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Abstract 

Autonomous vehicle (AV) developers test extensively on 
public roads, potentially putting other road users at risk. A 
safety case for human supervision of road testing could improve 
safety transparency. A credible safety case should include: (1) 
the supervisor must be alert and able to respond to an autonomy 
failure in a timely manner, (2) the supervisor must adequately 
manage autonomy failures, and (3) the autonomy failure profile 
must be compatible with effective human supervision.  

Human supervisors and autonomous test vehicles form a 
combined human-autonomy system, with the total rate of 
observed failures including the product of the autonomy failure 
rate and the rate of unsuccessful failure mitigation by the 
supervisor. A difficulty is that human ability varies in a 
nonlinear way with autonomy failure rates, counter-intuitively 
making it more difficult for a supervisor to assure safety as 
autonomy maturity improves. Thus, road testing safety cases 
must account for both the expected failures during testing and 
the practical effectiveness of human supervisors given that 
failure profile. This paper outlines a high level safety case that 
identifies key factors for credibly arguing the safety of an on-
road AV test program. A similar approach could be used to 
analyze potential safety issues for high capability semi-
autonomous production vehicles. 

Introduction 

Autonomous vehicle (AV) developers are testing extensively 
on public roads, potentially putting other road users at increased 
risk. The proper ratio of simulation, closed course testing, and 
road testing is a matter of debate. However, at some point any 
autonomous vehicle will have to undergo some form of road 
testing, if for no other reason than to demonstrate that a 
notionally “perfect” design based entirely on simulation and 
off-road testing really is sufficiently close to perfect in practice. 

In other words, there will have be on-road AV “test flights” 
regardless of design methodology. And, most likely, the safety 
argument for test flights will be based on having a human 
supervisor who ensures safety in the event of an autonomy 
failure. Thus, it is essential to understand how to make human-
supervised road testing of AV technology appropriately safe. 

Scope 

This paper explores the factors that affect whether public on-
road AV testing will be sufficiently safe. We assume that testing 
is conducted on public roads, and that at least one human 
supervisor (sometimes called a “safety driver”) is tasked with 
ensuring AV test platform safety (safety of the vehicle). The 
vehicle includes an autonomy system being tested that is 
commanding an automotive or truck platform. On-road AV 
testing (referred to simply as “testing” in this paper) is assumed 
to be part of a larger autonomy validation approach that should 
include many other activities before road testing is performed.  

We assume that the main argument that public testing is safe is 
that a supervisor is able to assume control of the vehicle and 
recover from autonomy malfunctions. This must happen with a 
sufficiently high probability that the testing does not present 
undue risk to the public, including other road users. While 
setting the risk threshold is ultimately a public policy question, 
we use an example threshold of the same risk as an average 
human driving a conventional, non-autonomous vehicle.

If a human supervisor is responsible for ensuring safety, it is 
essential that the supervisor be able to recognize a system 
malfunction when it occurs and intervene to effectively 
maintain safe vehicle operation whenever necessary. 
Specifically, the observed vehicle failure rate PLoss will be 
related to the autonomy failure rate PAutonomyFails and the failure 
rate of a human supervisor to mitigate autonomy failures (which 
includes the degree to which the system can be effectively 
supervised in practice),  PSupervisionFails: 

(1) PLoss = (PAutonomyFails * PSupervisionFails) + PHumanMistake 

An additional term has been added for the probability that a 
supervisor performs an unsafe action in the absence of an 
autonomy failure. This might include an unsafe intervention 
when no intervention was actually needed (e.g., a startle 
response or inadvertent disengagement without takeover).  

It is well understood that humans are imperfect in general. An 
underappreciated fact is that, as discussed below, the 
probability of a supervisor failure can increase as the autonomy 
failure rate decreases. One way to look at this is that as failure 
rates decrease, the practical supervisability of the system also 
decreases. In other words, it is difficult for a human to 
effectively supervise very good, but imperfect autonomy. 

Published Version: https://doi.org/10.4271/2019-01-0123

https://doi.org/10.4271/2019-01-0123


KOOPMAN & OSYK – SAE WCX 2019 PREPRINT 2 PUBLIC ROAD TESTING SAFETY 

 

Therefore, the total failure rate of the human-AV system could 
increase, at least initially, as the autonomy failure rate 
decreases. Whether the increase poses an unacceptable risk 
depends upon various factors we describe. 

We describe a safety argument intended for use with SAE Level 
4+ autonomy systems [31] that are being field tested, and 
therefore require in-vehicle and/or remote human supervision. 
The safety argument described should also be largely applicable 
to deployed operation of partially autonomous vehicles (e.g., 
SAE Level 2-3 vehicles) and other partial autonomy schemes 
that rely upon human supervision to ensure production vehicle 
safety. However, the emphasis of this paper is on factors 
specific to test platforms operated by trained supervisors. We 
do not address practical issues of partially autonomous full 
scale deployment such as intentional misuse, driver training, 
and maintenance neglect. 

Previous Work 

This paper builds upon previous work on safety arguments 
using Goal Structuring Notation (GSN). [13] Previous work on 
AV safety arguments has focused on arguing the safety of 
automobiles [28] or the autonomy system itself. [4][11][37] 

Road testing safety publications generally fall into two 
categories: regulatory publications and tester disclosures. 
Regulatory approaches typically emphasize the non-technical 
aspects of testing such as the permitting process, reporting, 
driver credentials, liability assignment, and so on. [1][5]  

Pennsylvania has published guidelines [29] that describe a 
safety argument having to do with supervisor effectiveness and 
vehicle response to disengagements built upon our previous 
work, which also forms a basis for this publication. [16] 
Elements of those policies include requiring two safety drivers 
at speeds above 25 miles per hour, having a written plan to 
address driver ability to respond to autonomy faults, and written 
testing procedures. 

