree converted to an equivalent product set
(irrelevant fields are omitted). The result of HPSL was the
same, except for two additional rules shown in Fig. 4b.

M1.BrakeApplied in set [true]
M1.CurrentGear in set [0]
M1.IsStopped in set [0]
M1.MotorOn in set [false]
M1.SystemConnected in set [true]
M1.EStopButton in set [false]
M2.ActualSpeed in set [-1.79769e+308,
-2.71828, ..., -65535, -inf]

M2.EStopButton in set [false]

(a) Decision tree output expressed as a product set
M0.InitialMode in set [1, ..., 4294967295]
M2.SystemConnected in set [true]

(b) Additional rules found by HPSL

Fig. 4: Comparison between output generated by decision
trees and HPSL for bug 116. The set of rules found by HPSL
was equal to the set found by decision trees, augmented by
two additional rules.

Bug id. N HPSL m DT m
104 179 2035 5000
116 1176 3459 5000
117 1706 4506 5000
118 1176 3663 5000

TABLE I: Parameters for experiments of Fig. 5: N denotes
the number of fields in an input and m denotes the number
of training examples or queries used by each method.

The results make it clear that the bug is triggered when the
ActualSpeed input is negative: ultimately, the cause of the
bug was traced to failing to take the absolute value of this
field in the vehicle’s speed limit check. The other identified
fields are necessary to put the software into a state such that
an emergency stop may need to be issued. We note that the
quality of the decision tree results was highly dependent on
the pruning strategy employed and the particular training set.

Quantitative results evaluating our method on other faults
are shown in Fig. 5. We compared the two methods via three
statistics: the fraction of all possible inputs labeled positive
by the algorithm (converting decision trees to unions of
product sets), the number of fields named in the algorithm’s
output, and the classification precision. The first statistic
quantifies what we will refer to as the generalization factor;
returning the seed input alone corresponds to a score very
close to 0, whereas returning the set of all possible inputs
achieves a score of 1. Although a high generalization factor
is desirable, it must be accompanied by high precision to
be useful. The number of fields named in the output is a
rudimentary measure of complexity; the more complex the
output, the less interpretable it is.

The results show that neither pruning heuristic reliably
produced decision trees that were competitive with HPSL.
The decision trees varied significantly as we varied the train-
ing set, whereas HPSL produces deterministic results given a
seed and a deterministic strategy for splitting the input fields
(i.e., EvenlySplitFields). The generalization factor vs.
precision plots show that HPSL achieved a superior trade-
off of generalization and precision in the following sense:
for any objective that is a positive linear combination of

G
en

er
al

iz
at

io
n

fa
ct

or

All
DT

DT_IPP
HPSL

1e-10
1e-08
1e-06
1e-04
1e-02
1e+00

 0 0.5 1
Precision

Bug 104

 0 0.5 1
Precision

Bug 116

 0 0.5 1
Precision

Bug 117

 0 0.5 1
Precision

Bug 118

(a) Generalization factor (fraction of inputs labeled positive) vs. precision

O
ut

pu
t c

om
pl

ex
ity

0
5

10
15
20
25
30

 0 0.5 1
Precision

Bug 104

 0 0.5 1
Precision

Bug 116

 0 0.5 1
Precision

Bug 117

 0 0.5 1
Precision

Bug 118

All
DT

DT_IPP
HPSL

(b) Output complexity (number of fields named in output) vs. precision

Fig. 5: Plots showing measures of generalization factor and output complexity vs. classification precision for different
methods. “HPSL” refers to our method, “DT” refers to decision trees pruned to depth 10, “DT IPP” refers to decision trees
pruned to improve precision on a validation set, and “All” corresponds to the trivial method of reporting all inputs as causing
the fault. Each plotted point for DT corresponds to a different random training set. See text for details.

(log) generalization factor and precision, the decision tree
result almost never optimized the objective. The same can
be said for the complexity-precision tradeoff. This follows
from simple linear programming arguments.

