
A Flexible Approach to Embedded Network Multicast
Authentication

Chris Szilagyi
ECE Department

Carnegie Mellon University

szilagyi@cmu.edu

Philip Koopman
ECE Department

Carnegie Mellon University

koopman@cmu.edu

ABSTRACT
Distributed embedded systems are becoming increasingly
vulnerable to attack as they are connected to external networks.
Unfortunately, they often have no built-in authentication
capability. Multicast authentication mechanisms required to
secure embedded networks must function within the unique
constraints of these systems, making it difficult to apply
previously proposed schemes. We propose an authentication
approach using message authentication codes which exploits the
time-triggered nature of many embedded systems by putting only
a few authentication code bits in each message, and by requiring
authentication to be confirmed by the correct reception of multiple
messages. This approach can work for both state transition
commands and reactive control messages, and enables a tradeoff
among per-message authentication cost, application-level latency,
and the probability of induced system failure. Authentication
parameters can be tuned on a per-message basis while satisfying
typical wired embedded network constraints.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security and
Protection

General Terms
Design, Reliability, Security.

Keywords
Distributed Embedded Systems, Networks, Security, Multicast,
Authentication, Controller Area Network, CAN, FlexRay, Time-
Triggered Protocol, TTP, In-vehicle, Real-time.

1. INTRODUCTION
Distributed embedded network protocols such as Controller Area
Network (CAN) [3], FlexRay [1], and Time-Triggered Protocol
(TTP) [15] are used in a wide variety of safety-critical
applications. While these wired network protocols have been

developed primarily for in-vehicle automotive networks, they are
also seen in aviation, robotics, and industrial automation systems.
Safety, reliability, performance, and cost have traditionally been
the primary concerns in these systems.

Wired embedded network protocols are, for the most part, not
designed with security in mind. This is largely because in the past
embedded networks were isolated from the Internet, and could
only be attacked by someone having direct physical access to the
network. But now these embedded networks are susceptible to
attacks, just as enterprise networks are, because manufacturers are
incorporating connectivity to the Internet or wireless networks
[14]. If an attacker corrupts even a single node via an external
network or other method of attack, they will gain access to the
internal safety-critical traffic on the wired embedded network.
Wired embedded network protocols typically do not include built-
in support for authenticating transmitters, restricting the messages
transmitters can send, encrypting message payloads, or preventing
denial of service (DoS) attacks. Wolf et al. [28] illustrate a variety
of attacks on these distributed embedded network protocols,
focusing on attacks which will disable the network.

In this paper we focus upon providing message authentication for
wired embedded control networks such as CAN, TTP, and
FlexRay. Because these protocols do not incorporate
authentication, they are vulnerable to masquerade and replay
attacks [27]. A masquerade attack occurs when an entity sends a
fraudulent message identifying itself as another legitimate node.
Replay attacks occur when an old message is retransmitted and
accepted as a fresh message. Embedded network protocols
provide means to identify the sender node, and incorporate error
detection techniques. However, these techniques do not prevent a
malicious entity (or non-malicious defective software) from
masquerading as a legitimate node or replaying messages within
the network. Masquerade attacks can be performed by changing
an identifier field and recalculating error checking codes, or by
broadcasting during another node's designated time slot in a Time
Division Multiple Access (TDMA) protocol [18]. Replay attacks
can be performed simply by recording a message and resending it
in a similar fashion. TTP may be less vulnerable because the
sender identity is implicit in the time slot being used. An
adversary may need to exert additional effort to overcome this
characteristic.

An attacker with physical access to an in-vehicle network and
knowledge of message formatting and identifiers can easily send a
spoofed message to unlock an automobile's car doors, start the
engine, or operate other vehicle equipment. With wireless
connectivity to a corrupted node, an attacker might activate a car's
electronic parking brake while traveling on the highway, or shut

off the headlights while traveling at night. Nilsson and Larson
[19] demonstrate how such an attack can be performed on the
CAN protocol through simulation.