Victoria Australia has passed legislation and published 
guidelines that require a safety argument, but do not specify a 
particular technical approach. [34][35]  

A previous US Federal policy document dealt primarily with 
the safety of underlying vehicle test platforms (e.g., whether 
test platforms must comply with Federal Motor Vehicle Safety 
Standards), but were largely silent regarding how to ensure road 
testing safety beyond requiring that supervisors have 
conventional vehicle driving credentials. [22] A newer 
supplemental document acknowledges that it is important to 
ensure that safety drivers maintain vigilance, but does not 
provide details. [23] 

Current metrics published for autonomous vehicle testing 
largely deal with the logistics of testing, such as number of 
vehicles deployed and miles driven. The most widely reported 

statistical data is so-called disengagement reports [5], which are 
not a sufficient basis for establishing safety. [2] 

A fatal mishap graphically illustrated that merely placing a 
safety driver in a vehicle is insufficient to avoid testing 
fatalities. [27] A more robust argument of safety required to 
ensure that testing safety is achieved in practice. 

Few companies doing road testing have made public statements 
on this topic beyond arguing that they have a “safety driver” 
present in the vehicle. Uber has announced that it will increase 
driver training, rotate two safety drivers periodically, and take 
additional measures to improve safety. [33] We are not aware 
of any published safety argument specifically addressing the 
issue of managing the nonlinear interaction between autonomy 
failure rate and human supervisor effectiveness. 

A Probabilistic High Level Safety Argument? 

It is desirable to have zero deaths and zero injuries attributable 
to road testing of autonomous vehicle technology. However, it 
is impracticable to achieve absolutely zero risk when operating 
any vehicle on a public road. Thus, there will always be at least 
some very low probability of a loss event. It is important to 
actively minimize the expected number and severity of loss 
events, especially when exposing the general public to a risk 
from testing performed by commercial interests who are 
strongly incentivized to deploy a new technology quickly. 

We do not believe a precise risk calculation is feasible based on 
currently available data for the novel and quickly evolving 
technology of autonomous vehicles. However, a generic 
mathematical formulation can inform a safety argument. The 
probability of a loss event during on-road AV testing is: 

(2) PLoss(i) = PFailure(i) * ((1–PDetection(i))+(1–PMitigation(i)))  

+ PHumanMistake 

(3) Risk = Sum(PLoss(i) * Severity(i)) 

In other words, the probability of a loss event during AV testing 
due to a particular autonomy malfunction of type i is the 
probability that the autonomy fails and the combined 
probability that either the supervisor fails to detect the failure in 
a timely manner or the supervisor fails to execute a mitigation 
action in a timely manner. There is an additional contribution 
to the probability of failure if the supervisor performs an 
unnecessary but unsafe action, such as an unsafe intervention. 
The risk is the sum of all the probabilities of such loss events 
times the severity of each possible loss event. 

As is commonly the case, a probabilistic formulation of risk has 
some issues. In this case, the interrelationship between PFailure 
and PDetection is non-linear. Autonomy that fails on a frequent 
basis keeps the supervisor alert, whereas autonomy that fails 
very infrequently can result in supervisor boredom and dropout. 
[38] Thus, assuming a constant human failure rate is incorrect. 
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The probability and consequence of a loss is also highly 
dependent upon the Operational Design Domain (ODD), which 
defines the general operational environment the system is 
intended to operate within. [22] For example, a low-speed 
shuttle operating in a benign environment with few obstacles, 
cooperative adult pedestrians, and light vehicular traffic could 
reasonably be expected to have comparatively low risk. A fully 
loaded truck operating in high-speed suburban rush hour traffic 
on secondary roads might be expected to have a comparatively 
higher risk for a given autonomy maturity level. 

Enumerating all possible failures and the probability of timely 
and correct human supervisor response seems like an 
overwhelming task in the face of scarce historical on-road data 

for partially autonomous human supervision. (What data is 
available indicates that operators are imperfect in at least some 
situations. [26]) Getting more realistic data without incurring 
additional risk via public road testing is likewise difficult. 
Finally, the probability of failure of novel AV technology is 
generally a moving target, if it is known at all. 

The reality is that AV testing is already occurring on public 
roads with little expectation of robust data for probability 
calculations in the near term. So while a probabilistic approach 
might be useful in the long term, in the near term it seems that 
a better use for the equation is to help identify areas that 
contribute to risk, even if exact numbers aren’t yet available. 

G1. Road Testing is Sufficiently Safe

C1. Test ODD is defined

A2. Non-technical requirements 
satisfied (e.g., permits, insurance)

C2. “Sufficiently safe” is well defined 
for testing operations

S1. Argument based on joint probability of: 
autonomy failure, timely supervisor 

response, adequate supervisor mitigation

A1. Vehicle is sufficiently safe when 
manually operated

G4. Appropriate autonomy
failure profile

G3. Adequate supervisor mitigation

S4. Argument over valiation 
methods: design, closed 

course test, simulation, ...

S2. Argument over 
elements of supervisor 

response time

G21. Alertness

G2. Timely supervisor response

S3. Argument over 
elements of supervisor 
response effectiveness

...

G22. Autonomy failure 
detection

...

G24. ODD violation detection ...

G41. Simulation-Based 
Validation

...G31. Situational awareness ...

G33. Execute response 
properly

...

G34. Vehicle responds to 
supervisor commands

...

G25. Field data confirmation ... G35. Field data confirmation ...

G23. Accuracy of mental 
model

...

G42. Closed Course 
Validation

...

Figure 1. GSN high-level on-road testing safety argument.

G32. Plan correct response ...

G43. Fault injection ...

G4x. … other verification & 
validation ...

...

C3. Non-Linear nature of
Autonomy/Human

interactions

G44. Field data confirmation ...
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Thus, we propose a safety argument approach that enumerates 
factors affecting risk. Our approach permits identifying, 
monitoring, and reducing factors that increase risk without 
necessarily having a precisely quantified risk value. In other 
words, it is a framework for managing risk. A significant aspect 
of the argumentation is accounting for practical limits of 
supervisability. It can be deployed as part of a safety argument 
that might, for example, argue that each element of risk has 
been made As Low As Reasonably Practicable (ALARP) and 
that continuous monitoring of risk will permit correcting any 
issues or gaps in the argument as soon as they are discovered 
during field testing. 

