

APRIL 10-12, 2018 • COBO CENTER • DETROIT, MICHIGAN

sae.org/wcx

Toward a Framework for Highly Automated Vehicle Safety Validation

Dr. Philip Koopman & Mike Wagner

Carnegie Mellon University

2018-01-1071 / 18AE-0273

The First 90% Is The Easy Part

But, the second 90% is the hard part.

- 1. Be smarter than a billion miles of testing
- 2. Beware of simulation fidelity nirvana
- 3. Be sure tests pass for the right reason
- 4. Explicitly manage uncertainty

https://goo.gl/oYnzY3

...

Do We Need Billions of Test Miles?

• If 100M miles/critical mishap...

- Test 3x−10x longer than mishap rate
 → Need 1 Billion miles of testing
- That's ~25 round trips on every road in the world
 - With fewer than 10 critical mishaps
 - Then you're only as good as a human
 - (Including the <u>impaired</u> humans!)

Total road length map:

WolframAlpha computational knowledge engine

Traditional Validation Doesn't Need 1Gmi

- If you have requirements and understand design:
 - ISO 26262 for safety functions
 - Emerging SOTIF standards
- Testing looks for holes in engineering rigor
 - You should do this for everything you can!

What If Traditional V Doesn't Seem To Fit?

- Machine Learning (inductive training)
 - No requirements
 - Training data is difficult to validate
 - No design insight
 - Generally inscrutable
 - Prone to over-fitting/gaming

https://en.wikipedia.org/wiki/Magic_Roundabout_(Swindon)

https://goo.gl/3dzgu

- Use your road miles to gather requirements
 - Novel objects, events, scenarios (OEDR-centric)
 - Novel operating conditions (ODD-centric)
 - Edge cases that present problems
 - Look for novelty even if your vehicle "test" is passing

• Think "requirements testing" not "vehicle testing"

Disengagements are a blunt instrument for detecting novelty

Smart Use of Simulation

- Point of view: everything is a simulation
 - Software component simulation
 - Software vehicle simulation
 - HIL testbeds
 - Closed course testing
 - Simulated environment, obstacles, events
 - Public road testing
 - Assumes representativeness

University of Michigan

• Even a "perfect" simulation needs scenarios as inputs

• You need a test plan that covers all required functionality

All Simulations Are "Wrong"

WORLD CONGRESS EXPERIENCE

But some simulations are useful

• It's all about the assumptions

- "Perfect" simulation is expensive
- Exploit the cost/fidelity tradeoff

• Layered Strategy:

- Simplified simulations explore large spaces
- Complex simulations address residual risks
 - Validate assumptions made by simple simulations
 - Look for emergent effects and surprises

• Use road tests to validate simulations

• Identify and concentrate simulation residual risks

Validation Activity	Residual Risks (Threats to Validity)
Pre-deployment road tests	Unexpected scenarios, environment
Closed course testing	<i>As above, plus:</i> Unexpected human driver behavior, degraded infrastructure, road hazards
Full vehicle & environment simulation	<i>As above, plus:</i> simulation inaccuracies, simulation simplifications (e.g., road friction, sensor noise, actuator noise)
Simplified vehicle & environment simulation	<i>As above, plus:</i> inaccurate vehicle dynamics, simplified sensor data quality (texture, reflection, shadows), simplified actuator effects (control loop time constants)
Subsystem simulation	As above, plus: subsystem interactions

validity.

How Do You Know a Test Passed?

• Traditional test paradigm:

- You think design is right
- Test validates engineering done properly
 - Test traces to requirements/design
 - Deterministic behavior according to test plan
- Inductive training test paradigm:
 - You think system was trained properly
 - Test determines whether training worked
 - Weak traceability to test set, if any
 - Hope to detect training data gaps, overfitting
 - BUT: nondeterministic, opaque "design"

https://goo.gl/cFCknY

https://goo.gl/QdTYVV

Improving Observability for Testing

• Hypothetical test:

- 10 tests of child in crosswalk
 - 10 times vehicle does not hit child
 - Conclusion: vehicle does not hit child in crosswalk
- Threats to validity
 - Random path planner got lucky 10 times in a row
 - Vehicle only recognizes children in certain conditions
 - Vehicle thought a bush at that intersection is a child
 - .

• Increase confidence via self-reporting

- Vehicle self-reports: "I see a child in a crosswalk"
 - Perception simulation: children, crosswalks, fuzzing
 - Vehicle simulation: simulated children/crosswalks
 - Test track: simulated children; real crosswalks
 - On-road testing: real children/crosswalks (with safety supervision!)

Explicitly Manage Uncertainty

- Things we don't think matter
 - But we might be wrong
- Things we think are rare
 - e.g., lightning strikes
 - But we might be wrong about that!
- Things we aren't completely sure about
 - e.g., frequency of correlated sensor failures
 - Monitor quality of estimates
- Things we didn't think of
 - Try to detect "vehicle is clueless" (it's an ODD violation)
 - Do something reasonably safe

YouTube: PknOqXqcnUo, M1XHjl_6HtM, -0hE6gAcbvg, y6Krr4TazMg

https://goo.gl/MZWGi1

Techniques for Managing Uncertainty

Do aggressive fault injection

- Even "unrealistic" faults provide insight
- Especially important is perception fuzzing
 - Perturb both ODD and OEDR aspects of sensors

Document and monitor your assumptions

- "X" won't happen put in a detector for "X"
- "Y" is rare measure arrival rate of "Y"
- System will never do "Z" test via fault injection
- "We thought of everything"
 - No. You didn't.

Pedestrian Missed: Gaussian Noise + Black Car

Pedestrian Missed: Gaussian Blur

Making the Second 90% Easier

- 1. Concentrate on data collection with road miles
 - Look for things beyond disengagement triggers
 - Use vehicle "testing" to validate simulations

2. Use a layered approach to simulation

- Exploit fidelity/cost tradeoffs
- Validate assumptions & simplifications

3. Monitor tests passing for the right reason

• Have system self-report scenario it thinks it is in

4. Monitor assumptions and surprises

Actively look for having missed something

