
Challenges in Autonomous Vehicle Validation
Keynote Presentation Abstract

 Philip Koopman
Carnegie Mellon University & Edge Case Research LLC

ECE Dept. HH A-308, 5000 Forbes Ave., Pittsburgh, PA, USA
koopman@cmu.edu

ABSTRACT1
Developers of autonomous systems face distinct challenges in
conforming to established methods of validating safety. It is well
known that testing alone is insufficient to assure safety, because
testing long enough to establish ultra-dependability is generally
impractical. That’s why software safety standards emphasize high
quality development processes. Testing then validates process
execution rather than directly validating dependability.

Two significant challenges arise in applying traditional safety
processes to autonomous vehicles. First, simply gathering a
complete set of system requirements is difficult because of the
sheer number of combinations of possible scenarios and faults.
Second, autonomy systems commonly use machine learning (ML)
in a way that makes the requirements and design of the system
opaque. After training, usually we know what an ML component
will do for an input it has seen, but generally not what it will do
for at least some other inputs until we try them. Both of these
issues make it difficult to trace requirements and designs to testing
as is required for executing a safety validation process. In other
words, we’re building systems that can’t be validated due to
incomplete or even unknown requirements and designs.

Adaptation makes the problem even worse by making the
system that must be validated a moving target. In the general case,
it is impractical to validate all the possible adaptation states of an
autonomy system using traditional safety design processes.

An approach that can help with the requirements, design, and
adaptation problems is basing a safety argument not on
correctness of the autonomy functionality itself, but rather on
conformance to a set of safety envelopes. Each safety envelope
describes a boundary within the operational state space of the
autonomy system.

A system operating within a “safe” envelope knows that it’s
safe and can operate with full autonomy. A system operating

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SCAV'17, April 21-21 2017, Pittsburgh, PA, USA
ACM 978-1-4503-4976-5/17/04.
http://dx.doi.org/10.1145/3055378.3055379

within an “unsafe” envelope knows that it’s unsafe, and must
invoke a failsafe action. Multiple partial specifications can be
used as an envelope set, with the intersection of safe envelopes
permitting full autonomy, and the union of unsafe envelopes
provoking validated, and potentially complex, failsafe responses.

Envelope mechanisms can be implemented using traditional
software engineering techniques, reducing the problems with
requirements, design, and adaptation that would otherwise impede
safety validation. Rather than attempting to prove that autonomy
will always work correctly (which is still a valuable goal to
improve availability), the envelope approach measures the
behavior of one or more autonomous components to determine if
the result is safe. While this is not necessarily an easy thing to do,
there is reason to believe that checking autonomy behaviors for
safety is easier than implementing perfect, optimized autonomy
actions. This envelope approach might be used to detect faults
during development and to trigger failsafes in fleet vehicles.

Inevitably there will be tension between simplicity of the
envelope definitions and permissiveness, with more permissive
envelope definitions likely being more complex. Operating in the
gap areas between “safe” and “unsafe” requires human
supervision, because the autonomy system can’t be sure it is safe.

One way to look at the progression from partial to full
autonomy is that, over time, systems can increase permissiveness
by defining and growing “safe” envelopes, shrinking “unsafe”
envelopes, and eliminating any gap areas.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Robotics; Robotic autonomy • Software and
its engineering → Software organization and properties; Extra-
functional properties; Software Safety

KEYWORDS
Autonomous vehicles; self-driving vehicles; validation; testing;
adaptation; machine learning; safety envelope; software safety

ACM Reference format:

P. Koopman, 2017. Challenges in Autonomous Vehicle Validation. In
Proceedings of 1st International Workshop on Safe Control of Connected
and Autonomous Vehicles, Pittsburgh, Pennsylvania, USA, April 2017
(SCAV 2017), 1 page.
DOI: 10.1145/123 4