A Safety Case for Autonomous Vehicle Testing 

Figure 1 shows a high level Goal Structuring Notation (GSN) 
safety argument for on-road AV testing with a human 
supervisor that is aligned with the elements of the previously 
discussed risk computation. Each element is labelled according 
to its role in the argument: Goal, Context, Strategy, and 
Assumption. Unlabeled circles are used as place holders for 
more detailed arguments and evidence to support the argument 
for a particular system.  

Assumptions and Top-Level Goal (G1) 

The top level goal G1 assures that road testing is sufficiently 
safe. For the sake of this safety argument, we define the context 
as a particular set of ODDs selected for road testing (C1).  

We assume that the vehicle is sufficiently safe for road use 
when under non-autonomous manual operation, just like any 
other vehicle authorized to operate on public roads (A1). We 
also assume that non-technical requirements such as permitting, 
insurance, driver licensing procedures and so on have been 
taken care of (A2). If any of these elements are not true (for 
example, due to using a bespoke test platform that is not street 
legal), additional safety case support would be needed. 

Selecting a metric for “sufficiently safe” (C2) for at-scale 
deployment of AVs should properly be a matter of societal 
agreement. However, for practical purposes we note that any 
on-road testing program is likely to involve far fewer than 100 
million actual vehicle road-miles. Additionally, the intense 
public scrutiny placed on AV mishaps likely motivates a desire 
to have a zero-mishap test program if at all possible. Therefore 
we consider a strategy for test organizations that want to set a 
safety goal of zero fatalities, zero serious injuries, and a 
relatively low probability of less severe mishaps during a 
comparatively small public road testing program. We further 
assume they will want to continually improve safety in response 
to field incidents and near misses. 

Accepted practices for on-road testing, and in particular for 
driving training and workload management should be followed. 
See, for example, SAE J3018 [32], which can be used to provide 
argumentation support. 

Argument Strategy (S1) 

Once assumptions have been shown to be valid, the main safety 
argument S1 is that the joint probability of autonomy failure 
and a slow or ineffective supervisor response is sufficiently 
low. This results in sub-goals and arguments. We’ll discuss 
timely supervisor response (G2/S2) and adequate supervisor 
mitigation (G3/S3) to set the stage, and then explain why the 
autonomy failure rate (G4/S4) matters even though a human 
supervisor is assuming responsibility for safety. 

Timely Supervisor Response (G2/S2) 

If the autonomy fails in a way that is not self-mitigated, the 
supervisor must respond before a mishap can occur. While the 
root cause fault is important for engineering purposes, the 
pressing issue while operating on the road is ensuring that the 
vehicle is made safe. Thus, this analysis emphasizes 
supervisability, including human detection and responsiveness, 
rather than defects in the autonomy system. (Note: sub-goal 
numbers under G2 skip to G21 using a hierarchical scheme.) 

Limits to Human Alertness (G21) 

It is well known that humans have trouble remaining engaged 
as supervisors, even if they are trained and otherwise well 
qualified for the task. Historical attentiveness experiments are 
typically relatively short in duration, and do not account for the 
realities of months of long, boring supervisor shifts. In real-
world conditions it is all too easy for supervisors to drift off task 
to an even larger extent. A recent example of an autonomous 
vehicle testing mishap included video of a supervisor looking 
away from the road and allegations of significant driver 
distraction contributing to the mishap. [18] 

Having a second supervisor in the vehicle can help, but even 
then it is possible for two highly trained and motivated 
supervisors to not only lose attention, but even completely fall 
asleep. For example there are airline incidents involving 
allegations of both airline pilots having fallen asleep during 
commercial passenger flights. [24] There are several other 
recorded incidents of one or both pilots apparently falling 
asleep during flight. [25] 

Driver monitoring systems are one approach to mitigating 
supervisor inattention. However, the accuracy of the technology 
should be assessed in practice. There will almost certainly be a 
non-zero monitoring system failure rate. And, even if 
monitoring works, it is possible that the driver will sleep 
through an alarm (e.g., as alleged in [9]). 

In general, it is unrealistic to simply assume that even well 
trained supervisors will be completely engaged 100% of the 
time simply because they have been instructed to remain alert. 
A credible safety argument must allow for and mitigate the 
possibility of supervisors becoming disengaged, distracted, or 
even potentially falling asleep during testing sessions. 
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Detection of Autonomy Malfunction (G22) 

Assuming the supervisor is alert, that supervisor must 
continuously monitor vehicle behavior and detect a malfunction 
when one occurs. That detection must happen fast enough to 
leave enough time for recovery. Therefore, the acceptable 
detection latency is a factor of the type of malfunction and the 
amount of time it will take to plan and execute a mitigation 
maneuver (G3/S3, discussed later). 

It can be helpful to have self-diagnosis functions to help speed 
the detection time for detected autonomy faults. However, it is 
important to realize that some faults might not be detected. 
Worse, a supervisor becoming accustomed to a high probability 
of automated fault detection could result in over-reliance on that 
fault detection. That in turn could increase the latency for the 
supervisor realizing an undetected autonomy failure has 
occurred. The non-linear effects of high, but incomplete, self-
diagnosis coverage interacting with supervisor complacency as 
well as any false alarm rates resulting in alarm fatigue should 
be considered as part of the safety argument. 

Accuracy of Mental Model (G23) 

There are at least two ways for a supervisor to approach 
autonomy failure detection. The first way is for the driver to 
intervene whenever the vehicle does anything that might 
possibly be incorrect, leaving very wide safety margins. If the 
autonomy system is prone to dramatically unsafe actions, such 
as commanding sudden turns into oncoming traffic, the 
supervisor might well keep the vehicle on a very tight leash – 
with substantial justification. This approach essentially 
involves the supervisor imposing a high false alarm rate on 
autonomy failure detection in exchange for minimizing the risk 
from potential failures. 