While gateways between internal and external networks might
help improve security, it seems plausible that attackers will be
able to circumvent or penetrate gateways and obtain the ability to
send messages on an internal embedded network. Preventing such
attacks requires strong authentication of nodes as an additional
layer of protection. This presents a particular challenge in
distributed embedded networks, because any authentication
scheme must support multicast authentication subject to the
constraints of: resource limited nodes, small packet sizes,
potentially high packet loss rates, and tight real-time deadlines.

We present an authentication method for distributed embedded
networks which conforms to these common embedded system
constraints. Our method allows the system designer to perform a
tradeoff among per-message authentication cost, application level
latency, and the probability of induced system failure. This is
accomplished by appending truncated Message Authentication
Codes (MACs) of only a few bits to each message. The time-
triggered embedded applications we consider broadcast periodic
updates of the values of system inputs and variables. This allows
us to aggregate authentication from several messages before
permitting an irrevocable alteration to the state of the system.
Additionally, this approach allows us to reduce the probability of
successful attacks on reactive control functions by making it
difficult for attackers to forge enough messages in a short period
of time to produce a system control failure.

This paper first identifies the impact of embedded network
constraints on authentication, and describes why existing
authentication schemes do not fully satisfy these constraints. We
then describe an authentication scheme which conforms to the
constraints, and takes advantage of existing properties of
embedded network protocols. Additionally, we identify two types
of embedded network messages, each requiring differing methods
of authentication, and analyze the security of our scheme for each.
Lastly, we introduce the notion of an engineering tradeoff among
per-message authentication costs, application latency, and the
probability of induced system failure.

2. Embedded Network Constraints
Distributed embedded networks are composed of a number of
Electronic Control Units (ECUs). Each ECU performs a set of
functions in the system. These ECUs are interconnected to form a
network, and communicate using a protocol such as CAN,
FlexRay, or TTP. In this paper, we will consider these protocols
as they are commonly used in time-triggered applications. These
protocols are among the most capable of those currently in use in
wired embedded system networks. Many other protocols are even
less capable, but have generally similar requirements and
constraints:

• Multicast Communications - All messages sent on a
distributed embedded network are inherently multicast,
because all nodes within the embedded system need to
coordinate their actions. Once a sender has transmitted a
packet, all other nodes connected to the network receive the
message. (In CAN, hardware performs message filtering at the
receiver based on content.) Each packet includes the sender's
identity, but does not include explicit destination information.

[5] provides a description of multicast authentication issues
along with some solutions. The configuration of the network is
usually fixed at design time, with little or no run-time
reconfiguration.

• Resource Limited Nodes - Processing and storage capabilities
of nodes are often limited due to cost considerations at design
time. For example, the S12XD series, produced by Freescale
[2], is a family of 16-bit microcontrollers designed for use in
general automotive body applications. These microcontrollers
provide up to 32 kilobytes of RAM, 512 kilobytes of Flash
memory, and four kilobytes of EEPROM, with a core
operating frequency of 80 MHz. Flash memory is generally not
written to except for software updates, so the EEPROM holds
non-volatile application data. Any buffering and storage for
authentication consume space in RAM, which is far more
expensive and scarce than flash memory in such systems.
Authentication mechanisms which require large amounts of
processing power or storage in RAM may not be feasible.
More powerful ECUs are infeasible for most nodes in the
system, and many nodes are 8-bit ECUs with significantly
smaller memories due to cost and power consumption
considerations.

• Small Packet Sizes - Packet sizes are very small in embedded
network protocols when compared to those in enterprise
networks. These packets have maximum data payload sizes as
small as eight bytes in the case of CAN, with the largest
payloads for FlexRay and TTP being 254 bytes and 236 bytes
respectively. Due to cost, signal integrity, and network node
synchronization concerns, data rates are limited to 1 Mbit/sec
for CAN and 10 Mbit/sec for TTP and FlexRay. Low-cost
embedded networks can be orders of magnitude slower than
that. Authentication should incur minimal bandwidth
overhead.

• Tolerance to Packet Loss - Distributed embedded systems are
subject to message blackouts due to environmental
disturbances such as interference from large electric motors.
High quality cable shielding is often impractical due to cost,
size, and weight considerations. As such, authentication
schemes must be tolerant to packet loss.