VII. CONCLUSIONS

We have presented a method that efficiently learns in-
terpretable product set representations of fault triggers in
high-dimensional software interfaces. The algorithm actively
queries the SUT, requiring a number of queries that scales
only logarithmically in the number of irrelevant fields. The
method is suitable for diagnosing faults that are triggered
by corner cases and rare situations in which combinatorial
testing techniques are likely to find one or only a few system
failures; such cases prove challenging for naive approaches
due to the difficulty of obtaining sufficient informative train-
ing examples. Our experimental results have validated the
method’s ability to provide useful debugging information
for commercial autonomous vehicle systems. Compared to
a naive approach based on decision trees, our method pro-
vides results that are generally better, without any need for
parameter tuning or pruning heuristics.

In future work, we would like to explore ways to make our
results more informative when the product set model is not
strictly accurate. In particular, we would like to automatically
identify fields that exhibit interdependence, modifying the
algorithm to jointly sample these fields. This or similar
heuristics may be necessary in order to diagnose more subtle
bugs that may appear in the wild.

REFERENCES

[1] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated
robustness testing of off-the-shelf software components,” in FTCS.
IEEE, 1998.

[2] A. Zeller, “Yesterday, my program worked. today, it does not. why?”
in Software EngineeringESEC/FSE99. Springer, 1999, pp. 253–267.

[3] J. Pan, P. Koopman, and D. Siewiorek, “A dimensionality model
approach to testing and improving software robustness,” in AU-
TOTESTCON. IEEE, 1999, pp. 493–501.

[4] M. Leucker and C. Schallhart, “A brief account of runtime verifica-
tion,” The Journal of Logic and Algebraic Programming, vol. 78, no. 5,
pp. 293–303, 2009.

[5] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical combinatorial
testing,” NIST, Tech. Rep. 800-142, October 2010.

[6] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison, Tech. Rep. 1648, 2010.

[7] T. J. Ostrand and M. J. Balcer, “The category-partition method for
specifying and generating fuctional tests,” CACM, vol. 31, no. 6, pp.
676–686, 1988.

[8] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” ACM SIGPLAN Notices, vol. 38, no. 5,
pp. 141–154, 2003.

[9] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken,
“Statistical debugging: simultaneous identification of multiple bugs,”
in ICML. ACM, 2006, pp. 1105–1112.

[10] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical
debugging: A hypothesis testing-based approach,” IEEE Trans. Softw.
Eng., vol. 32, no. 10, pp. 831–848, 2006.

[11] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken, “Statistical
debugging of sampled programs,” in NIPS, 2003.

[12] M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in Automated Software Engineering. IEEE, 2003, pp. 30–39.

[13] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART, 2007, pp. 89–98.

[14] A. Zeller, “Isolating cause-effect chains from computer programs,” in
SIGSOFT Symp. on Foundations of Sw. Eng. ACM, 2002, pp. 1–10.

[15] M. J. Kearns and U. V. Vazirani, An introduction to computational
learning theory. MIT press, 1994.

[16] P. W. Goldberg, S. A. Goldman, and H. D. Mathias, “Learning unions
of boxes with membership and equivalence queries,” in COLT, 1994.

[17] N. H. Bshouty, P. W. Goldberg, S. A. Goldman, and H. D. Mathias,
“Exact learning of discretized geometric concepts,” SIAM Journal on
Computing, vol. 28, no. 2, pp. 674–699, 1998.

[18] W. Maass and G. Turán, “Algorithms and lower bounds for on-line
learning of geometrical concepts,” Machine Learning, vol. 14, no. 3,
pp. 251–269, 1994.

[19] J. R. Quinlan, C4.5: programs for machine learning. Morgan
kaufmann, 1993, vol. 1.

[20] T. Elomaa and M. Kaariainen, “An analysis of reduced error pruning,”
JAIR, vol. 15, pp. 163–187, 2001.