However, as the autonomy function becomes more mature and 
demonstrates it is not prone to frequent, violent misbehavior, 
there will likely be a supervisor tendency to switch to a more 
permissive approach of waiting until the autonomy does 
something that is clearly unsafe before intervening. That 
involves giving the autonomy more latitude so long as it is 
reasonably well behaved. This more permissive approach 
seems especially likely if there is pressure to minimize 
supervisor interventions, such as when development progress is 
measured by reduction in reportable disengagement frequency. 

In the case of a driver attempting to minimize false alarm 
disengagements, it is likely that the driver will, over time, learn 
the general behaviors of the vehicle, and intervene only when 
something unusual occurs or there is a clear and imminent 
danger. This is especially true if the AV generally drives along 
the same route in consistent driving conditions. However, there 
is a risk that accompanies this normal human response, which 
is that the supervisor might not have an accurate model of what 
is really going on inside the autonomy system, and might not 
realize that latent faults are present that just haven’t been 

activated yet. In other words, the supervisor needs to build an 
expectation of vehicle behavior, but that expectation is likely to 
be invalid in some way due to the legibility problem. [8] An 
especially difficult problem will be if a particular situation is 
novel to the autonomy in some way that the human supervisor 
does not perceive, or does not consider to be a remarkable 
difference from previous experience. If the supervisor mis-
diagnoses or fails to diagnose a vehicle failure, that provides an 
opportunity for a supervisor mistake to result in a mishap. 

As an example, consider a fatal scenario in which a slow 
moving street cleaner partially obstructs a drive lane with a 
partially autonomous guidance system engaged (e.g., as in [3] 
and [7]). A cautious human driver might well reduce speed and 
attempt a complete lane change immediately upon seeing this 
anomalous situation. However, a supervisor trying to give the 
autonomy a chance to sort out the situation and respond 
appropriately might wait to act until too late and suffer a 
mishap. (It is unclear whether this is what actually happened in 
the cited crash. The citation is merely a concrete illustration of 
a potential mishap scenario.) 

An additional problem is that unless the autonomy is 
specifically designed for transparency to human supervisors, it 
is likely that the human will have insufficient information 
available to judge the intentions of the system. For example, 
consider a vehicle approaching a traffic signal. Absent a heads-
up or similar display, the supervisor has no way to know if the 
vehicle sees that the signal is red, or even if it sees the signal at 
all. While the supervisor can infer that the vehicle sees the 
signal if it slows down, it might be slowing down for an 
unrelated reason, or might not slow down at all despite a track 
record of previously detecting that same traffic signal many 
times in the past. [19]  

An augmented reality display or other approach can help the 
supervisor understand the internal state of the autonomy. This 
can, for example, make it easier to detect if a traffic signal has 
been detected or if a pedestrian in the middle of the road has 
been missed by vehicle sensors. However, using this type of 
system carries its own costs and risks. If poorly designed it can 
cause supervisor cognitive overload. Additionally, there is a 
risk of complacency and accompanying delayed intervention 
time if the vehicle shows the supervisor that it perceives an 
obstacle or plans to follow an obstacle-free path, but then fails 
to react accordingly. 

ODD Violations (G24) 

Any practical autonomy system has limitations on its expected 
deployment environment, or Operational Design Domain 
(ODD). While a robust autonomy system should be able to 
detect violations of its ODD assumptions, a system under test 
might well have defects in that capability. Therefore the 
supervisor must not only monitor vehicle behaviors, but also 
undetected excursions from the intended ODD. 
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Some ODD violations might be relatively straightforward, such 
as geographic limitations, a constraint on weather conditions, 
or a constraint to only test in daylight. Other constraint 
violations might be subtle and perhaps difficult for the 
supervisor to detect, such as sensor degradation or subtle 
environmental factors such as operation in a thin haze.  

Sensor degradation and object perturbations that do not 
particularly trouble humans can cause autonomy failures. For 
example, malicious alteration of road signs can cause autonomy 
failures. [10] A more subtle problem is that environmental 
degradation that is almost imperceptible to humans, such as 
slight amounts of haze or camera blur, can cause autonomy 
failures. [30] 

There might be types of objects out of scope for an ODD that 
show up during test drives. For example, designers might have 
considered people wearing animal costumes to be out of scope. 
While October 31 might be excluded from the ODD to avoid 
encountering costumed pedestrians in a country that celebrates 
Halloween, it would then be up to the supervisor to terminate 
testing due to ODD violation when encountering a pack of 
children in costume going to a pre-Halloween party on an 
earlier date. 

A specific challenge is that the supervisor must be cognizant in 
significant detail about the various aspects of the ODD. This 
includes which types of objects the system has been trained on, 
exactly what weather conditions are permissible, and other 
limitations to training data to detect ODD violations. 

The supervisor must also monitor false alarm hazard reactions 
that surprise other human drivers who reasonably expect the test 
vehicle to act as if there is no hazard. As an example, panic 
braking for a non-existent obstacle (a false positive) could cause 
a rear-end collision with a trailing vehicle whose driver 
reasonably believed there was no obstacle in the road, and 
therefore was following too closely to avoid a crash. While such 
a mishap might be blamed on the trailing human driver, it is 
nonetheless a mishap involving the test vehicle. 

Finally, it might be desirable for the supervisor to monitor the 
vehicle for erratic, inconsistent, or other behaviors that degrade 
public confidence. There might be a need to mitigate such 
behaviors to manage public perception of autonomy capabilities 
even if they do not pose a significant risk of a mishap. 

Field Data Confirmation (G25) 

Assuming the goal of a test program is zero fatalities and zero 
major crashes, the safety argument should include data 
feedback from elements contributing to the safety argument 
rather than waiting to react to a real-world collision. 