• Real-Time Deadlines - In real-time safety-critical systems,
delays are not tolerated. Processes which cannot be completed
within specified deadlines for the system cannot be used.
Authentication of nodes must occur within a known time
bound, with that bound being fast enough to match the
physical time constants of the system being controlled (often
on the order of tens or hundreds of milliseconds).

3. Related Work
This section describes the related work in multicast authentication
and previous work in authentication for embedded networks.

3.1 Existing Multicast Authentication with
Respect to Embedded Constraints

The multicast nature of distributed embedded communications
makes authentication particularly challenging. Point-to-point
cryptographic mechanisms, such as appending a MAC [27] to a
message using a single key shared across all nodes, do not provide
adequate authentication. If more than two nodes hold the same
shared key, it becomes impossible to discern which one
transmitted the message. Any receiver of a message could

masquerade as the sender. For this reason, multicast
authentication requires some form of asymmetry.

As a simple extension of the single shared key scheme to provide
asymmetry, a sender could establish shared pair-wise keys with
every other node. For each transmitted message, the sender would
append a distinct MAC for each receiver to the message,
providing strong authentication. A receiver would know that a
message with a valid MAC could only have come from the sender,
because those two nodes share a secret key and the receiver did
not send the message. However, the bandwidth overhead of using
full-size MACs makes this approach infeasible for embedded
networks.

Public key cryptography using digital signatures is another
asymmetric approach. While this could provide strong source
authentication, digital signatures have very high processing and
bandwidth overhead. The processing overhead alone makes it
impractical for a resource constrained node to compute digital
signatures for each message it sends. Several schemes suggest
amortizing the cost of the digital signature over several packets
[17][24][29][20]. But, known approaches may not be suitable
when sending time-triggered embedded messages due to
bandwidth overhead or intolerance to lost packets. Additionally,
attackers can perform a denial of service attack, forcing a node to
consume extra resources by processing arbitrary forged signatures,
as noted in [22].

One-time digital signature schemes [21][10][8] allow senders to
sign messages much faster than with traditional digital signatures
by utilizing one-way hash functions. Unfortunately, one-time
digital signatures can incur several kilobytes of authentication
data per message. This makes them impractical for embedded
networks with small packet sizes and time-triggered
communication.

Canetti et al. [5] suggest a scheme which appends k MACs to each
message, computed using k different keys. The keys are
distributed amongst receivers such that at least w receivers must
conspire in order to forge a message as the sender. This scheme
requires computation of k MACs, and incurs considerable
bandwidth overhead due to the attachment of these MACs.
Additionally, this scheme is vulnerable to collusion.

Bergadano et al. [4] and the TESLA protocol [22] utilize time-
delayed release of keys for authentication. By releasing keys at a
pre-specified interval after a MAC is released, receivers can
confirm the authenticity of the data from a sender. The released
keys are computed using one-way hash chains. Resource
constrained nodes may not have sufficient storage required for key
chains to authenticate periodic messages in a time-triggered
system. µTESLA [23], a version of TESLA for resource
constrained sensor networks, limits the number of authenticated
senders and utilizes a base station for communications. These
options are not available for most distributed embedded real-time
control systems, which use peer-to-peer wired networks. Although
a node, such as an embedded gateway, might act as a base station,
it also introduces an undesirable single point of failure.
Additionally, one would expect that the gateway node would be
the one node on the network most vulnerable to compromise from
an external attacker, because it is the one node connected to
external networks. Compromise of the base station node would
compromise the security of the entire system. It would be

desirable to have a practical approach that does not depend upon a
base station.

3.2 Embedded Network Authentication
While there have been many publications on multicast
authentication, little prior work has focused upon the
requirements for authentication methods specifically for wired
distributed embedded networks. There have been approaches
which apply security to resource constrained wireless sensor
networks such as SPINS [23] and TinySec [13]. However, those
approaches are specifically designed for use in wireless networks,
which have significantly different constraints than wired
networks. Secure aggregation has also been used to reduce
security overhead in both sensor networks [12][25] and Vehicular
Ad-Hoc Networks (VANET) [26]. Those approaches focus on
secure aggregation of data from multiple sensors in close
geographic proximity rather than time-triggered messages in close
temporal proximity.

Morris and Koopman [18] identify the potential for masquerade
failures to be used to cause accidental or malicious failures, via
allowing non-critical nodes to masquerade as higher criticality
nodes. Additionally, they propose the use of several counter-
measures of varying strengths to prevent masquerading failures
between nodes of varying criticality. Their approach assumed an
attack was due to a non-malicious software fault or was being
made by an unsophisticated attacker, unfamiliar with cryptology.

Wolf et al. [28] provide an overview of the security vulnerabilities
of various in-vehicle network protocols including Local
Interconnect Network (LIN), Media Oriented System Transport
(MOST), CAN, and FlexRay. These vulnerabilities primarily
focus upon attacks which will disable the networks. Additionally,
they state the need for confidentiality and authentication. Wolf et
al. suggest the use of digital signatures or the asymmetric MAC
scheme proposed by Canetti et al. [5] for authenticating sent
packets along with gateways between individual in-vehicle
networks. These authentication schemes may not be suitable for
some distributed embedded networks, as discussed in Section 3.1.

There have been several publications demonstrating attacks on the
authenticity of messages and nodes in embedded networks.
Nilsson and Larson [19] detail the actions which an attacker may
take, and demonstrate masquerade attacks on CAN using
simulation. Additionally, they discuss the possibility of viruses
transmitted over CAN and preventative measures. Hoppe et al.
[11] and Lang et al. [16] demonstrate a combination of
eavesdropping and replay attacks on CAN.

Lastly, Chávez et al. [6] propose using RC4 encryption to provide
confidentiality on CAN buses. Chávez et al. dismiss
authentication and non-repudiation as unnecessary in these
networks, under the assumption that message identifiers and error
detection provide sufficient confirmation of the sender's identity.
Our work relaxes this assumption by assuming that sender identity
can be forged.

4. Criticality Based Authentication
In order to provide multicast authentication on a per message
basis for time-triggered communications, our approach uses
truncated MACs. In time-triggered communications, each node
periodically broadcasts the current state of each of its state
variables and sensor inputs to the rest of the network. This

information is often broadcast faster than the rate at which
receivers must act upon this data in their control loops. This faster
rate gives the system a degree of resilience to unexpected
operating situations and message losses.

In our approach, when a node sends a message, it computes a
MAC for each distinct receiving node in the network over the
message and the current time (or TDMA round number) using a
pair-wise shared secret key. Each MAC is truncated down to just a
few bits, and appended to the message. (If there is concern that
the low bits of the MAC are not sufficiently random, all bits of the
MAC can be hashed. For example, XORing all MAC bytes
together would create a condensed 8-bit version of the MAC.) By
only using a few bits, one MAC per receiver can be placed in a
packet, as illustrated in Figure 1. The receivers verify their
respective MACs and signal an error if the MAC does not match
the message in the current time interval. Nodes act upon
authenticated messages depending upon the type of message
received. The number of bits in each truncated MAC depend on a
variety of factors, but could be as little as one bit per MAC.

Figure 1. Example packet containing 32 bits of message data
and four 8-bit MACs, for four receivers.

This allows the designers of the system to perform a tradeoff
among the required amount of bandwidth they are willing to
sacrifice for per-message authentication, application level latency,
and the probability of induced system failure. This tradeoff is
based upon the criticality level of the message and the message
type. Criticality is related to the amount of physical change which
can be exerted on the environment around the system, or potential
for monetary loss or damages.

4.1 Message Types
We identify two types of messages in embedded networks with
different requirements for authentication: state-changing
messages, and reactive control messages.

4.1.1 State-Changing Messages
State-changing messages cause transitions within finite state
machines in the system design, or cause discrete, discontinuous
output changes in actuators. If an attacker successfully executes
an undesired state change, the system must attempt to roll back to
an earlier correct state to undo any damages. Depending on the
action, such a roll-back may or may not be possible. For example,
triggering a pyrotechnic that deploys an airbag is a discontinuous
actuator state change that cannot be rolled back automatically.