Even if a safety plan is sound in principle, real-world issues can 
be expected to result in surprises or degraded safety 
performance, revealing unexpected coverage gaps in the safety 

case. Even the best-trained and qualified supervisors might be 
distracted by personal issues, slowed down by the onset of a 
minor illness, or simply have bad days. Emergent autonomy 
defects could cause nearly unrecoverable failures that take 
supervisors by surprise. Unexpected, potentially subtle ODD 
violations will crop up that take a while for supervisors to 
recognize. And so on.  

To detect and eventually mitigate emergent problems and gaps 
in the safety case, any credible safety argument will need to 
have data fed back from real world experience to validate 
assumptions, calibrate residual risk expectations, and detect 
problems that crop up so that they can be mitigated before loss 
events occur.  

Here are some examples of potentially useful feedback data for 
the supervisor response component of the safety argument: 

 Fraction of time primary supervisor is alert with eyes 
on road, including distribution of time lengths when 
eyes were off road. (This cannot be 100% eyes on 
road, if for no other reason than eye fatigue and 
blinking. It seems likely to be substantially worse in 
practice without continual feedback.) 

 Mean and distribution of time to detect autonomy 
failures, potentially including faults injected for 
training and measurement purposes. 

 Analysis of incidents to determine the role of 
inaccurate supervisor mental model in contributing to 
near misses or false alarm disengagements. 

 Sampling of data recordings to determine rate at 
which supervisors fail to recognize risky situations 
(near misses). 

 Data on arrival rates and distributions of ODD 
violations 

The goal for metric collection should not be perfection, but 
rather to have a realistic understanding of what areas of 
performance can and should be improved to minimize the risk 
of a mishap. 

Adequate Supervisor Mitigation (G3) 

Once the supervisor has detected an autonomy failure, the next 
step is planning and executing a mitigation procedure, which 
generally means performing a vehicle maneuver to put the 
vehicle in a safe state until the malfunction can be resolved. 
Accomplishing this requires situational awareness, planning, 
and execution of a safing maneuver. 

Situational Awareness (G31) 

The supervisor must remain aware of vehicle condition, 
environmental condition, other vehicles, obstacles, and 
situational aspects during operation. This includes both normal 
and abnormal situations. For example, the vehicle under test 
might suffer a mechanical breakdown or collision (e.g., 
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autonomy equipment failure, tire blowout, road debris strike, 
side-swipe by another vehicle). Or it might be that another 
vehicle suffers an unexpected failure (e.g., cargo spill onto 
roadway, crash that blocks road), there is a roadway failure 
(e.g., rock slide, bridge collapse), or there is a sudden departure 
from the ODD that results in sudden loss of visibility (e.g., 
heavy rain squall, whiteout from wind-blown snow).  

At the time an autonomy failure happens, the supervisor should 
already have a reasonably accurate mental model of the 
environment, other road users, and other relevant factors as an 
input into the response planning process. A lack of situational 
awareness can be expected to delay the response process while 
the supervisor spends time gathering information about the 
surrounding environment, or can result in an incorrect response 
if the supervisor feels an urgent need to react immediately 
despite inadequate situational awareness. As a simple example, 
if an in-lane obstruction suddenly appears, the supervisor must 
know if there are vehicles in adjacent lanes before initiating a 
swerving maneuver. Even for an in-lane braking maneuver, the 
supervisor should be aware of following traffic to manage the 
risk of a rear-end collision due to panic braking. 

Plan and Execute Correct Response (G32, G33) 

Ultimately it is the supervisor’s job to either avoid a mishap or 
minimize the consequences if avoidance is infeasible. 

Given adequate situational awareness, the supervisor must 
select an appropriate response for an autonomy failure. 
Depending upon the circumstances this response can range 
from simply re-engaging the autonomy after a false alarm 
disengagement to complex avoidance maneuvers to recover 
from a dangerous situation. 

The likelihood of correctly planning and executing a 
sufficiently safe response will be influenced by situational 
awareness, training, and general experience of the supervisor. 
For example, a supervisor lacking situational awareness might 
take incorrect action or over-compensate for an undesirable 
vehicle motion as part of a startle response. 

Planning and execution can take a substantial amount of time in 
novel, unexpected situations. There is data showing that 
humans can make incorrect decisions in the first few seconds of 
a high-consequence system failure. This is especially true for 
scenarios that have not been the subject of training. In some 
circumstances the chance of a human performing the wrong 
supervisory action in a short time window for unexpected, 
unrehearsed, high-consequence scenarios approaches 100%. 
(e.g., [36] Table 16.5) 

A credible safety case involving human supervisors recovering 
from autonomy failures will need substantial data indicating 
that human supervisors are not only trained, but also exposed to 
effective in-service proficiency maintenance for high 
consequence autonomy failures. 

Vehicle Response to Supervisor Commands (G34) 

Once the supervisor takes control actions, the test vehicle must 
correctly respond. This can be complicated by modifications 
that might have been made to the test vehicle’s underlying 
platform to enable autonomous operation.  

Since the autonomy system has by definition failed when a 
supervisor intervenes, it is dangerous to assume that the 
autonomy’s disengagement mechanism will actually work 
unless a specific safety argument has been made regarding 
those mechanisms. It is generally desirable to have an 
independent safety-rated disengagement mechanism that can 
override the autonomy system even if the autonomy is 
erroneously attempting to maintain control of vehicle operation. 
Such a safety mechanism should be designed in accordance 
with an accepted safety standard such as ISO 26262. [15] 

The switchover from autonomous operation to manual 
supervisor operation brings with it a number of potential issues 
that can lengthen or degrade the ability to bring the vehicle to a 
safe state. Factors that should be addressed as part of the safety 
argument include: 

 Time delay between initiating a disengagement and 
fully restoring driver control 

 The update of vehicle control inputs to match driver 
inputs (e.g., matching vehicle internal state values to 
physical accelerator and brake pedal positions) 

 Whether an autonomy malfunction can degrade or 
prevent supervisor control (e.g., a steering assist unit 
controlled by the autonomy system might be able to 
overpower human driver steering force) 

 Whether transient signals during the disengagement 
process cause unexpected or exceptional behaviors 
such as control loop destabilization or program 
execution faults in underlying vehicle control 
software. 