For state-changing messages, nodes must receive a certain number
of correctly authenticated consistent messages directing the state
change before executing the action. The number of consecutively
authenticated messages which must be received is proportional to
the criticality of the message. For example, an attacker who
managed to forge a message to turn on the four-way flashers of an

automobile would only cause some confusion and irritation that is
easily rolled back by turning the flashers back off. That state
change might require only a few consecutive authenticated
messages before the system accepted the state change commanded
by those consecutive messages as valid. On the other hand, if an
attacker successfully forged messages to unlock the doors and turn
on the engine to facilitate car theft, the resulting damage could be
greater. A receiver of those messages would wait to receive a
larger quantity of correctly authenticated messages before
accepting the state change as authentic.

4.1.2 Reactive Control System Messages
Reactive control system messages cause updates to continuous or
ordered values in network nodes running feedback control loops.
These loops often contain a low pass filter to actuator changes
(implicit or explicit), such as physical inertia, which limits the
possible impact of a single forged message. In the event of a
single successfully forged message, this low pass filtering
characteristic damps out the possible impact on the system. So
long as a sufficiently small fraction of messages can be
successfully forged, the system can either ride out disturbances or
have time to notice an attack is taking place before significant
damage has been done or the system has become unsafe.

So long as there are enough MAC bits used to keep successful
forgeries sufficiently infrequent, nodes can authenticate each
reactive control system message individually. An attacker would
need to correctly forge many messages within some period of time
to produce a potentially damaging physical output from an
actuator. As the number of messages within a short time period
required to produce a damaging output increases, the probability
that an attacker can forge such a series of messages in a short
enough period of time so as to induce a system failure decreases.
If sufficient MAC bits are not available in each message to keep
the probability of a successful forgery sufficiently low, then
several messages in a row might be required to have correct
MACs before a new actuator output value is accepted as valid.

4.2 Additional Properties
Our scheme provides three additional beneficial properties. First,
each transmitted packet contains all authentication information for
that packet. This allows some amount of authentication to be
performed for every packet received. No buffering is required by
the sender or receiver. Second, authentication information is fully
contained within each individual packet, so our scheme is tolerant
to packet loss. Lastly, this scheme has ideal resistance to node
compromise, because an attacker can only masquerade as those
nodes from which they have extracted key material.

4.3 Assumptions
Our approach makes three assumptions:

• Each sender has sufficient computational resources to compute
one MAC per receiver per message that is sent. MACs can be
computed relatively quickly, and the number of receivers is
quite limited in embedded networks.

• The number of bits in a message is greater than the number of
receivers of a message. Embedded networks typically
incorporate a small number of nodes, usually fewer than 32.
This allows authenticators for each receiver in the packet,
leaving room for the message.

• Nodes use existing cryptographic one-way hash functions,
such as SHA-256, and MAC functions, to implement
authentication. We assume the underlying cryptographic
primitives are secure. We do not rely on specific MAC or one-
way hash functions to implement our scheme.

4.4 Attacker Model
We consider an active attacker model [27] in which an attacker
may modify, inject, drop, or eavesdrop upon network traffic.
Attackers may physically access the network lines, or access the
network through a corrupted node. Attacks through corrupted
nodes include connections from an external network through a
gateway, malicious insider code, physically compromised devices,
and malicious devices physically attached to the network.

Attackers accessing the network through corrupted nodes will
have access to the key material in those nodes. Regardless of the
key material possessed by the attacker, they must not be able to
masquerade as any node they do not control to perform a
successful attack, except with some negligible probability.

We constrain the attacker to one forgery attempt per message,
since receivers only accept a single message per time slot in a
time-triggered application.

It is likely that any single successful forgery attempt will only
succeed in fooling a subset of receiving nodes, because each
receiving node bases its acceptance of a message on a different
MAC value. Whether it is possible to successively fool different
nodes one at a time to accomplish a global malicious state change
depends on the details of system design. In particular, doing this
would require finding an enduring state change that can be
accomplished with only a few successfully forged messages per
node, and that does not revert to a non-malicious state during the
time it takes to successfully messages to other nodes. Commonly
used fault containment mechanisms such as group membership
would form strong countermeasures to such divide-and-conquer
attacks on nodes.