While the specifics will vary for each vehicle, it is difficult to 
imagine a safe design in which the primary autonomy function 
is itself entirely responsible for safety disengagements. 
Similarly, a system in which all human driver commands go 
through the autonomy system is likely to be flawed if an 
autonomy failure mode can cause the autonomy software to 
simply ignore supervisor control inputs. 

An additional concern is false alarm takeovers by the 
supervisor. For example, consider a situation in which a 
supervisor is startled by an external event, or otherwise reacts 
to a perceived hazard in a way that causes a loss event when it 
is believed the autonomous vehicle itself would have avoided a 
mishap (e.g., [17]). While it is tempting to simply blame such 
outcomes on human supervisor mistakes, it is important to 
remember that humans are imperfect, and the inevitability of 
these types of events must be accounted for in the safety case. 
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Field Data Confirmation (G35) 

As with supervisor responses, field data should be taken to 
quantify the effectiveness of supervisor mitigation. This data 
should encompass the various factors affecting the supervisor’s 
ability to plan and respond to autonomy faults. 

Appropriate Autonomy Failure Profile (G4) 

An essential observation for the preceding sections for goals G2 
& G3 is that they rely upon imperfect human responses to 
provide safety. There is some non-zero probability that the 
supervisor will not react in a timely fashion, and some 
additional probability that the supervisor will react incorrectly. 
Either of these outcomes could be an incident or mishap. Such 
a non-zero probability of unsuccessful failure mitigation means 
it is necessarily the case that the frequency of autonomy failures 
will influence on-road safety outcomes.  

However, lower failure rates are not necessarily better. The 
types and frequencies of autonomy failures will affect the 
supervisability of the system. Therefore, the field failure rate 
and types of failures must be compatible with the measures 
being taken to ensure supervisor engagement. Thus, the failure 
profile must be “appropriate” rather than low. 

In practice it might be desirable to induce intentional autonomy 
failures in low-risk scenarios. Such emergency drills could help 
maintain driver vigilance and malfunction response 
proficiency. 

Non-Linear Autonomy/Human Interactions (C3) 

A significant difficulty in reasoning about the effect of 
autonomy failure on safety is that there is a non-linear response 
of human attentiveness to autonomy failure. We propose that 
there are five different regions of supervisability of autonomy 
failures, with two different hypothetical scenarios based on 
comparatively lower and higher supervisability trends 
illustrated in Figure 2. 

1. Autonomy fails frequently in a dangerous way. In 
essence this is autonomy which is not really working. 
A supervisor faced with an AV test platform that is 
trying to run off the road every few seconds should 
terminate the testing and demand more development. 
We assume that such a system would never be 
operated on public roads in the first place, making a 
public risk assessment unnecessary. (Debugging of 
highly immature autonomy on public roads seems like 
a bad idea, and presents a high risk of mishaps.) 

2. Autonomy fails moderately frequently but works 
or is benign most of the time. In this case the 
supervisor is more likely to remain attentive since an 
autonomy failure in the next few seconds or minutes is 
likely. The risk in this scenario is probably dominated 

by the ability of the supervisor to plan and execute 
adequate fault responses, and eventual supervisor 
fatigue. 

3. Autonomy fails infrequently. In this case there is a 
real risk that the supervisor will lose focus during 
testing, and fail to respond in time or respond 
incorrectly due to loss of situational awareness. This is 
perhaps the most difficult situation for on-road testing, 
because the autonomy could be failing frequently 
enough to present an unacceptably high risk, but so 
infrequently that the supervisor is relatively 
ineffective at mitigation. This dangerous situation 
corresponds to the “valley of degraded supervision” in 
the upper half of Figure 2. 

4. Autonomy fails very infrequently, with high 
diagnostic coverage. At a high level of maturity, the 
autonomy might fail so infrequently that it is almost 
safe enough, and even a relatively disengaged driver 
can deal with failures well enough to result in a system 
that is overall acceptably safe. High coverage failure 
detection that prompts the driver to take over in the 
event of a failure might help improve the effectiveness 
of such a system. The ultimate safety of such a system 
will likely depend upon its ability to detect a risky 
situation with sufficient advance warning for the 
supervisor to re-engage and take over safely. (This 
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scenario is generally aligned with envisioned 
production deployment of SAE Level 3 autonomy.) 

5. Autonomy essentially never fails. In this case the role 
of the supervisor is to be there in case the expectation 
of “never fails” turns out to be incorrect in testing. It 
is difficult to know how to evaluate the potential 
effectiveness of a supervisor, other than that the 
supervisor will have the same tasks as the “very 
infrequently” preceding case, but is expected not to 
have to perform them. 

Perhaps counter-intuitively, the probability of a supervisor 
failure is likely to increase as the autonomy failure rate 
decreases from regions 1 to 5 above (from left to right along the 
horizontal axis of Figure 2). In other words, the less often 
autonomy fails, the less reliable supervisor intervention 
becomes. The most dangerous operational region will be #3, in 
which the autonomy is failing often enough to present a 
significantly elevated risk, but not often enough to keep the 
supervisor alert and engaged. This is a well understood risk 
(e.g., [6]) that must be addressed in a road testing safety case. 
Figure 2 illustrates this effect with hypothetical performance 
data that results in an overall test platform safety value in 
accordance with Eqn. 1. A hypothetical lower supervisability 
curve results in a region in which the vehicle is less safe than a 
conventional vehicle driven by a human driver. Safe testing 
requires a comparatively higher supervisability curve to ensure 
that the overall test platform safety is sufficiently high, as 
shown by the lower half of Figure 2. 

Because autonomy capabilities are generally expected to 
mature over time, the safety argument must be revisited 
periodically during test and development campaigns as the 
autonomy failure rate decreases from region 2 to 3 above. An 
intuitive – but dangerously incorrect – approach would be to 
assume that the requirements for test supervision can be relaxed 
as autonomy becomes more mature. Rather, it seems likely that 
the rigor of ensuring supervisors are vigilant and continually 
trained to maintain their ability to react effectively needs to be 
increased as autonomy technology transitions from immature 
to moderately mature. This effect only diminishes when the AV 
technology starts approximating the road safety of a 
conventional human driver all on its own (regions 4 & 5). 

Pre-Test Validation (G41, G42, G43, G44, G4x) 

Since there is always some risk in conducting tests on public 
roads, it is prudent to maximize validation via simulation, 
closed course testing, and other methods. It should be noted that 
data collection on public roads is fundamentally different than 
testing on public roads in that autonomy does not have control 
authority over the vehicle for data collection. 

Robust fault injection campaigns could, and should, be used to 
characterize the likely consequences of autonomy failures that 
will inevitably happen during public road testing. Additionally, 
field data should be collected to determine the type, frequency, 

and severity of autonomy failures, even if those failures do not 
result in a mishap. 

Implications of the Reference Safety Argument 

Implementing a test program in accordance with a safety 
argument of this type brings with it a need to consider some 
essential implications and tradeoffs. 

Response to Field Data 

Even if care is taken to address all factors in the safety 
argument, there will inevitably be uncertainties, underestimated 
residual risks, argumentation gaps and other surprises. This is 
especially true given the inherent non-linearity of the 
supervisability problem. 

It is essential in a robust safety case to properly account for the 
fact that all the elements of a test platform will have 
imperfections, including both the autonomy algorithms and the 
human supervisors. Testing teams should expect to encounter 
incidents of autonomy equipment failure, autonomy algorithm 
failure, unexpected environmental factors, unexpected (and 
even illegal) behavior by other actors, lapses in supervisor 
attention, errors in good faith supervisor judgement, potential 
badly behaving supervisors, and even data collection faults. In 
other words, inevitable failures in the testing process must also 
be considered as contributing factors to degradation of 
supervisor and equipment capabilities when evaluating risk. 

A mature safety culture does not discount issues, adverse 
events, and surprises as one-off events. Nor does it find a 
scapegoat and dismiss that person, declaring all problems with 
the test program to be fixed by that personnel action. Rather, 
ensuring and improving safety requires considering every 
incident, mishap, and near miss as a failure in the testing 
program safety process. It is crucial to identify and fix the root 
cause of all safety problems beyond addressing any superficial 
symptoms. 

Autonomy Behavior Permissiveness 

Not all legal, safe vehicle behaviors are supervisable. There is 
an essential tension between testing safety and autonomy 
behavior permissiveness that ultimately seems likely to limit 
the effectiveness of any on-road testing program. This is related 
to the topics G23 mental model of autonomy and G31 
situational awareness, as well as the timeliness of supervisor 
responses in general. 

As an illustrative example, consider an AV test platform 
approaching a red traffic light. It might be that the AV is tuned 
to perform aggressive, last-second stops so that it can continue 
at-speed through the intersection in case the traffic light is about 
to turn green. (Indeed, vehicle-to-infrastructure data 
transmissions might inform the autonomy that the light will 
change just before the vehicle reaches the intersection, enabling 
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it to proceed without loss of speed.) The human will experience 
a vehicle that repeatedly stops at the last second when 
approaching a red light, or maintains speed when it is sure that 
the light will change just in time, and learn that this is normal 
behavior. 

However, a fault in data transmission, control logic, map data 
error, or a machine learning functional defect might result in the 
vehicle running a red light. Since the human has been trained 
that a last-second stop is normal, it will take extra time for the 
human to diagnose and react to a failure to stop right before the 
intersection, potentially resulting in the AV running the light 
and entering cross traffic flow. Consider that if the vehicle 
regularly maintains speed knowing that a traffic light will 
change to green at the last second, it will be impossible for a 
supervisor to react in time if the light does not change as 
expected as the vehicle reaches the intersection. In other words, 
it is unreasonable to expect a supervisor to fully mitigate a 
malfunction in a behavior that, by design, occurs at the last 
possible moment to avoid an incident or loss event. 

Avoiding these types of incidents might require making the AV 
less aggressive to improve supervisability by giving the 
supervisor more time to detect and react to behavioral failures. 
But, that necessarily comes at the cost of reduced efficiency and 
behavioral permissiveness. Thus, it seems likely that there are 
inevitable limits to the aggressiveness of an AV compared to a 
human driver if a supervisor is being used to ensure safety. The 
vehicle must leave time for the supervisor to react, necessarily 
reducing its ability to operate right at the limit of safe behavior 
for the sake of efficiency. 

These limits might be improved to a degree by selecting 
supervisors who have better-than-average skills and response 
times. (Such a claim of extraordinary supervisor abilities should 
be supported by outcome-based evidence, and likely requires 
constant refresher training, proficiency drills, and performance 
monitoring.) Additionally, internal AV state information might 
be supplied to provide improved expectations as to whether the 
AV is about to make a mistake. But, ultimately, there will be 
limits to what can be accomplished. It seems likely that 
ensuring the safety of an AV under test that has human (or 
beyond human) driving capability will be difficult to achieve 
via reliance upon a human supervisor. 

It might be possible to adjust acceptable autonomy 
permissiveness via an analysis that parallels ISO 26262 ASIL 
analysis. (This is not actually conformance to ISO 26262 per 
se.) Such an approach would involve considering the severity, 
exposure, and controllability of potential autonomy 
malfunctions in assessing risk. For the analysis presented herein 
we have implicitly assumed that severity has the same profile 
across various malfunctions as for human driver errors, 
exposure is high with respect to a particular testing ODD, and 
controllability is high (the system should only be testing in 
situations for which the supervisor can assure safety via 
exercising control). One way of considering this subsection is 

that it explores issues that arise when autonomy behavior 
compromises supervisor controllability. 