Lastly, it should be noted that this scheme does not seek to protect
against DoS attacks. Wolfe et al. [28] surveys numerous existing
vulnerabilities in these networks to simple DoS attacks. This
scheme presents additional opportunities for DoS attacks, such as
intentionally sending incorrect MAC values, but in general does
not make the DoS issue worse than it already is.

5. Criticality Based Authentication Process
This section describes the process which the wired embedded
network nodes will use to provide authentication.

5.1 Key Initialization
A node establishes shared secret authentication keys with all other
nodes at time of installation. This can be accomplished by having
maintenance or factory personnel program each node with the
respective shared secret keys when the node is installed. This
method is not ideal, since it requires additional work by personnel
to establish the keys, and places a large amount of trust in these
personnel. Alternately, another approach is to provide each node
with a public and private Diffie-Hellman [7] key pair, which has
been digitally signed by the manufacturer's secret key. Each node
also has the manufacturer's public key. At time of installation, the
nodes could exchange their Diffie-Hellman public keys and
certificates. Each pair of nodes then authenticates the certificates

and uses the Diffie-Hellman key exchange protocol to compute a
shared secret key for authentication.

For a system with n nodes, this scheme will require establishing
O(n2) keys. While this overhead is high, it is incurred only once at
time of installation, while the system is inactive. Embedded
networks have very stable hardware configurations, which often
last for months or years. Thus, a one-time key distribution cost is
a minor concern in most situations.

Additionally, in a typical embedded system, all nodes wired to the
network are known at design time. It is reasonable to assume a
node will know the standard configuration and what nodes
comprise the group it is communicating with. This is in contrast to
enterprise networks, where network nodes are expected to change
constantly.

5.2 Replay Protection
We use time synchronization to prevent replay attacks. At system
startup, nodes perform pair-wise synchronization of clocks to
some predefined granularity, which might be on the order of the
time it takes to transmit a full round of all messages. A network
wide synchronization is not necessary, because pair-wise MACs
are used for authentication. Pair-wise synchronization can be
accomplished through the use of a secure time synchronization
protocol such as Secure Pair-wise Synchronization [9].
Experimentation in [9] demonstrates time synchronization to a
time tick granularity on the order of microseconds. In a distributed
embedded network, synchronization to the nearest message round
is often adequate, which is often on the order of tens or hundreds
of milliseconds, and might be a service built in to the
communication protocol.

5.3 Run-Time Authentication and Trade Offs
In order to provide multicast authentication, each pair of nodes
must establish a shared secret key, and securely synchronize their
clocks. For each message which is sent, the node first computes a
MAC for each receiver using the shared secret keys. For a receiver
i, the sender computes MAC Mi, which is computed over the
message m and synchronized time Ti, using shared key Ki. "||"
denotes concatenation.

Mi ← MACKi(m || Ti)

Each MAC is truncated, and b lower order bits of each MAC are
appended to the message. For n receivers, the data payload of the
packet consists of: m || [M1]b || [M2]b || ... || [Mn-1]b || [Mn]b, where
[] denotes truncation. Using a few bits per message reduces the
amount of message overhead so that all MACs fit within a single
packet. As these time-triggered messages are received, the
authentication information accumulates, granting greater
confidence in the authenticity of the messages. Each time-
triggered message is verified independently of all other messages.
Fooling a receiver once has minimal impact, because an injected
failure is cleared unless the attacker continues to successfully
forge messages.

5.3.1 State-changing Message Verification
For state-changing messages, a receiver waits until a predefined
number of consecutive messages are received before executing the
received command. For a receiver which waits for x correctly

authenticated messages to arrive, the probability of a successful
forgery is equal to 2-xb. The probability of a successful forgery
drops exponentially as the number of bits b of the MAC increases,
or the number of messages required x increases (Figure 2). The
system designer trades increased bandwidth and latency for lower
probability of induced system failure. Additionally, there will be a
limit on the value of x, based upon the maximum tolerated latency
for the message.

Messages Received

0 2 4 6 8 10

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l F
or

ge
ry

1e-1

1e-4

1e-7

1e-10

1e-13

1e-16

1e-19

1e-22

1e-25

1 Bit per Message
2 Bits per Message
4 Bits per Message
8 Bits per Message

Figure 2. Probability of successful forgery for one, two, and
eight bit MACs over ten messages.

5.3.2 Reactive Control Message Verification
For reactive control system messages, the probability of a
successful forgery for any individual message to a particular
receiver is only equal to 2-b. While this does not provide highly
secure authentication for an individual message, each successfully
forged message will only cause some increment of physical
change produced by the receiving node. In order to produce a
successful attack, the attacker must forge multiple packets within
some time period. If the attacker must forge y consecutive packets
within this time period, the probability that the attacker succeeds
is equal to 2-yb. The probability that an attacker will be able to
produce dangerous outputs decreases exponentially as the
required number of correctly forged messages increases. The
designer selects the value of b for this type of message based upon
the amount of physical change produced per message, so that the
product yb is sufficiently large for the probability of system failure
to be considered acceptable. This approach supports trading
increased bandwidth for reduced probability of system failure.

6. Conclusions
Distributed embedded networks are becoming increasingly
vulnerable to masquerade and replay attacks due to increased
connectivity, creating a need for authentication. A significant
challenge is that solutions for multicast authentication must take
into account the unique constraints of these systems. We present a
method based on truncated MACs to authenticate state-changing
and reactive control system messages, along with associated
analysis and tradeoffs. While this method provides authentication
which is loss tolerant, requires no message buffering, and has
ideal resistance to node compromise, this scheme still requires
bandwidth overhead that scales linearly with the number of

receivers, computation of one MAC per receiver for each
message, and a limit on the number of receivers in practical
implementations. In the future, we intend to present results from
attacks on real systems, provide methodologies for engineers to
perform tradeoffs in embedded network authentication, improve
scalability, and further reduce bandwidth and computation
overhead to provide even more flexible authentication solutions
for distributed embedded networks.

7. Acknowledgements
Support for this work was provided by the General Motors
Collaborative Research Laboratory at Carnegie Mellon
University.

8. References
[1] FlexRay Consortium. FlexRay Communications System

Protocol Specification, Version 2.1, Revision A, December
2005.

[2] Freescale Semiconductor. S12XD Product Summary Page.
Retrieved June 2008 from http://www.freescale.com/.

[3] R. Bosch GmbH, CAN Specification, Version 2, September
1991.

[4] F. Bergadano, D. Cavagnino, and B. Crispo. Individual
Single-Source Authentication on the MBONE. In Proc. of
the 2000 IEEE Int’l Conf. on Multimedia and Expo, volume
1, pages 541–544. IEEE, 2000.

[5] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B.
Pinkas. Multicast security: a taxonomy and some efficient
constructions. In INFOCOM ’99: Proc. 18th Annual Joint
Conf. of the IEEE Computer and Communications Societies,
volume 2, pages 708–716. IEEE, 1999.

[6] M. L. Chavez, C. H. Rosete, and F. R. Henriquez. Achieving
Confidentiality Security Service for CAN. In CONIELE-
COMP ’05: Proc. of the 15th Int’l Conf. on Electronics,
Communications and Computers, pages 166–170. IEEE,
2005.

[7] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, vol. 22, pages
644-654, 1976.

[8] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital
signatures. In CRYPTO ’89: Proc. on Advances in
Cryptology, pages 263–275. Springer-Verlag, 1989.

[9] S. Ganeriwal, S. Čapkun, C.-C. Han, and M. B. Srivastava.
Secure time synchronization service for sensor networks. In
WiSe ’05: Proc. of the 4th ACM Workshop on Wireless
Security, pages 97–106. ACM, 2005.

[10] R. Gennaro and P. Rohatgi. How to Sign Digital Streams. In
CRYPTO ’97: Proc. of the 17th Annual Int’l Cryptology
Conf. on Advances in Cryptology, pages 180–197. Springer-
Verlag, 1997.