Relying Upon ADAS Systems 

Some draft safety arguments for road testing that we have seen 
propose to take credit for off-the-shelf ADAS systems. Doing 
so is often problematic and can be prone to abuse. 

For example, consider an Automatic Emergency Braking 
(AEB) system. A naïve safety argument is that if AEB is 
installed in a vehicle, there is no need for a safety driver to have 
full alertness, because the vehicle will brake itself before hitting 
anything. 

Such an argument has a host of defects. For example, a typical 
AEB system is only intended to work in certain scenarios. It 
might not alarm on obstacles that have zero in-line velocity to 
avoid false alarms from overhead road signs. It is also might not 
work for problematic scenarios such as negative obstacles (e.g., 
an uncovered work zone pit), radar-absorptive materials (e.g., 
detached fabric core tire treads), or low profile critical obstacles 
(e.g., a person who has fallen and lies prone onto the road 
surface). For that matter, it might not even be designed to avoid 
collisions with pedestrians at all. Other ADAS systems have 
their own limitations. 

A significant issue is that to provide value as an ADAS system, 
an off-the-shelf AEB system need only work most of the time, 
not all of the time. The argument is that the human has already 
made a mistake or otherwise been put in an unrecoverable 
situation before AEB is activated, so anything AEB can do to 
help is a benefit. In fact, it is expected that the AEB will be 
tuned to have a low false alarm rate to avoid over-riding human 
intent unless there is very high probability that the human is 
making a mistake, even if that means some missed activations. 
This approach can provide significant value for a last-ditch 
defense to mitigate the consequence of collisions due to 
presumably infrequent error of the responsible human driver. 

However, a typical ADAS tuning approach is fundamentally 
incompatible with an argument that AEB will aggressively 
protect a potentially error-prone immature autonomy system. 
While for human drivers the AEB should likely be tuned to have 
a low false-alarm rate, instead for an autonomy testing scenario 
the AEB should be tuned to tolerate a higher false-alarm rate in 
exchange for a lower rate of missed activations. 

While using off-the-shelf ADAS systems as defense-in-depth 
mechanisms has some merit, ultimately the safety argument 
made when designing the ADAS systems was that a human 
driver ultimately will take responsibility for vehicle safety. Any 
safety argument that inverts this by replacing a human 
supervisor responsibility with the ADAS system is therefore 
inherently suspect, and is likely deficient. 
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Semi-Autonomous Production Systems 

Many of the arguments used here for test platforms will also 
apply to production semi-autonomous vehicles. For example, 
the safety argument based on failure frequency, driver response, 
and appropriate driver mitigation actions still holds in general. 
So too do the issues regarding the nonlinear interactions 
between autonomy failure rate and driver attentiveness. We 
believe that the safety case discussed is a suitable starting point 
for a semi-autonomous production safety case. However, 
significant adjustments will need to be made. 

It seems likely that the AV testing problem is in many ways 
easier than the semi-autonomous production deployment 
problem. That is because for AV testing the scale is smaller, so 
it can be economically feasible to take extraordinary steps to 
improve driver abilities, including approaches such as using 
multiple supervisors, relying upon extremely high supervisor 
skill levels, requiring frequent rest breaks, using overlay sensor 
systems beyond normal vehicle equipment for sensor diversity, 
and using labor-intensive monitoring of system elements such 
as independent reviews of supervisor attentiveness. 

We make the assumption for this analysis that AV testing is 
conducted by highly qualified, mature professionals who are 
making every effort to ensure safety and will shut down testing 
operations rather than compromise safety. A safety case for 
partially autonomous production systems will need to 
additionally account for unqualified supervisors, skill loss over 
time [20], intentional misuse, evasion of driver monitoring 
mechanisms, lax maintenance procedures, attempted operation 
in invalid ODDs, and so on.  

Completing the Safety Argument 

The safety argumentation structure described in Fig. 1 is a 
starting point, and needs to be elaborated to create a complete 
safety case. Because there is not yet an industry standard way 
for designing and road testing autonomous vehicles, the 
specifics of the safety case will vary among design teams. 
Design teams should explore available tutorial information on 
GSN (e.g., [14]) for more information on how to complete the 
argumentation structure. 

A related issue is ensuring that the safety case is complete and 
sufficiently broad in scope. Other than a requirement that all the 
points in this paper must be addressed as a minimum, 
determining completeness will depend upon the system design, 
ODDs, and other system-specific factors. 

Conclusions 

A safety argument for human-supervised on-road testing of 
autonomous vehicles should include sub-arguments that the 
supervisor will respond in a timely manner, that the 
supervisor’s response will be adequate to mitigate autonomy 
failures, and that the autonomy fails with an appropriate profile 

given supervisor capabilities. A significant challenge in 
successfully providing evidence to support such an argument 
will be the supervisability problem. Coupling between 
autonomy failure rate decreases and degradation of supervisor 
performance will make it difficult for human supervisors to 
remain attentive when autonomy fails with low frequency, 
requiring specific mitigation to avoid unacceptable risk.  

Because a number of difficult and subtle human performance 
topics must be addressed in a credible safety argument of this 
type, it will be essential that field data is collected and 
continually analyzed to ensure that an autonomy test program 
achieves its safety objectives. It will be crucial to keep in mind 
that as the autonomy capabilities start to mature, safe road 
testing will actually increase the performance demands placed 
upon human supervisors to remain vigilant and effective. 

The reference safety case presented is based on lessons learned 
across multiple autonomous ground vehicle projects over the 
last several years. Additionally, it is based on discussions with 
regulators and other industry stakeholders. While each on-road 
testing program might have its own unique requirements, we 
consider this to be a solid starting point for ensuring the safety 
of on-road test programs for autonomous vehicles. We hope 
that this material can provide the beginnings of a standardized 
approach to creating transparent, independently assessed safety 
cases for on-road testing safety. 
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