[11] T. Hoppe and J. Dittman. Sniffing/Replay Attacks on CAN
Buses: A simulated attack on the electric window lift
classified using an adapted CERT taxonomy. In Proc. of the
2nd Workshop on Embedded Systems Security (WESS),
2007.

[12] L. Hu and D. Evans. Secure Aggregation for Wireless
Networks. In Proc. of the 2003 Symposium on Applications
and the Internet Workshops, pages 384–394. IEEE, 2003.

[13] C. Karlof, N. Sastry, and D. Wagner. TinySec: a link layer
security architecture for wireless sensor networks. In SenSys

’04: Proc. of the 2nd Int’l Conf. on Embedded Networked
Sensor Systems, pages 162–175. ACM, 2004.

[14] P. Koopman, J. Morris, and P. Narasimhan. Challenges in
Deeply Networked System Survivability. NATO Advanced
Research Workshop on Security and Embedded Systems,
pages 57–64, 2005.

[15] H. Kopetz and G. Grunsteidl. TTP - A time-triggered
protocol for fault-tolerant real-time systems. In Proc. of the
23rd Int’l Symposium on Fault-Tolerant Computing, pages
524–533, 1993.

[16] A. Lang, J. Dittman, S. Kiltz, and T. Hoppe. Future
Perspectives: The car and its IP address - A potential safety
and security risk assessment. In Proc. of the 26th Int’l Conf.
on Computer Safety, Reliability and Security (SAFECOMP),
pages 40-53. Springer-Verlag, 2007.

[17] S. Miner and J. Staddon. Graph-Based Authentication of
Digital Streams. In SP ’01: Proc. of the 2001 IEEE
Symposium on Security and Privacy, pages 232–246. IEEE,
2001.

[18] J. Morris and P. Koopman. Critical Message Integrity Over
A Shared Network. 5th IFAC Int’l Conf. on Fieldbus Systems
and their Applications, pages 145-151, 2003.

[19] D. Nilsson and U. Larson. Simulated Attacks on CAN Buses:
Vehicle Virus. 5th IASTED Asian Conf. on Communication
Systems and Networks, 2008.

[20] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient
Multicast Packet Authentication Using Signature
Amortization. In SP ’02: Proc. of the 2002 IEEE Symposium
on Security and Privacy, pages 227–240. IEEE, 2002.

[21] A. Perrig. The BiBa one-time signature and broadcast
authentication protocol. In CCS ’01: Proc. of the 8th ACM

Conf. on Computer and Communications Security, pages 28–
37. ACM, 2001.

[22] A. Perrig, R. Canetti, J. Tygar, and D. Song. The TESLA
Broadcast Authentication Protocol. RSA CryptoBytes, vol. 5,
pages 2-13, 2002.

[23] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E.
Culler. SPINS: security protocols for sensor networks.
Wireless Networks, vol. 8(no. 5):pages 521–534, 2002.

[24] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficient
Authentication and Signing of Multicast Streams over Lossy
Channels. In SP ’00: Proc. of the 2000 IEEE Symposium on
Security and Privacy, pages 56–73. IEEE, 2000.

[25] B. Przydatek, D. Song, and A. Perrig. SIA: Secure
Information Aggregation in Sensor Networks. In SenSys ’03:
Proc. of the 1st Int’l Conf. on Embedded Networked Sensor
Systems, pages 255–265. ACM, 2003.

[26] M. Raya, A. Aziz, and J.-P. Hubaux. Efficient secure
aggregation in VANETs. In VANET ’06: Proc. of the 3rd
Int’l Workshop on Vehicular Ad Hoc Networks, pages 67–75.
ACM, 2006.

[27] Schneier. Applied Cryptography (2nd ed.): Protocols,
Algorithms, and Source Code in C. John Wiley & Sons, Inc.,
New York, NY, USA, 1995.

[28] M. Wolf, A. Weimerskirch, and C. Paar. Security in
Automotive Bus Systems. Workshop on Embedded Security
in Cars, 2004.

[29] C. K. Wong and S. S. Lam. Digital Signatures for Flows and
Multicasts. In ICNP ’98: Proc. of the 6th Int’l Conf. on
Network Protocols, pages 198–209. IEEE, 1998.

